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AN ALGEBRAIC TREATMENT

OF IMPRECISE PROBABILITIES

Abstract. This is a survey paper about an algebraic approach to imprecise proba-
bilities. In the first part of it, we outline the work by Walley on imprecise probabilities
and the more algebraic approach of Fedel et al.. Then, in the second part we will present
some work in progress about a general treatment of upper and lower probabilities over
many-valued events and of upper and lower previsions of gambles, by means of Universal
Algebra.

1. Interpretation of probability in terms of bets

There are several approaches to probability. A first approach is based
on the notion of frequence. According to this approach, the probability of
an event is its relative frequence on a large number of experiments. In
our opinion, although very useful, frequence cannot serve as a definition of
probability: first of all, in general it is impossible to reproduce several times
an experiment in exactly the same circumstances, and second, in general it
is not possible to reproduce the same experiment a large number of times.
For instance, in order to compute the probability that a bridge lasts for, say,
200 years, one should build a huge number of bridges, all in the same place,
and then wait for 200 years.

Bruno de Finetti [dF] proposed a radically different interpretation of
probability in terms of bets: the probability of an event φ is the betting odd
α ∈ [0, 1] that a rational player P would accept for the following game:

GAME (1). Player P chooses his betting odd α for φ. The opponent O
chooses a (possibly negative) amount of money λ.

Then, O pays λα to P and gets back λv(φ), where v(φ) is the truth value
of φ.

We stipulate that paying λ < 0 means receiving −λ and receiving λ < 0
means paying −λ.
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The coherence criterion is given not for a single event but for a set of
events.

Let S be a finite set of events, and let for each φ ∈ S, αφ be a betting
odd for φ (intuitively, αφ represents the subjective probability assigned by
P to the event φ). The function assigning to each φ ∈ S the number αφ is
said to be an assessment.

A system of bets is defined to be a map φ 7→ λφ from S into R (intuitively,
λφ represents the amount of money that O is willing to bet on φ).

Then, de Finetti’s interpretation can be extended to the following game:

GAME (2). Let φ 7→ αφ be the assessment chosen by player P. Then, the
opponent O chooses his system of bets φ 7→ λφ on S. The payoff of P will
be

∑
φ∈S λφ(αφ− v(φ)), where as usual v(φ) represents the truth value of φ.

An assessment is said to be coherent if there is no system of bets φ 7→ λφ

which (may be individually acceptable, but) taken altogether causes P a sure
loss , that is, such that

∑
φ∈S λφ(αφ − v(φ)) < 0 for every valuation v.

Remark. It is readily seen that the non-existence of a system of bets
leading P to a sure loss also implies the non-existence of a system of bets
leading O to a sure loss. I.e., coherence prevents both players from the
possibility of a sure loss.

It turns out that this coherence criterion leads to the properties of a
probability distribution.

Theorem 1. (de Finetti) An assessment φ 7→ αφ : φ ∈ S, where S is a
finite set of events is coherent iff there is a probability distribution on the
algebra of events generated by S which extends it.

Example. Consider the assessment Λ : p 7→ 1

2
, ¬p 7→ 1

3
. Clearly, Λ cannot

be extended to a probability distribution. Now suppose that O bets one euro
both on p and on ¬p. In this case, P gets 1

2
+ 1

3
= 5

6
euro and, since either p

or ¬p will be true, he has to pay 1 euro. It follows that this system of bets
causes to P a sure loss.

2. Probabilities over many-valued events

In [Mu1], the author extends de Finetti’s theorem to many-valued events.
Although de Finetti believed that an event must be either completely true
or completely false, there are several reasons to consider many-valued events
and their probabilities.

First of all, many-valued events (like e.g., the market will be stable next
week , or there will be much traffic on the highway) occur very often in the
real life and influence our decisions. Such events force us to use intermediate
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values. For instance, it is almost impossible to find a threshold for the
minimum number of cars necessary to make the event there will be much
traffic in the highway true.

Second, even though intermediate values are sometimes associated to
vagueness , in many situations they allow for a more precise description of
the event. Suppose e.g. that we are drawing a die and that we want to bet
about the event the outcome will be high (high for a die, of course). Then,
we may agree that e.g., 4, 5 and 6 are high and 1, 2 and 3 are not, but
using intermediate values we may obtain a better description of the event:
for instance, we may assign to the sentence the outcome is high the truth
value n−1

5
where n is the outcome, and hence we can say not only that 1 is

not high and 6 is high, but also that 2 is high with degree 1

5
, 3 is high with

degree 2

5
, etc.

Third, many-valued events may be interpreted as special cases of random
variables (namely, as special random variables taking values in [0, 1]). We
will see that many-valued events are not so special, in the sense that we
may somehow treat any bounded random variable by means of many-valued
events. We will return to this point in the later sections of this paper.

In the case of many-valued events, the situation is quite similar to that of
Game (2), (and the payoff formula is formally the same), the only difference
being that now the truth value v(φ) of an event is not necessarily 0 or 1, but
it may be an intermediate value.

Also the coherence criterion remains unchanged (no sure loss for P).

To close the circle, we need an analogue of a probability distribution for
many-valued events. In this new situation, events are no longer boolean, and
hence we have to choose a logic in which events can be treated.

There may be several many-valued logics for expressing many-valued
events and their probability, but our preferred logic is Łukasiewicz logic,
the main reason being that this is the only fuzzy logic whose connectives are
all continuous.

Modulo this choice, the most natural extension of the concept of proba-
bility measure is the concept of state over an MV-algebra.

Although we do not give an explicit axiomatization here, we recall that
the class of MV-algebras is the variety (in the sense of universal algebra)
generated by the algebra ([0, 1],⊕,¬, 0, 1) where x⊕ y = min{x+ y, 1} and
¬x = 1− x. This algebra will be denoted by [0, 1]MV .

Other important MV-operations are x⊙y = ¬(¬x⊕¬y), x⊖y = x⊙¬y,
x ∧ y = x⊙ (¬x⊕ y) and x ∨ y = x⊕ (y ⊙ ¬x).

In [0, 1]MV , x⊙ y = max{x+ y − 1, 0}, x⊖ y = max{x− y, 0}, x ∧ y =
min{x, y} and x ∨ y = max{x, y}.
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MV-algebras constitute the equivalent algebraic semantics of Łukasiewicz
logic in the sense of Blok and Pigozzi, cf. [Ha]. In other words, MV-algebras
stand to Łukasiewicz logic as Boolean algebras stand to classical logic.

A state on an MV-algebra A (cf. [Mus]) is a function s from A into [0, 1]
such that s(1) = 1 and whenever x⊙ y = 0, then s(x⊕ y) = s(x) + s(y).

An important theorem, proved independently by Panti and Kroupa says
that states may be represented as integrals. More precisely, let A be an MV-
algebra, and let XA be the set of all homomorphisms from A into [0, 1]MV

(also called valuations) with the topology of pointwise convergence (i.e., a
set Y of valuations is closed iff the pointwise limit of any pointwise converg-
ing generalized sequence of valuations in Y is in Y ). Then XA becomes a
compact Hausdorff space.

To any element a of A we associate the function a∗ from XA into [0, 1],
defined, for all v ∈ XA by a∗(v) = v(a). It can be proved that every a∗ is
continuous. Note that the map a 7→ a∗ is one-one iff A is semisimple (in the
sense of Universal Algebra).

The next theorem, proved independently by Panti and by Kroupa, says
the following:

Theorem 2. [Pa], [Kr] For every state s on A there is a unique Borel
regular probability measure µ on XA such that for all a ∈ A, s(a) =

∫
X a∗dµ.

Hence, states can be regarded as very natural generalizations of proba-
bility measures.

Now Mundici [Mu1] generalizes de Finetti’s theorem as follows:

Theorem 3. An assessment on an arbitrary set S of many-valued events
(regarded as elements of an MV-algebra A) is coherent iff there is a state on
A which extends it.

3. Random variables and expected values

Following de Finetti, Walley [Wa] considers probability over events as
a special case of expected values (previsions) of bounded random variables
(gambles). Clearly, gambles can take any real value, possibly negative. Thus,
the betting odds may be negative.

Game (2) can be extended to this new situation in the obvious way.
(Now events are replaced by gambles and can take any real value. Hence,
valuations are now maps from random variables into the reals). Once again,
coherence is expressed in terms of no sure loss.

What is the appropriate mathematical apparatus for representing random
variables (gambles)?

In Walley’s approach, the basic structure is assumed to be a vector space
over the the reals, possibly with a Hausdorff topology.
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In our more algebraic approach (cf. [FKMR]), gambles are elements of a
divisible lattice ordered abelian group with strong unit.1

We recall that a lattice ordered abelian group (in the sequel, ℓ-group) is
an abelian group equipped with lattice operations ∨ and ∧ which distribute
over the group operation +: x+(y ∨ z) = (x+ y)∨ (x+ z) and similarly for
∧, cf. [BKW].

A strong unit of an ℓ-group is an element u > 0 such that for every
element x of the ℓ-group there is a natural number n such that x ≤ nu

(nu = u+ . . .+ u, n times).
An ℓ-group is said to be divisible if for every positive integer n and for

every x there is a (necessarily unique) y, usually denoted by x
n
, such that

x = ny. Divisible ℓ groups are vector spaces over the rational field.
Expected values on a divisible ℓ-group (G, 1G) with strong unit 1G are

precisely the positive normalized linear functionals E from G into R (this
means E(x) ≥ 0 when x ≥ 0, E(1G) = 1 and E(λx+ µy) = λE(x) + µE(x)
for all rational λ and µ).

By a famous theorem of Mundici, [Mu0], given an ℓ-group (G, 1G) with
strong unit 1G, its [0G, 1G] interval carries an MV-algebra, denoted by
Γ(G, 1G), with x ⊕ y = (x + y) ∧ 1G and ¬x = 1G − x. Moreover, all
MV-algebras arise in this way.

More precisely, letting, for every homomorphism h of ℓ-groups with
strong unit from (G, 1G) into (H, 1H), Γ(h) be the restriction of h to
Γ(G, 1G), we have that Γ is a functor from the category of ℓ-groups with
strong unit into the category of MV-algebras (with morphisms the homomor-
phisms). Finally, Γ has a two-sided adjoint Γ−1, such that the pair (Γ,Γ−1)
is an equivalence of categories.

MV-algebras of the form Γ(G, 1G), where G is a divisible ℓ group with
strong unit 1G are called divisible. In a divisible MV-algebra one has opera-
tions x

n
such that nx

n
= x and x

n
⊙ (n− 1)x

n
= 0.

For divisible MV-algebras the connection with ℓ-groups with strong unit
is even stronger: indeed, for every element g ∈ G, there are an element
a ∈ Γ(G, 1G), an integer z and a natural number n such that g = na + z

(where if z = ±k, k a natural number, z stands for ±k1G). Moreover,
operations on G can be described by means of the operation of Γ(G, 1G).
For instance, (na+z)+(mb+u) = M( a

M
⊕ b

M
)+(z+u), where M = n+m+1.

Previsions over a divisible ℓ-group with strong unit (G, 1G) are connected
with states on the underlying MV-algebra Γ(G, 1G): the restriction of a
prevision to [0G, 1G] is a state on Γ(G, 1G), and given a state s, the functional

1More precisely, in [FKMR], previsions and imprecise previsions are investigated, and
results are obtained, under the weaker assumption of 2-divisibility, which roughly means
that every element can be divided by 2.
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E defined by E(nx + z) = ns(x) + z (where x ∈ Γ(G, 1G), n is a natural
number and z is an integer) is a prevision on Γ(G, 1G). Mundici’s theorem
naturally translates to:

Theorem 4. (cf. [Wa], but in a different framework) An assessment
φ 7→ αφ over random variables from S ⊆ G (where G is a divisible ℓ-group
with strong unit 1G) is coherent iff it can be extended to a prevision on
(G, 1G).

4. Upper and lower probabilities, upper and lower previsions

There are many reasons for introducing imprecise probabilities or impre-
cise previsions, and there are many ways to do that, cf. [Hal], [Wa] and
[AL]. Usually, imprecision is related to lack of knowledge, as shown in the
following examples.

Example. A box contains 100 marbles. 30 of them are red, and the
remaining 70 are either red or blue (no more information is known). While
it seems reasonable to say that the probability of choosing a red marble is
30%, it is not so clear what the probability of choosing a blue marble is. For
instance, the remaining marbles might be all blue, and then the probability
would be 70%, or even all yellow, and then the probability would be 0.
One might choose the mean value 35%, but this last assessment is not as
convincing as assigning probability 30% to the event: the chosen marble will
be red.

Example. I have to choose a betting odd for an event φ, and I have no
information about its probability. Hence, I consult three experts. Their
assessments are 60%, 50% and 40% respectively. Accordingly, it seems to be
safe to accept bets on φ as a bookmaker if the betting odd is 60% or more
and to accept to bet on φ as a bettor if the betting odd is 40% or less. For
intermediate betting odds, it may be safer not to bet at all.

This second example suggests the following interpretation of lower and
upper probabilities or previsions. That is, upper probabilities (upper previ-
sions) should be the suprema of sets of states (previsions), and lower prob-
abilities (lower previsions) should be infima of sets of states (previsions).

Let us make the mathematical situation clearer (for concepts of Func-
tional Analysis, cf. [Ru]).

(1) Let XG be the set of all homomorphisms from (G, 1G) into (R, 1),
and let for g ∈ G, g∗ : XG 7→ R be defined by g∗(v) = v(g). We will
assume G to be semisimple, so that the map g 7→ g∗ is one-one. Then
random variables become continuous real-valued functions on the compact
Hausdorff space XG (with the topology of pointwise convergence).
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Random variables form a topological vector lattice over Q, that is, a
vector space equipped with lattice operations and with a topology for which
the operations of the algebra are continuous (with respect to the topology
induced by the sup norm).

By the Stone-Waierstrass theorem the domain of such a topological vector
space is uniformly dense in C(XG,R) (the space of continuous functions from
XG into R with the topology of uniform convergence).

(2) It follows that previsions have a unique extension to a normalized
positive linear functional on C(XG,R). Hence, they may be considered as
elements of C(XG,R)∗ (the dual space of C(XG,R)), equipped with the weak
∗ topology , that is, the smallest topology such that for all f ∈ C(XG,R),
the evaluation map f∗(F ) = F (f) (F ∈ C(XG,R)∗), is continuous.

(3) Every convex and closed set Σ of previsions determines an upper
prevision u = uΣ defined by u(f) = sup {E(f) : E ∈ Σ} and a lower previ-
sion l = lΣ defined by l(f) = inf {E(f) : E ∈ Σ} = −u(−f). Note that since
Σ is closed, suprema and infima are actually attained and hence they are
maxima and minima respectively.

Upper and lower previsions defined in this way, as suprema and infima of
closed and convex sets of previsions, can be axiomatized as follows, [FKMR]
(cf. also [Wa] for another equivalent axiomatization):

(1) x ≤ y implies u(x) ≤ u(y) (monotonicity).
(2) u(f + q) = u(f) + q, q a rational constant (strong normalization).
(3) u(qf) = qu(f), for every positive rational number q (homogeneity).
(4) u(f + g) ≤ u(f) + u(g) (sublinearity).
(5) The lower prevision l associated to U is defined by l(f) = −u(−f).

Previsions are precisely the upper previsions u which coincide with their
associated lower prevision, i.e., u(x) = −u(−x) = l(x).

Theorem 5. ([FKMR], [Wa]) Upper and lower previsions are in bijection
with closed convex sets of previsions. In other words:

Upper previsions u and their associated lower previsions l(x) = −u(−x)
are precisely the maps of the form u(x) = max{E(x) : E ∈ Σ} and l(x) =
min{E(x) : E ∈ Σ} for some closed convex set Σ of previsions.

5. Upper previsions, lower previsions and bets

We consider the following interpretation of upper and lower previsions in
terms of bets.

(GAME 3). Player P selects an assessment φ 7→ αφ on a finite set S

of random variables. The number αφ represents the upper prevision of φ
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according to P. Then his opponent O may bet only non-negative numbers
λφ on each φ ∈ S. The payoff for P will be

∑
φ∈S λi(αφ − v(φ)).

The absence of a system of bets causing to P a sure loss is a necessary
condition for coherence, but not a sufficient condition. To the contrary, the
coherence criterion for Game (3) is the non-existence of a bad bet for O,
that is a bet λφ ≥ 0 on φ ∈ S such that there is a system of bets λφi

≥ 0
on φi ∈ S, i = 1, ..., n which gives O a better payoff, that is, such that∑n

i=1 λφi
(v(φi)− αφi

) > λφ(v(φ)− αφ) for every valuation v.

Note that the existence of a strategy causing P a sure loss implies the
existence of a bad bet (indeed, in that case, betting nothing would be a bad
bet). But it is easy to prove that there are assessments which do not cause
a sure loss but admit bad bets, as shown in the next example.

Example. Let p and q be propositional variables, and consider the assess-
ment p 7→ 1

3
, q 7→ 1

3
, p ⊕ q 7→ 1. Then, there is no system of (non-negative)

bets causing to P a sure loss. Indeed, if both p and q take value 0, then P
cannot lose money. However, betting any positive amount of money λ on
p⊕ q is a bad bet, because betting the same amount of money on p and on
q separately guarantees to P a strictly better payoff, independently of the
valuation.

The existence of a bad for O does not mean that O is not rational (indeed,
O need not choose that bad bet). It rather means that P was not rational,
because he could make his assessment more attractive for O by reducing the
betting odd αφ without any loss of money when O plays a rational strategy.
For instance, in the example above, P might change his betting odd on p⊕ q

from 1 to 2

3
without loss of money when O avoids bad bets.

To the contrary, the non existence of a bad bet implies that P cannot
reduce his betting odds without a potential loss of money, even if O plays a
rational strategy.

We point out that for a bookmaker it is important to choose a book which
is not only relatively safe, but also attractive for the bettors (otherwise,
nobody would bet on it).

A similar approach was proposed by Walley, who considers the point of
view of the bettor rather than the point of view of the bookmaker. Hence,
his coherence criterion becomes (essentially) the non-existence of a good bet ,
that is, a bet for which there is an alternative system of bets causing to the
bettor a worse payoff independently of the valuation.

In any case:

Theorem 6. ([FKMR]) Let Π : φ 7→ αφ be an assessment on a finite set
S of elements of a divisible ℓ-group with strong unit. Then:
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(1) Π can be extended to an upper prevision iff there is no bad bet for O in
Game (3).

(2) Π can be extended to a lower prevision if there is no good bet for O in
Game (3).

(3) Π can be extended to an expected value function (i.e., to a prevision) if
there is neither a good bet nor a bad bet for O in Game (3).

6. Upper and lower probabilities

Upper probabilities u and lower probabilities l are just restrictions of
upper and lower previsions to [0, 1]-valued gambles. They can be axiomatized
in the language of divisible MV-algebras as follows:

(1) For all x, u(x) ∈ [0, 1] and u(1) = 1 (normalization).
(2) u(x⊕ y) ≤ u(x) + u(y) when x⊙ y = 0 (sublinearity).
(3) u(qx) = qu(x) for each rational q in [0, 1] (homogeneity).
(4) x ≤ y implies u(x) ≤ u(y) (monotonicity).
(5) u(x ⊕ q) = u(x) + q for each rational q in [0, 1] such that x ⊙ q = 0

(strong normalization).
(6) Finally, the associated lower probability l is defined by l(x) = 1−u(¬x).

In this way, states are precisely those upper probabilities u which coincide
with their associated lower probabilities l(x) = 1− u(¬x).

Of course, the interpretation in terms of bets of upper and lower pre-
visions extends to upper and lower probabilities over MV-algebras as well,
and we have an analogue of Theorem 6 for upper and lower probabilities, cf.
[FKMR].

We also stress that upper (lower) probabilities are closely related to upper
(lower) previsions:

(1) Given an upper (lower) prevision U on a divisible ℓ-group with strong
unit (G, 1G), its restriction u to Γ(G, 1G) is an upper (lower) probability on
Γ(G, 1G).

(2) Conversely, given a divisible MV-algebra A and an upper (lower)
probability on it, every element of Γ−1(A) can be written as nx+z for some
integer z, for some natural number n and for some x ∈ A. Moreover, the
operator U on Γ−1(A) defined by U(nx+ z) = nu(x)+ z is well defined and
it turns out to be an upper (lower) prevision on Γ−1(A).

7. A logic for reasoning on imprecise probabilities and on upper
and lower previsions

Based on the fact that coherence has something to do with logic (a co-
herent assessment is an assessment which does not suffer an evident lack of
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rationality, and hence coherence is a sort of absence of contradiction), we
want to find a logic for reasoning about upper and lower probabilities, in
which we can express coherence in terms of logical coherence. We will work
inside an equational logic (or, semantically speaking, in a variety). The ap-
propriate variety for the treatment of upper and lower probabilities is the
variety of UMV-algebras , which are divisible MV-algebras with an operation
u such that:

(1) u(1) = 1.
(2) u(qx) = qu(x) for every rational number q in [0, 1].
(3) u(x⊕ y) ≤ u(x)⊕ u(y).
(4) u(x ∧ y) ≤ u(x).
(5) u(q ⊕ y) = q ⊕ u(y ⊖ (q ⊙ y)).
(6) u(t) = t whenever t is a term whose variables occur only under the scope

of u.2

Of course, in any UMV-algebra one also has a lower probability operator
l, defined by l(x) = ¬u(¬x).

The difference with upper and lower probabilities on an MV-algebra is
that now the external operators u and l from A into [0, 1] are replaced by
internal operations on A. Hence, UMV-algebras are algebras in the sense
of Universal Algebra. Moreover, their axioms are all equational, and hence
UMV-algebras constitute a variety of universal algebras.

We briefly comment about the axioms of UMV-algebras. Axioms (1)
. . . (4) reflect normality, homogeneity, sublinearity and monotonicity of u,
respectively.

Axiom (5) reflects the fact that if q is a rational and q ⊙ y = 0, then
u(q ⊕ y) = q ⊕ u(y).

As regards to Axiom (6), if all variables occur in t under the scope of u,
then t represents an event with constant truth value, which must coincide
with its upper probability.

That UMV-algebras fit our purposes is witnessed by the following result:

Theorem 7. There is a computable function associating to every rational-
valued assessment Π : φi 7→ αi: i = 1, . . . , n over a UMV-algebra three finite
sets of equations ΠU ,ΠL and ΠS such that:

(1) ΠU is satisfiable (in the variety of UMV-algebras) iff there is no bad bet
based on Π.

(2) ΠL is satisfiable iff there is no good bet based on Π.
(3) ΠS is satisfiable iff there is neither a good bet nor a bad bet based on Π.

2As noted by Yde Venema, Axiom (6) may be formulated as a finite schema, namely,
u(¬u(t)) = ¬u(t), and u(u(t1)⊕ u(t2)) = u(t1)⊕ u(t2).
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8. A logical treatment of gambles and of upper and lower previsions

One may wonder if there is a similar logic for treating gambles and upper
and lower previsions. The appropriate class seems to be the class of UG-
algebras , namely, of divisible ℓ-groups with strong unit equipped with an
internal upper prevision satisfying suitable axioms. We can express all the
basic properties of gambles and of their upper and lower previsions by means
of equations, except from the existence of a strong unit, which is not even a
first-order property. Hence, we will follow another approach, that is, we will
interpret both gambles and upper (lower) previsions inside UMV.

We will start from the semantical level. Mundici’s categorical equiv-
alence between MV-algebras and ℓ-groups with strong unit extends to an
equivalence between the category of UMV-algebras and the category of UG-
algebras.

The proof of this equivalence is based on the fact that every internal
upper probability on a divisible MV-algebra has a unique extension to an
upper prevision on its enveloping ℓ-group, which makes it into a UG-algebra,
and every homomorphism of UMV-algebras has a unique extension to a
homomorphism of its corresponding UG-algebra.

This semantical equivalence can be turned into a syntactical equivalence,
provided that the elements of a UG-algebras are presented in the form nx+z,
n a natural number, z an integer and x an element between 0 and the strong
unit. In this way, terms of UG-algebras can be simulated by means of terms
of UMV-algebras. In particular, the upper prevision U is expressed in terms
of the upper probability u by the formula U(nx+z) = nu(x)+z. Finally, UG-
equations are translated into UMV-equations, and the translation preserves
finite semantic consequence.

The opposite translation, from UG-algebras into UMV-algebras, is
straightforward. Hence, we get:

Theorem 8. There is a computable function associating to every rational
valued assessment Π : φi 7→ αi: i = 1, . . . , n over random variables, thought
of as members of a UG-algebra, three finite sets of equations ΠU ,ΠL and ΠS

over UMV-algebras such that:

(1) ΠU is satisfiable iff there is no bad bet based on Π.
(2) ΠL is satisfiable iff there is no good bet based on Π.
(3) ΠS is satisfiable iff there is neither a good bet nor a bad bet based on Π.

9. Complexity issues

An SMV-algebra (cf. [FM]) is a UMV-algebra satisfying u(x) = ¬u(¬x).
In [BF], the authors prove:
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Theorem 9. (1) The coherence problem for probabilistic assessments (i.e.,
absence of both a bad bet and a good bet) is NP-complete.

(2) The satisfiablity problem for SMV-equations without nested occur-
rences of u is NP-complete.

It is not hard to generalize the above theorem to the case of MV-algebras
A equipped with several independent operators u1, . . . , un (instead of just
one) such that for i = 1, . . . , n, (A, ui) is an SMV-algebra. Let us denote by
SMVn the resulting equational logic. Then it is possible to interpret UMV-
equations with n occurrences of u at most and without nested occurrences
of u into SMVn (the idea is that in SMVn we can define u(x) = u1(x)∨ . . .∨
un(x)). It follows:

Theorem 10. (1) The coherence problem for assessments of imprecise
probabilities (i.e., absence of a bad bet) is NP-complete. The same holds for
the absence of good bets.

(2) The satisfiability problem for UMV-equations without nested occur-
rences of u is NP-complete.
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