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EMBEDDING SUMS OF CANCELLATIVE MODES

INTO FUNCTORIAL SUMS

Abstract. The paper discusses a representation of modes (idempotent and entropic
algebras) as subalgebras of so-called functorial sums of cancellative algebras. We show
that each mode that has a homomorphism onto an algebra satisfying a certain additional
condition, with corresponding cancellative congruence classes, embeds into a functorial
sum of cancellative algebras. We also discuss typical applications of this result.

1. Introduction

Algebras (A,Ω) considered in this paper have a plural type τ : Ω → Z
+,

i.e. all operations of Ω are at least unary and at least one of them has arity
bigger than one. If such an algebra (A,Ω) has a homomorphism h onto an
idempotent algebra (I,Ω), then (A,Ω) is a disjoint union of its subalgebras
h−1{i} for i ∈ I. If additionally the algebra (I,Ω) has a certain naturally
defined quasi-order � (see Definition 2.1), and i 7→ h−1{i} defines the object
part of a functor from (I,�), considered as a small category, into the category
of Ω-algebras, then the algebra (A,Ω) can be reconstructed from the fibres
h−1{i} and the quotient (I,Ω) by means of a construction called a functorial
sum [6, Ch. 4]. If the indexing algebra (I,Ω) is (equivalent to) a semilattice,
the construction is known as a Płonka sum (and in the case of semigroups
as a strong semilattice of semigroups). This construction is very useful for
representing algebras in so-called regularized varieties. Recall that for an
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idempotent variety V , its regularization (or the regularized variety) is the

variety Ṽ , of the same type as V , defined by the regular identities true in V .
Regular identities are characterized as those containing the same variables
on both sides. Then each algebra in Ṽ is known to be a Płonka sum of
subalgebras in V .

However, not all algebras can be represented as (non-trivial) Płonka or
even as (non-trivial) functorial sums of subalgebras. The next class of in-
terest concerns algebras that embed into functorial sums. (For a discussion
of such embeddability, see [6, §4.5].) For example, each semigroup in the

regularization Ṽ of an irregular variety V of semigroups is a subalgebra of
a Płonka sum of V -semigroups [11, 12]. In the case of modes (idempotent
and entropic algebras), it is known that a mode which decomposes into a
sum of cancellative subalgebras, with a semilattice as its indexing algebra,
embeds into a functorial sum of some cancellative algebras [4], [6, §7.4] with
Errata [7], and the embedding is done in a simple, natural way. The proof
of this result was based on the fact that each idempotent algebra (A,Ω)
with a homomorphism h onto an algebra (I,Ω) that has a naturally defined
quasi-order �, may be reconstructed as so-called (coherent) Lallement sum
of its subalgebras. Basic facts on Lallement and functorial sums are recalled
in Section 3. The construction of a Lallement sum forms a generalization
of a functorial sum, but it is not uniquely defined, and requires certain ex-
tensions of summands to define the operations on their union. It is not so
elegant as the functorial sums, but may still be very useful for investigating
the structure of algebras [4, 6, 8–10].

In this paper, we show that each mode has a natural quasi-order � (Theo-
rem 2.3). This fact implies that each entropic algebra with a homomorphism
onto an idempotent algebra is a Lallement sum of its fibres (Theorem 3.1).
We use this result to prove that a Lallement sum of modes satisfying cer-
tain special cancellation laws, over a mode satisfying a certain additional
general condition, embeds into a functorial sum of the summands (Theo-
rem 4.2). This generalizes an earlier result concerning Lallement sums of
cancellative modes over semilattices, and corrects a mistake in the formu-
lation of Theorem 7.4.3 in [6]. (See Errata [7].) We investigate such sums
more closely. We also discuss three typical situations when our results apply
(Section 4). In the final section, we observe that our construction provides
a representation for all modes in a quasivariety that is the Mal’cev product
of a subquasivariety satisfying certain cancellativity laws and a regularized
subvariety.

For more information about modes and their representations, we refer
readers to the monographs [3, 6], and the papers provided in the references.
We usually follow the notation and terminology of the two monographs.
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2. Algebraic quasi-order of a mode

For a fixed type τ : Ω → Z
+ of plural algebras, let XΩ be the absolutely

free τ -algebra over a countably infinite set X. The translations of a τ -algebra
(A,Ω) are just unary polynomial operations of (A,Ω). More precisely, the
i-translation of (A,Ω) determined by a word

x1 . . . xi−1xxi+1 . . . xnw ∈ XΩ

and an element a := (a1, . . . , an) ∈ An is the mapping

wi
a : A → A; b 7→ a1 . . . ai−1bai+1 . . . anw.

If there is no danger of confusion, or the place i is not essential, we will
denote such translations simply by wa and write baw or abw.

For a given τ -algebra (A,Ω), define a binary relation � on A by: a � b
if and only if b = acw for some translation wc of (A,Ω). One easily checks
that this relation is a quasi-order.

Definition 2.1. ([6, Section 4.1], [8]) The relation � is called the alge-
braic quasi-order of (A,Ω) . If additionally the algebra (A,Ω) satisfies the
condition

if ai � bi, then a1 . . . anω � b1 . . . bnω

for each (n-ary) ω ∈ Ω, and a1, . . . , an, b1, . . . , bn ∈ A, then we say that
the algebra is naturally quasi-ordered. If � = A × A, then the algebraic
quasi-order is called full.

Note that the full quasi-order is natural.

Proposition 2.2. [6, Prop. 4.1.7] Let (A,Ω) be an idempotent algebra
with algebraic quasi-order �. Then the following conditions are equivalent.

(a) (A,Ω) is naturally quasi-ordered;
(b) For each (n-ary) ω ∈ Ω, a1, . . . , an, a ∈ A and i = 1, . . . , n,

if ai � a, then a1 . . . anω � a;

(c) The relation α defined on the set A by

(a, b) ∈ α if and only if a � b and b � a

is a congruence of (A,Ω), and the quotient (Aα, Ω) is an Ω-semilattice.

Recall that an Ω-semilattice is a τ -algebra equivalent to a semilattice.
Note that in (c), the quasi-order � is full on each α-class.

Theorem 2.3. Each τ -mode (A,Ω) is naturally quasi-ordered.

Proof. Let ω ∈ Ω be an n-ary operation. Assume that a1, . . . , an, a ∈ A and
ai�a for each i=1, . . . , n. This means that there are words xx1 . . . xkiti∈XΩ



560 A. B. Romanowska, M. Stronkowski, A. Zamojska-Dzienio

and elements bi = (bi1, . . . , b
i
ki
) ∈ Aki such that

aib
iti = a

for each i = 1, . . . , n. We will show that

(2.1) a1 . . . anω � a1 . . . an−1aω � . . . � a1a . . . aω � a . . . aω = a.

First note that by the idempotency and entropicity

a = a . . . aω = (a1b
1
1 . . . b

1
k1
t1)a . . . aω

= (a1b
1
1 . . . b

1
k1
t1)(a . . . at1) . . . (a . . . at1)ω

= (a1a . . . aω)(b
1
1a . . . aω) . . . (b

1
k1
a . . . aω)t1,

whence a1a . . . aω � a. Similarly for each 1 < m ≤ n,

a1 . . . am−1a . . . aω = (a1 . . . a1tm) . . .

. . . (am−1 . . . am−1tm)(ambm1 . . . bmkmtm)(a . . . atm) . . . (a . . . atm)

= (a1 . . . ama . . . aω)(a1 . . . am−1b
m
1 a . . . aω) . . .

. . . (a1 . . . am−1b
m
km

a . . . aω)tm,

which shows that (a1 . . . ama . . . aω) � (a1 . . . am−1a . . . aω), and consequent-
ly proves (2.1). By transitivity we obtain

a1 . . . anω � a.

By Proposition 2.2, the quasi-order � is natural.

Recall that the quotient (Aθ, Ω) of an algebra (A,Ω) by a congruence θ
is the Ω-semilattice replica of (A,Ω) if θ is the smallest congruence of (A,Ω)
such that the quotient (Aθ, Ω) is an Ω-semilattice.

Proposition 2.4. The algebraic quasi-order � of a mode (A,Ω) is full
if and only if there is no homomorphism from (A,Ω) onto the two-element
Ω-semilattice 2.

Proof. By Theorem 2.3, the algebraic quasi-order � of (A,Ω) is natural. If
(A,Ω) has no homomorphism onto 2, then its semilattice replica is trivial.
Then by Proposition 2.2, the quasi-order � must be full.

Now let 2 be a join-semilattice defined on the two-element set 0 < 1.
Assume that � is full, but that there is an Ω-homomorphism h : (A,Ω) → 2

onto 2. Let a, x ∈ A be elements such that ah = 1, xh = 0 and a � x. Then
x = abw for some translation wb of (A,Ω). Hence xh = ahbhw = 1, a
contradiction.

Modes with no homomorphisms onto 2, are called algebraically open. See
[6, Prop. 7.5.2] for other characterizations of algebraically open modes.
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Corollary 2.5. The quotient (Aα, Ω) of a mode (A,Ω) is the Ω-semi-
lattice replica of (A,Ω). Moreover the quasi-order � restricted to each α-
class of (A,Ω) is full.

Proof. Suppose on the contrary that there is a semilattice congruence θ on
(A,Ω) smaller than α, i.e. θ 6= α and θ < α. Then there are a, b ∈ A
such that (a, b) ∈ α and (a, b) /∈ θ. Without loss of generality assume that
aθ < bθ. Let h = nat θ be the natural homomorphism determined by θ.
Since b � a, it follows that there are τ -word x0x1 . . . xn t and c1, . . . , cn ∈ A
such that a = bc1 . . . cn t = bct, whence ah = bh + c1h + · · · + cnh with all
cih ≤ ah and bh ≤ ah. This however gives a contradiction, since by our
assumption, ah = aθ < bθ = bh. Hence θ = α.

Corollary 2.6. Let (A,Ω) be a mode. The algebraic quasi-order � of
(A,Ω) is either full, or else (A,Ω) decomposes as the union of subalge-
bras (aα, Ω), each with the full quasi-order �, over its Ω-semilattice replica
(Aα, Ω).

3. Lallement sums of entropic algebras

A general construction of algebras we are interested in is the construction
of a generalized coherent Lallement sum of algebras or briefly just a Lallement
sum, as introduced and investigated in [3, 4, 6, 8]. The general context of the
definition is the following. We are given a naturally quasi-ordered indexing
algebra (I,Ω) with algebraic quasi-order �, and for each i in I, an algebra
(Ai, Ω). The algebras (Ai, Ω) come together with certain extensions (Ei, Ω),
and for i � j in (I,�), there are Ω-homomorphisms ϕi,j : (Ai, Ω) → (Ej , Ω)
with the mappings ϕi,i : ai 7→ ai, and satisfying the following conditions

(L1) For each (n-ary) ω in Ω and for i1, . . . , in in I with i1 . . . in ω = i,

(Ai1ϕi1,i) . . . (Ainϕin,i)ω ⊆ Ai;

(L2) For each i1 . . . in ω = i � j in (I,�),

ai1ϕi1,i . . . ainϕin,i ω ϕi,j = ai1ϕi1,j . . . ainϕin,j ω,

where aik ∈ Aik for k = 1, . . . , n;
(L3) Ei = {ajϕj,i | j � i}.

Then the Lallement sum £i∈I(Ai, Ω), or simply £i∈IAi, of Ai over I is the
disjoint union A =

⋃
· (Ai | i ∈ I) equipped with Ω-operations defined as

follows:

ω : Ai1 × · · · ×Ain → Ai; (ai1 , . . . , ain) 7−→ ai1ϕi1,i . . . ainϕin,i ω
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for each n-ary ω in Ω and i = i1 . . . inω. The Ai are subalgebras of the sum
(A,Ω), called the sum fibres , and there is an Ω-homomorphism

π : (A,Ω) → (I,Ω); ai 7−→ i,

called a projection.

As proved in [8] (see also [6, Th. 4.5.3]), an algebra (A,Ω) with a ho-
momorphism onto an idempotent, naturally quasi-ordered algebra (I,Ω),
with corresponding fibres (Ai, Ω) for i ∈ I, is a Lallement sum £i∈IAi of
the fibres (Ai, Ω) over (I,Ω). The extensions (Ei, Ω) are built in a certain
canonical way as the so-called envelopes of the fibres: Each preserves the fi-
bre subalgebra, in the sense that the equality relation is the only congruence
on (Ei, Ω) preserving (Ai, Ω). Note that each entropic algebra has an idem-
potent replica (the largest idempotent homomorphic image). The replica is
a mode, and by Theorem 2.3, is naturally quasi-ordered. This immediately
implies the following theorem.

Theorem 3.1. Let (A,Ω) be an entropic algebra with a homomorphism
onto an idempotent algebra (I,Ω), with corresponding fibres (Ai, Ω), for
i ∈ I. Then (A,Ω) is a Lallement sum £i∈IAi of (Ai, Ω) over (I,Ω).

In other words, each entropic algebra is a Lallement sum of subalgebras over
each idempotent homomorphic image. In particular, it is a Lallement sum
of subalgebras over its idempotent replica.

In the case of modes, one obtains the following corollary.

Corollary 3.2. Let h : (A,Ω) → (I,Ω) be a surjective mode homo-
morphism. Then (A,Ω) is a Lallement sum of the corresponding fibres over
(I,Ω).

Recall that in the case where (I,Ω) is (equivalent to) a semilattice, the
sum £i∈IAi is called a semilattice sum. If Ai = Ei, for each i ∈ I, and
the assignment (i � j) 7→ (ϕi,j : Ai → Aj) is a functor from the (small)
category (I) to the category (Ω) of τ -algebras, the corresponding sum is
called a functorial sum, and is denoted by

∑
i∈I(Ai, Ω) or just

∑
i∈I Ai. If

additionally,
∑

i∈I Ai is a semilattice sum, then the sum is a Płonka sum.
Recall also that if the indexing algebra (I,Ω) of a functorial sum has a full
algebraic quasi-order, all fibres Ai are isomorphic, and the sum is isomorphic
to the direct product (Ai × I,Ω).

Corollary 3.3. Each mode, with the algebraic quasi-order �, is a semi-
lattice sum of its subalgebras with full quasi-order �, over its semilattice
replica.
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4. Embedding Lallement sums into functorial sums

In this section we investigate the problem of embedding Lallement sums
of modes satisfying certain cancellation laws into functorial sums of algebras
satisfying the same laws. Let a mode (A,Ω) be a Lallement sum £i∈IAi of
modes (Ai, Ω) over a mode (I,Ω), for a fixed (plural) type τ : Ω → Z

+.
Modes of a plural type will be called plural. Let t be a τ -word x1 . . . xny t
with variables x1, . . . , xn, y, where n ≥ 1, and linear with respect to y. (In
particular, this means that y appears precisely once in t.) Assume that each
(Ai, Ω), for i ∈ I, satisfies the following cancellation law:

(4.1) x1 . . . xny t = x1 . . . xnz t → y = z.

We will say that the corresponding derived operation t is cancellative with
respect to y or y-cancellative, and that the algebras (Ai, Ω) are t(y)-cancel-
lative. Following [6, §7.4], let

Pj :=
⋃
· (Ai | i � j).

Define a relation µ = µ(j) on Pj by:

(bi, ck) ∈ µ :⇔ ∀a ∈ An
j , abi t = ack t,

where i, k � j, moreover bi ∈ Ai and ck ∈ Ak.

Lemma 4.1. If for all i, j ∈ I with i � j, one has j . . . ji t = j, then µ is
the largest congruence on (Pj , Ω) preserving (Aj , Ω). Moreover the envelope
(Ej , Ω) = (Pµ

j , Ω) of (Aj , Ω) satisfies the cancellation law (4.1), i.e. it is
also t(y)-cancellative.

Proof. The proof is very similar to the proof of [6, Lemma 7.4.1] with
a correction provided in the Errata [7]. First, it is obvious that µ is an
equivalence relation. Now for i = 1, . . . ,m, let ki, li � j and bi ∈ Aki ,
ci ∈ Ali . Assume that (bi, ci) ∈ µ, i.e. for each a ∈ An

j one has abi t = aci t.
Then the idempotent and entropic laws imply the following for each (m-ary)
ω ∈ Ω:

a(b1 . . . bmω) t = ab1t . . .abmt ω

= ac1t . . . acmt ω = a(c1 . . . cmω) t,

whence µ is a congruence of (Pj, Ω). The cancellation law (4.1) implies that
µ preserves (Aj , Ω). Indeed, if b, c ∈ Aj and (b, c) ∈ µ, then ab t = ac t
implies b = c.

If λ is another congruence of (Pj , Ω) preserving (Aj , Ω) and (b, c) ∈ λ for
b ∈ Ai and c ∈ Ak with i, k � j, then (ab t, ac t) ∈ λ for each a ∈ An

j . Since,
by assumption, both these elements are in Aj and λ preserves (Aj , Ω), it
follows that ab t = ac t, and hence (b, c) ∈ µ.
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Finally, we show that (Ej , Ω) satisfies the cancellation law (4.1). Let ai
be in Aji for i = 1, . . . n and let ji � j. For k, l � j, let b ∈ Ak and c ∈ Al.
Assume that (ab t, ac t) ∈ µ. Hence for each d ∈ An

j one has

d(ab t) t = d(ac t) t.

Applying the idempotent and entropic laws to both sides, one obtains

(da1 t) . . . (dan t)(db t) t = (da1 t) . . . (dan t)(dc t) t.

Since, by assumption, all the elements in brackets are in Aj and (Aj , Ω)
satisfies the cancellation law (4.1), it follows that db t = dc t, whence (b, c) ∈
µ. Consequently (Ej , Ω) satisfies (4.1), too.

Theorem 4.2. Let (A,Ω) be a Lallement sum £i∈IAi of t(y)-cancellative
modes (Ai, Ω), over a mode (I,Ω). If for all i, j ∈ I with i � j, one has
j . . . ji t = j, then (A,Ω) embeds into a functorial sum of t(y)-cancellative
envelopes (Ei, Ω) of (Ai, Ω) over the same indexing algebra (I,Ω).

The proof follows by Lemma 4.1, in a way very similar to the proof of
[6, Th. 7.4.2], with a correction provided in the Errata [7]. So we will omit
it here.

Theorem 4.2 remains true in the case when the algebras (Ai, Ω) satisfy
more than one cancellation law of the type (4.1). Assume that ts, for s ∈ S,
are τ -words determining y-cancellative operations on each (Ai, Ω).

Corollary 4.3. Let (A,Ω) be a Lallement sum £i∈IAi of modes (Ai, Ω),
which are ts(y)-cancellative for all s ∈ S, over a mode (I,Ω). If for all
i, j ∈ I with i � j, one has j . . . ji t = j, for some fixed t = ts, then (A,Ω)
embeds into a functorial sum of envelopes (Ei, Ω) of (Ai, Ω), which are also
ts(y)-cancellative for all s ∈ S, over the same indexing algebra (I,Ω).

Proof. Assume that all (Ai, Ω) satisfy (4.1), and also the same quasi-identity
with the word t replaced by a word w = x1 . . . xmy ts for some s ∈ S. The
proof that all (Ej , Ω) are w(y)-cancellative goes like the last part of the
proof of Lemma 4.1. With i = 1, . . . ,m and the remaining notation as
there, assume that (abw, acw) ∈ µ. Hence for each d ∈ An

j one has

d(abw) t = d(acw) t.

Applying the idempotent and entropic laws to both sides, one obtains

(da1 t) . . . (dam t)(db t)w = (da1 t) . . . (dam t)(dc t)w.

Since by assumption all the elements in brackets are in Aj and (Aj , Ω)
satisfies the cancellation law (4.1) with w instead of t, it follows that db t =
dc t, whence (b, c) ∈ µ.

We consider three typical situations where the assumptions of Lemma 4.1
are satisfied, and hence Theorem 4.2 holds. The first concerns the case where
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(I,Ω) is (equivalent) to a semilattice, i.e. the corresponding Lallement sum
is a semilattice sum. Then all derived (at least binary) operations of (I,Ω)
are in fact semilattice operations. Denote the binary semilattice operation
by x + y. Then each n-ary, with n ≥ 2, semilattice operation is equal to
x1 + · · · + xn. For any word t as in Lemma 4.1, (I,Ω) satisfies j . . . ji t =
j + · · · + j + i = j + i. Obviously j + i = j precisely when i ≤ j. (Recall
that in this case ≤ and � coincide.) If all (Ai, Ω) are t(y)-cancellative, then
the assumptions of Lemma 4.1 are satisfied and Theorem 4.2 holds.

Now recall that a mode (A,Ω) is cancellative if it satisfies the quasi-
identity

(x1 . . . xi−1yxi+1 . . . xnω = x1 . . . xi−1zxi+1 . . . xnω) → (y = z)

for each (n-ary) ω ∈ Ω and each i = 1, . . . n. In this case, one obtains the
following.

Corollary 4.4. ([6, Th. 7.4.2], [7]) If (A,Ω) is a semilattice Lallement
sum £i∈IAi of cancellative modes (Ai, Ω) over an Ω-semilattice (I,Ω), then
(A,Ω) embeds into a functorial sum of cancellative envelopes (Ei, Ω) over
(I,Ω).

The second case to be considered is the case where the indexing algebra
(I,Ω) is in an irregular variety V of τ -modes. Consider an (at least binary)
τ -word t as above. Let t = w be an irregular identity true in V . Assume
that y is a variable in t, but not in w. By substituting x for all variables
different from y, one obtains an identity x◦y = x with two variables x and y
that can be used as a unique irregular identity of a basis of V . (See e.g. [6,
Ch. 4].) Clearly, for any i, j ∈ I, we have j ◦ i = j, and the corresponding
algebraic quasi-order of (I,Ω) is full. If all (Ai, Ω) satisfy the law (4.1),
the assumptions of Theorem 4.2 are satisfied, and we obtain the following
corollary.

Corollary 4.5. Let (A,Ω) be a Lallement sum £i∈IAi of t(y)-cancella-
tive modes (Ai, Ω). Let the indexing algebra (I,Ω) satisfy an irregular iden-
tity t = w, where y is a variable of t but not of w, and t is linear with respect
to y. Then (A,Ω) embeds into a functorial sum of t(y)-cancellative envelopes
(Ei, Ω) over the indexing algebra (I,Ω).

Since in this case the indexing algebra (I,Ω) has a full algebraic quasi-
order, all envelopes (Ei, Ω) are isomorphic, say to (E,Ω), and the functorial
sum of (Ei, Ω) over (I,Ω) reduces to the direct product (E,Ω)× (I,Ω) [1],
[6, Ch. 4]. This implies the following corollary.

Corollary 4.6. If (A,Ω) is a Lallement sum £i∈IAi as in Corollary 4.5,
then all the envelopes (Ei, Ω) are isomorphic, say to (E,Ω), and (A,Ω)
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embeds into the direct product (E,Ω)×(I,Ω) of the common envelope (E,Ω)
and the indexing algebra (I,Ω).

The third case generalizes the two previous ones. Now we assume that
the algebra (I,Ω) belongs to the regularization Ṽ of the irregular variety V
considered in the previous case. In such a case, (I,Ω) is a Płonka sum of
V -algebras, the derived operation x◦y becomes a left normal band operation,
and for i � j, one has j◦i = j. Again, if all the fibres of the sum satisfy (4.1),
the assumptions of Theorem 4.2 are satisfied, and we obtain the following
corollary.

Corollary 4.7. Let (A,Ω) be a Lallement sum £i∈IAi of t(y)-cancellative

modes (Ai, Ω) over a mode (I,Ω) in the regularization Ṽ of an irregular
variety V as above. Then (A,Ω) embeds into a functorial sum

∑
i∈I Ei of

t(y)-cancellative envelopes (Ei, Ω) over (I,Ω).

Let the algebra (I,Ω) in Corollary 4.7 be a Płonka sum of V -algebras
(Is, Ω) over a semilattice (S,Ω). By [10, Th. 3.2], the functorial sum

∑
i∈I Ei

may be expressed as ∑

i∈I

Ei =
∑

s∈S

(∑

i∈Is

Ei

)
.

Moreover, since the algebraic quasi-order of each Is is full, it follows that all
the summands (Ei, Ω) of the subalgebra Bs =

∑
i∈Is

Ei are isomorphic, say
to (Es, Ω), and (Bs, Ω) ∼= (Es, Ω)× (Is, Ω). Consequently

∑

i∈I

Ei =
∑

s∈S

Bs =
∑

s∈S

(Es × Is).

Note that a τ -mode which is t(y)-cancellative for all τ -words xy t linear
with respect to y is cancellative. Hence Corollaries 4.5, 4.6, and 4.7 also hold
for cancellative τ -modes. In particular, we obtain the following corollary.

Corollary 4.8. Let (A,Ω) be a Lallement sum £i∈IAi of cancellative

modes (Ai, Ω) over a mode (I,Ω) in the regularization Ṽ of an irregular
variety V as above. Then (A,Ω) embeds into a functorial sum

∑
i∈I Ei of

cancellative envelopes (Ei, Ω) over (I,Ω).

Note that embeddability of Lallement sums of cancellative modes over a
mode that does not satisfy the condition of Lemma 4.1, still remains as an
open problem.

5. Quasivarieties of Lallement sums

By the results of the previous section, one may easily deduce that Lalle-
ment sums of modes of the kind considered there form certain special qua-
sivarieties.
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First note that if a mode (A,Ω) is cancellative, then many of its derived
operations are also cancellative. Cancellativity for derived operations of
(A,Ω) is defined as in the case of basic operations, i.e. it concerns linear
derived operations. However, this definition may easily be extended to the
case of derived operations determined by words of the form x1 . . . xky1 . . . yl t,
where t is linear with respect to each yi. This assumption is essential. For
example, consider the variety Q of quasigroups (A, ·, /, \), and recall that the
basic operations of quasigroups are cancellative. Then Q satisfies the quasi-
identity (y/x)x = (z/x)x → y = z, but not the quasi-identity (xy)/y =
(xz)/z → y = z.

Lemma 5.1. The quasivariety Cl(Ω) of cancellative plural τ -modes satisfies
all cancellation laws (4.1) for all at least binary τ -words t, linear with respect
to y.

Proof. First note that Cl(Ω) satisfies all the t(y)-cancellation laws obtained
from the cancellativity of the basic operations by identifying some variables
different from y. (We may assume without loss of generality that each basic
operation contains the variable y). Then assume that the proposition holds
for τ -words of length smaller than n. Let xy t and zy w be such words. In
particular, this means that the following quasi-identities hold:

(5.1) xy t = xy′ t → y = y′

and

(5.2) zy w = zy′w → y = y′.

Assume that the word

x(zy w) t

has length n. We will show that the corresponding derived operation t is
y-cancellative. First note that by the idempotent and entropic laws

(5.3) x(zy w) t = (xz1 t) . . . (xzj t) (xy t)w.

Then (5.2) implies that the quasi-identity

(xz1 t) . . . (xzj t) (xy t)w = (xz1 t) . . . (xzj t) (xy
′ t)w → xy t = xy′ t

holds in Cl(Ω). By (5.1), transitivity and (5.3), the t(y)-cancellation law

x(zy w) t = x(zy′w) t → y = y′

holds in Cl(Ω), as well.

By Lemma 5.1, the quasivariety Cl(Ω) of τ -modes is also defined by all
t(y)-cancellativities. Subsets of the set of all t(y)-cancellative laws define
quasivarieties of τ -modes containing Cl(Ω). We will call them cancellative
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quasivarieties. Under inclusion, cancellative quasivarieties form an ordered
set.

Recall that the Mal’cev product K1 ◦ K2 of two classes K1 and K2 of
τ -modes consists of τ -modes with quotients in K2 and corresponding con-
gruence classes in K1. Mal’cev products of quasivarieties of modes are again
quasivarieties. More generally, the Mal’cev product of subquasivarieties of
a variety of modes is again a subquasivariety. (See e.g. [2] and [6, §3.7] for
more general results.) For a fixed τ -word t = xy t, linear with respect to
y, let Ct(y)(Ω) be the quasivariety of t(y)-cancellative τ -modes. Let It(y) be
the variety of τ -modes defined by a set of regular identities and the identity
x . . . xy t = x. Let Ĩt(y) be its regularization. Finally, let Sl be the variety of
Ω-semilattices. Corollaries 4.4, 4.5, 4.7, and 4.8 provide representations of
modes in the quasivarieties Cl(Ω) ◦ Sl, Ct(y)(Ω) ◦ It(y), Ct(y)(Ω) ◦ Ĩt(y), and

Cl(Ω) ◦ Ĩt(y) as Lallement sums of cancellative or t(y)-cancellative τ -modes
over the corresponding quotients. Note that Corollaries 4.5 and 4.7 may
easily be extended by replacing Ct(y)(Ω) with any cancellative quasivariety
of τ -modes satisfying t(y)-cancellativity, using Corollary 4.3. We summarize
the above remarks as the following corollary.

Corollary 5.2. Let t = xy t be a τ -word, linear with respect to y. Let Q
be a cancellative quasivariety of plural τ -modes satisfying t(y)-cancellativity,

and let Ṽ be the regularization of a variety of τ -modes satisfying the identity
x . . . xy t = x. Then each algebra in the Mal’cev product Q ◦ Ṽ of modes is a
subalgebra of a functorial sum of Q-modes over a Ṽ -mode.

Cancellative quasivarieties of plural τ -modes deserve further detailed in-
vestigations. In particular, it is not clear at the moment if they form a
sublattice of the lattice of quasivarieties of τ -modes.
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