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TRANSITIVE MODES

Abstract. In this paper the connection between the right (left) invertible medial
algebras and the right (left) group of binary operations is studied. As a consequence, we
prove the structure results for transitive modes.

1. Introduction

The n-ary operation A on the set @ is called idempotent if it satisfies the
identity A(x,...,x) = x. An algebra (Q;X) is called idempotent, if every
operation A € 3 is idempotent.

Let A be n-ary and B be m-ary operations on the set ). The pair (A, B)
is called medial (possibly abelian, entropic, bisymmetric, bicommutative,
etc.) if it satisfies the identity:

A(B(x11y. -y T1im)y -, B(@n1, -y Tnm))
= B(A(z11, -y @n1)y - s A(T1my - ooy Tm))-
In the case of the binary operations A, B we have the identity:
A(B(z,y), B (u,v)) = B(A(z,u), A(y,v)).
An operation A on the set @ is called medial if the pair (A, A) is medial. In
the case of one binary operation, we have [1,7]:
A(A(z,y), A(u,v)) = A(A(z, u), Ay, v)).

An algebra (Q;X) is called medial, if the pair (A, B) is medial for every
A, B € X 16,8] (for algebras without nullary operations). In other words, an
algebra (Q;X) is called medial if (Q;X) satisfies the hyperidentity of medi-
ality (abelity) [11]. An idempotent and medial algebra is called a mode [18].
The paper contains seven chapters. In chapter 2 some preliminary results
are proved. In chapter 3 some preliminary concepts are introduced. In
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chapter 4 the connection between the right (left) invertible medial binary
algebras and the right (left) group of binary operations is studied. In chapter
5 the concept of transitive mode is introduced and some auxiliary results are
proved. In chapter 6 a structure theorem for transitive modes is proved. In
the last chapter some open problems are formulated.

2. Preliminary results

The first well known result on medial algebras concerns medial quasi-
groups and is called Toyoda theorem [5,21]: For every medial quasigroup
Q(-) there exists an abelian group Q(+) such that the operation (-) is deter-
mined by the rule:

-y =or+c+ Py,
where @, € Aut Q(+) and ¢ € Q.

The next result is more general [12]:

THEOREM 2.1. If the pair (A, B) of binary quasigroup operations on the
set Q is medial, then there is an abelian group Q(+) such that the operations
A, B are determined by the rules:

A(z,y) = pr1x + c1 + 1y,
B(x,y) = @21 + c2 + 12y,
where c1,co € Q and 1, 2,101,102 € Aut Q(+).

Proof. Indeed, if the quasigroup operations Ay, As, Az, A4, A5, Ag on the
set () satisfy the identity:

A1(Az(z,y), As(u,v)) = As(As(z, u), As(y, v)),
then there exists an abelian group Q(+) such that:
Ai(z,y) = az + Ty, Ay(z,y) = px + oy,
As(z,y) = a7 (yz +8y),  As(z,y) = p~ (v + Ay),
Az(z,y) =7 e+ By),  As(z,y) = o (52 + By),

for every z,y € Q [2]. We have: A} = A5 = Ag = Aand Ay = A3 = Ay = B.
So Al(xvy) = A5($,y) and Al(xvy) = A6("L‘7y)a Le.

az+1y = p" (e + Ay),
az + 1y =0 6z + By),
for every z,y € ). Thus:

plaz +1y) =y + Ay,
olax + Ty) = dz + Py,
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p(x+y) =y(a z) + A7 y),
o(z+y) =6 tr) + B(r y).
It follows from these equalities:
v (o) = p(x ( ‘10)
A7) = (=9(a710)) +
) (oflx) = x) + ( I6; 7710)
(r'y) = (=0 (a710)) +a(y).

Wz +y) = p(x) + (—p0) + u(y)

)

@

Hence,

and
o(z+y) =o(x)+ (-00) +o(y),
for every z,y € @, where 0 € @Q is the identity element of the group Q(+)
i.e. the bijections p, o : Q — @ are holomorphisms of the group Q(+) ( [9],
Chapter IV, § 1; [11], Chapter 0, § 5). So the mappings yp2(x) = pu(x)+(—n0)
and ¥o(z) = (—00) + o(z) are automorphisms of the group Q(+). Hence,
p(z) = @a(x) + p0 and o(x) = 00 + ¢o(z) where g, 12 € Aut Q(+). So
Ay(z,y) = pz + oy = p2(z) + p0 + 00 + o (y) =
= p2(x) + ca +12(y) = B(z,y),
where ¢ = 10400. For A(x,y) we have the similar proof taking into account
the equalities Ay = A4 and A3 = Ay. =
As a consequence, we get the following characterization (also see [20]):
COROLLARY 2.2. If (Q;X) is a binary medial algebra with quasigroup op-
erations, then there exists an abelian group Q(+4) such that every operation
A; € X is determined by the rule:
where ¢; € Q and p;,P; € Aut Q(+). Moreover, if the algebra (Q; %) also is
idempotent (is a mode), then
Ai(z,y) = giz + iy,
where @i, € Aut Q(+) and @;,1; € Aut (Q; ).
Proof. Namely, if Ay € X is a fixed operation, then by Toyoda theorem Ag
is principally isotopic to the abelian group operation 4+ on Q. If B € ¥ is any

operation, then the pair (Ag, B) is medial, hence Ag and B are principally
isotopic to the abelian group operation * on (). Thus, any operation B is
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principally isotopic to the same abelian group operation + by transitivity of
isotopy. So
Ao(z,y) = ax + 7y = Ai(z,y) = As(z,y) = As(,y),
and for any operation B € ¥ we have:
B(z,y) = pr + oy = As(z,y) = Az(x,y) = Au(z,y).
Hence, for every x,y € Q we have:
B(z,y) = px +t+ 1y,

where ¢, 9 € Aut Q(+) and t € @ according to the proof of the previous
theorem. For the idempotent case we have: ¢t = 0 and px = B(x,0), vy =

B(0,y). Hence, ¢, € Aut (Q);%). For instance:
pA(z,y) = B(A(z,9),0) = B(A(z,y), A(0,0)
= A(B(z,0), B(y,0)) = A(pz, y). .
REMARK 2.3. From the proof of Theorem 2.1 also follows the result:
If the binary quasigroup operations A, B1, By and C' on the set ) satisfy
the identity:
A(Bi(z,y), Ba(u,v)) = C(A(z, u), Ay, v)),
then there exists an abelian group Q(+) such that the operation C' is deter-
mined by the rule:
Clz,y) = px +c+ Yy,

where ¢, € Aut Q(+) and ¢ € Q.

3. Preliminary concepts

The set of all binary operations defined on the set @ is denoted by .7-'5
and we consider the following two operations on this set:

A-B(z,y) = A(z, B(x,v)),
Ao B(z,y) = A(B(z,9),v),

where A, B € ]:%, x,y € Q. These operations () and (o) are called the
right and left multiplications of binary operations (functions), and they were
studied in the works of various authors [3,4,13-16, 19, 22, 23].

The set ]:g? forms a monoid under the right (and left) multiplication
of binary operations. These two semigroups are isomorphic. The identity
element of the semigroup .7-"%() is £ € .7-"32 and it is defined by the rule:
E(z,y) = y; and the identity element of the semigroup fé(o) is F' € .7-"5
and it is defined by the rule: F(z,y) = x. The mapping A — A* is the
isomorphism of these two semigroups, where A*(z,y) = A(y, x).
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The set of idempotent binary operations on () is a subsemigroup in the
semigroups ]:é() and ]-"22(0).

The binary operation A € ]522 is the right (left) invertible one if the
equation A(a,z) = b (A(y,a) = b) has a unique solution z € @ (y € Q)
for every a,b € ). The unique solutions z,y € @ are usually denoted by
r=A"Y(a,b) and y =1 A(b,a). Hence,

A-At=A1.A=F,
for the right invertible operation A and we have:

lAcA=ActA=F
for the left invertible operation A. The operation A~! (or ~'A) is the right
(or left) inverse one for the right (left) invertible operation A € ]:%. It is
evident that A=! (or ~1A) is right (or left) invertible, and:

(A= A=), () =), () = (a)
The binary operation A € .7:% is invertible, if it is right and left invertible.

In this case:
= () = A
For example:

(! (Afl))_l (y)=2 < A ) (x,2)=y & A (y,2) =2 ©
Aly,z) = z <> A" (z,y) = =.

On the applications of right (left) invertible operations in axiomatic char-
acterization of geometric structures and equivalency problem in knot theory
see [10,17].

The set of all right (left) binary invertible operations on the set @ is
denoted by F¢, (and fé).

The set F¢ is agroup under the right multiplication of binary operations.
The set ]-"é is a group under the left multiplication of binary operations.
These two groups are isomorphic.

The groups F¢)(-) and fé(o) are called the right and left groups of binary
operations, respectively.

The binary algebra (Q;X) is called (right, left) invertible, if every oper-
ation A € ¥ is (right, left) invertible.

For any right (left) invertible algebra (Q;X) we define the algebra
(@271 ((@; 7'%)), where

yl={AYAecx},
Iy = {144 ez}
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So, for any invertible algebra (Q;%) we have the algebras: (Q;X71),
(Q:71%), (@71 (1), (@:(T'E)7) and (Q;X*), where
TEY)={'(4ah4ex),
(%)= (M) ey,
Yr={A"AeX}.
However, the algebra (Q; ¥*) is meaningful for every algebra (Q;X).

4. Modes and the right (left) group of binary operations

The subgroup of the group .7-'65() generated by the subset X C Fp) is
denoted by (X),. Similarly, the subgroup of the group ]:é(o) generated by
the subset 3 C fé is denoted by (X),.

LEMMA 4.1. If a right invertible algebra (Q;X) is medial (mode), then the
algebra (Q, YU E_l) also is medial (mode).

Proof. For every A, B € ¥ and z,y,u,v € @ there exists an element v’ € Q
such that

A1 (B(x,y),B(u,v’)) = B(A_l(x,u),A_l(y,v)).
From this equality, we have:

A (B(x,y),B (A_l(ac,u),A_l(y,v))) = B(u,?),
and by the mediality:

B (A(x,Ail(x,u)),A (y, Ail(y,fu))) = B(u,v’),
i.e. B(u,v) = B(u,v") and v =v'. So,

ATH(B(x,y), B(u,v)) = B(A™ (z,u), A7 (y,v)).
Hence:

AL (Bil(x,y),Bfl(u,v)) = Bil(Afl(x,u),Afl(y,v)). "

LEMMA 4.2. If the left invertible algebra (Q;X) is medial (is a mode), then
the algebra (Q; yul Z) also is medial (is a mode).
COROLLARY 4.3. If the invertible algebra (Q;X) is medial (is a mode),
then the algebra, (Q; XUX~tUu~lxu~! (2*1) U (*12)71 UX*) also is medial
(is a mode).
LEMMA 4.4. If a right invertible algebra (Q;X) is medial (is a mode), then
the extended algebra (Q; (X),) also is medial (is a mode).

LEMMA 4.5. If a left invertible algebra (Q;X) is medial (is a mode), then
the extended algebra (Q; (X),) also is medial (is a mode).
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EXAMPLE 4.6. If [@| = 2 then the right invertible algebra (Q;F() is
medial.

5. Auxiliary results
Following the papers: [13,14], we call a binary algebra (Q;X) with the
property E, F' € ¥ transitive if

a) Q] = 2

b) for every a,b,c € Q where b # a there exists an operation A € ¥ such
that A(a,b) = ¢;

c¢) the algebra (Q;X \ {F'}) is right invertible.

ExaMPLE 5.1. If |Q| = 2 and ¥ = {E, F}, then (Q;X) is a transitive

mode.

EXAMPLE 5.2. Let Q(-) be a nontrivial abelian group and

20 = {Ag| Ay(z,y) =y -4, 4 € Q, 7,y € Q}.
If ¥ = 20U {F} then (Q;Y) is a medial and transitive algebra. However
(Q;Y) is not a mode.
ExAMPLE 5.3. If Q(+, -) is a field with the identity e € @,

Y= {Aq|Aq(xay) = q,I+ (6— Q)y7 q € Q7 Yy € Q}7
then (Q;X) is a transitive mode, where (Q; X \ {E, F'}) is an invertible al-
gebra.
If Q = {1,2} and X0 = O 2= Y0 U {F} then (Q;¥) is a transitive and
medial algebra, and there exists the operation A # E such that A(2,1) = 1.
However, the following result is valid for transitive modes.

LEMMA 5.4. Let (Q;X) be a transitive mode and A € X. If the equation
A(z,a) = a has a solution x # a € ) then A=FE.

Proof. If |Q| = 2 then the idempotent and right invertible operation A is
unique: A = E. Let |Q| > 3 and the equation A(z,a) = a has a solution
xo # a. Let us choose an element b € ) where b # a, xg. There exists an
operation B € ¥\ {F'}, such that B(a,b) = ¢ according to the condition of
transitivity b). So,
B(aa CL) =B (A(.QL‘(], CL), A($07 CL)) =A (B(x()a xO)v B(a7 a))

=A (.Z'(), B(a7 a)) =4 (B a, b)7 B(a7 a)) =B (A(a7 a)7 A(b7 CL))

= B(a, A(b,a)).
Hence, a = A(b,a) for every b # xo,a. However, this equality is also valid
for b = a,xo (because, A(zg,a) = a and A(a,a) = a). Let ¢ € Q and fix
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the element d # a, c. Then there exists an operation C' € ¥\ {F'} such that
C(d,a) = c. Thus:
c=0C(d,a)=C(d,A(b,a)) = C(A(d,d), A(b,a))
=A(C(d,b),C(d,a)) = A(C(d,b),c),
for every element b € Q. Hence, A(u,c) = ¢ for every u,c € Q. =

COROLLARY 5.5. If (Q;X) is a transitive mode, then for every a,b,c € Q
where b # a there exists a unique operation A € ¥ such that A(a,b) = c.

Proof. Let there exist the two operations A,B € X \ {F} such that
A(a,b) = c and B(a,b) = c. Consider the group (X\ {F'}),. The alge-
bra (Q; (X \ {F}),) is medial (and idempotent) by Lemma 4.4. Hence, the
algebra (Q; (X \ {F}), U{F}) is a transitive mode and we can apply the
previous Lemma 5.4. Thus, we have A(a,b) = B(a,b) and

471 (a, A(a,8) = A~} (a, B(a, b)),
ie. A7t A(a,b) = A71 - B(a,b) and b = A~! - B(a,b). Hence, the equation
A=Y B(z,b) = b has a solution = # b and it follows that A=! - B = F and

B = A by the previous lemma.
If A= F but B # F then B # E and B(a,b) = F(a,b) = a. Hence,

B~ '(a,B(a,b)) = B '(a,a) = a
and B~!- B(a,b) = a i.e. E(a,b) =a and b= a. Contradiction! m

COROLLARY 5.6. If (Q;X) is a transitive mode and A(a,b) = B(a,b),
where A,B € ¥, a,b € Q and a # b then A = B.

COROLLARY 5.7. If (Q;X) is a transitive mode, then (Q;X) is mazimal

in the following sense: there does not exist a transitive mode (Q;X') where
Y CY, N #Y. Hence, (R\{F})"' C2\{F}.

Proof. If |Q] = 2 then ¥ = {E, F} and assertion is valid. Let |Q| > 3
and (Q;Y') also is a transitive mode, where ¥ C ¥ and ¥ # ¥’. So there
exists an operation A € ¥/ such that A ¢ 3. Hence, A # E, F. Let us prove

that there exists a triple of pare-vise distinct elements a, b, ¢ € (Q such that
A(a,b) = c. Indeed:

1) If for all pairs of distinct elements a # b we have: A(a,b) = a then A = F;

2) If for all pairs of distinct elements a # b we have: A(a,b) = bthen A = E;

3) If for some pairs of distinct elements a # b we have A(a,b) = b and for
other pairs of distinct elements ¢ # d we have A(c,d) = ¢ then A = E by
Lemma 5.4.

Besides, there exists an operation B € ¥ such that B(a,b) = ¢ by
transitivity of (Q;X). The algebra (Q;X U {A}) is also a transitive mode.
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Thus, there exists a pair of elements a # b in () and the pair of operations
A,B € ¥ U{A} such that A(a,b) = B(a,b) where ¥; = X\ {F}. Hence,
A = B by Corollary 5.6, and: A € ¥. Contradiction! Now the second part
of the assertion follows from Lemma 4.1. =

COROLLARY 5.8. If (Q; %) is a transitive mode, then 3\ {F'} is an abelian
group under the right multiplication of binary functions.

Proof. The set ¥\ {F} is a group under the right multiplication of binary
functions, because X\ {F'} = (X\ {F'}), by maximality of (Q;3). This group
is abelian:
A-B(z,y) = Az, B(z,y)) = A(B(z, z), B(z,y))
= B(A(.I‘, .%'), A(JL‘, y)) = B(.%', A(.%', y)) =B- A(xa y):
for every A,Be€ X\ {F}. u

THEOREM 5.9. Let |Q] > 3 and (Q;X) be a transitive mode. Then every
operation A € X\ {F'}, A # E is left invertible. Hence,

LE\{EY) CB\{E}, (TNE\{E F})) T CE\{EF},
HENE FY) ) CE\{E F}, (E\{E,F})" CZ\{E F}.
The set X\ {E} is closed under the left multiplication of binary functions.

Proof. Since A # E| F then there are pair-wise distinct elements a, b, c € @
such that A(a,b) = c. Hence, the equation A(z,b) = ¢ has a solution = = a.
Consider the equation A(x,b) = p, where p # ¢, b (since in the cases
p = ¢,b a solution exists). There is an operation B € ¥ \ {F} such that
B(b,c¢) = p. So,
B(bv C) =B (A(bv b): A(aa b)) =A (B(ba CL), B(bv b)) =A (B(ba CL), b) =D
and the solution of the equation A(x,b) = p is an element B(b,a) € Q.

Consider the equation A(x,q) = p where ¢ # b,p. Let d € Q and d # b, q.

There is an operation C' € ¥\ {F'} such that C(d,b) = ¢q. Thus:
C(d,c) = C(d, A(a,b)) = C (A(d, d), Aa, b))
— A(C(d,a),C(d,)) = A(C(d, ), q).

Thus, if p = C(d,c) then the equation A(z,q) = p has a solution z =
C(d,a). If p # C(d, ¢) and since ¢ # C(d, ¢) there is an operation D € ¥\{F'}
such that D (¢,C(d,c)) = p. Hence,

p=D(q,C(d,c)) = D(q,A(C(d,a),q)) = D (A(g, 9), A(C(d, a),q))

— A(D(g,C(d,a)), D(g, ) = A(D(g, C(d, 0)), q).

and the equation A(x,q) = p also has a solution in the case p # C(d, c).
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From Lemma 5.4 it follows that the equation A(z,q) = p has a unique
solution, where A # E. Namely, if ¢ = p then the uniqueness of the solution
x = q = p follows from Lemma 5.4. If p # ¢ and the equation A(z,q) =p
has solutions z¢ # yo then ¢ # yo, z¢ and there is an operation 7' € ¥\ {F'}
such that T'(q,z9) = yo. Hence, T # E and

p=A(yo,q) = A(T(q,20),T(q,9)) = T (A(q,q), A(z0,q)) =
=T (q, A(x0,9)) = T(q,p).
It follows from Lemma 5.4 that T' = E. Contradiction!

The last part of the assertion is valid according to Corollary 4.3, Lemmas:
4.4, 4.5, and Corollary 5.7 about maximality of (Q;X). m

6. The structure result
Let (Q;X) be a transitive mode and let |Q| > 3. Then ¥\ {E, F} #

. Consider B € ¥\ {E,F} and 0 € Q. According to Theorem 5.9, the
operation B is invertible, medial, idempotent and:
A(B(z,y), B(u,v)) = B(A(z,u), A(y,v)),
for every A € ¥. According to Corollary 2.2, we have: B(z,y) = px + 1y
where
z+y=B("'B(x,0),B7(0,y)), ¢x=DB(z0), vy=B(0y),

and

Alpz + thy, pu+ pv) = pA(z,u) + Y A(y,v) = A(pz, pu) + A(Yy, Pv),
1.e.
Al +y,u+v) = Az, u) + Ay, v).

THEOREM 6.1. If (Q;X) is a transitive mode, then there exists a field
Q(+, ) such that every operation A € X is defined by the rule:

A(z,y) = (e — a)z + ay,
where e is the identity element of the field and a € Q (and depends on A).

Proof. If |@Q| = 2 then the assertion is evident, because in this case ¥ =
{E,F}. Let |Q| > 3. Let us define the addition as above, while we define the
multiplication by the following way. Let e be a fixed element of () and let
e # 0. For every element x € @) there exists an operation A, € X such that
x = A;(0,e) (if x = 0,e we have: Ay = F,E). The mapping ® : x — A, is
a bijection from @ to X by Corollary 5.6. We define: x -y = A,(0,y) where
Az = ®(x). Then we prove the field axioms. For example:

-y = Aw'y(ove)a €Ty = Aﬁ?(oay) = Am (07Ay(076)) = AI : Ay(07€)7
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and according to Corollary 5.6, we have: A, - A, = Az.y; then ®(z - y) =
O(x)-P(y), hence x-y = A,(0,y) is associative and commutative. For every
operation A = A, € ¥ we have:

A(z,y) = A(x +0,0+y) = A(z,0) + A(0,y),
A(z,xz) = A(z,0) + A0, x) = x.
So A(z,0) = x — A(0, x) hence:
A(z,y) = A(z,0) + A(0,y) =z — A(0,z2) + A(0,y) =z — ax + ay
= (e —a)z + ay,
where a = A(0,¢e). =

7. Open problems
An algebra (Q;X) is called three-medial if the subalgebra of the algebra
(Q; X)) generated by any three elements a,b, c € @ is medial.

PROBLEM 7.1. Characterize medial transitive algebras.
PROBLEM 7.2. Characterize three-medial invertible algebras.
PROBLEM 7.3. Characterize three-medial transitive algebras.

PROBLEM 7.4. Characterize three-medial, idempotent and transitive alge-
bras.

Thanks to the referee for useful remarks.
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