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MONOUNARY ALGEBRAS WITH SAME QUASIORDERS
OR RETRACTS

Abstract. Let (A, f) be a monounary algebra. We describe all monounary algebras
(A, g) having the same set of quasiorders, Quord(A4, f) = Quord(A,g). It is proved that
if Quord(A, f) does not coincide with the set of all reflexive and transitive relations on
the set A and (A, f) contains no cycle with more than two elements, then f is uniquely
determined by means of Quord(A, f). In the opposite case, Quord(A, f) = Quord(4, g)
if and only if Con(A, f) = Con(A4,g). Further, we show that, except the case when
Quord(A4, f) coincides with the set of all reflexive and transitive relations, if the monounary
algebras (A4, f) and (A, g) have the same quasiorders, then they have the same retracts.
Next we characterize monounary algebras which are determined by their sets of retracts
and connected monounary algebras which are determined by their sets of quasiorders.

1. Introduction

A quasiorder of an algebra is a binary relation on its support, which is
reflexive, transitive and compatible with all fundamental operations of the
algebra.

In many papers quasiorders of algebras are studied. The system of all
quasiorders of an algebra is a complete algebraic lattice with respect to
inclusion. Also, by [2], [12], every algebraic lattice is isomorphic to the
quasiorder lattice of a suitable algebra.

Let us notice that quasiorders of an algebra A can be considered as
a common generalization of partial orders which are compatible with all
operations of A and its congruences.

We will deal with monounary algebras. The first goal of this paper is,
for a given monounary algebra (A, f), a characterization of all monounary
algebras (A, g) such that the algebras (A, f) and (A, g) have the same sets
of quasiorders. This problem is in a close connection with the papers [3|-[6],
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where similar problems were investigated for congruences or endomorphisms,
respectively.

Further, in the present paper we study an analogous question for sets of
retracts of a given monounary algebra (A, f).

The notion of a retract is in mathematics commonly known: by a re-
tract it is understood a homomorphic image of an algebra by an arbitrary
retraction, i.e., by an idempotent endomorphism.

The investigation of homomorphisms and retracts of monounary algebras
has been shown to be a useful tool for studying some questions concerning
algebras of arbitrary type. Novotny [11], [10] remarks that constructions of
homomorphism of general algebras can be reduced to constructions of homo-
morphisms of monounary algebras. Also, it is possible to apply constructions
of retracts of monounary algebras for obtaining all retracts of any algebra.

We will substantially apply results of [5] and [6], in which all monounary
algebras (A, f) satisfying the condition Con(A, f) = Con(A4,g) were de-
scribed, for a given monounary algebra (A, f).

2. Preliminary and auxiliary results

The symbol N will be used for the set of all positive integers and Z for
the set of all integers.

A monounary algebra is defined as a pair (A, f) where A is a nonempty
set and f: A — A is a mapping (a unary operation on A).

Let (A, f) be a monounary algebra. Then (A, f) is called connected if
for arbitrary x,y € A there are n,m € NU {0} such that f™(z) = f™(y). A
maximal connected subalgebra of (A4, f) is called a connected component.

For x € A, the connected component containing x is denoted K7 (z).

An element x € A is called cyclic if there exists n € N such that
f™(x) = x. If n(z) is the least positive integer with this property, then
the set {z, f1(z), f2(z),..., @1 ()} is said to be a cycle.

A cycle of (A, f) is said to be small if it has at most two elements;
otherwise it is large.

If £ € N, then we denote by A£ the set of all elements of connected

components possessing a k-element cycle, and by B,{ the set of all cyclic
elements of Ai.
For a cyclic element x € A and k € N we denote by C’({ [x] the cycle
containing x, and by induction we set
Cllxl ={y € ANCl[2): f(y) € O[]}

The notion of a degree sf(y) of an element y € A was defined by M. No-
votny (cf., e.g., [9] or [3]) as follows. Let us denote by Y () the set of all
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elements y € A such that there exists a sequence {yn}nenufoy of elements
belonging to A with the property yo = y and f(y,) = yn—1 for each n € N.
Further, we put YO = {y € A: f~1(y) = 0}. Now we define a set YN C A
for an ordinal A\ # 0 by induction. Assume that we have defined Y (@) for
each ordinal @ < A. Then we put

YO = {y eAN Y@ iy c Y Y<a>}.

a< a<<

The sets YV are pairwise disjoint. For each y € A, either y € Y(°°) or there
is an ordinal A with y € YV In the former case we put s/(y) = oo, in the
latter we set s(y) = A. Suppose that if A is an ordinal, then A\ < oo.

The set of all equivalence relations on the set A will be denoted Equiv(A).
Further, the set of all reflexive and transitive relations on A will be denoted
Reftr(A).

Let A = {(a,a) : a € A} be the identity on the set A. Clearly, it is the
smallest quasiorder and also the smallest congruence of the algebra (A, f).

For a,b € A let of (a,b) and 67 (a,b) be the smallest quasiorder of (A, f)
and the smallest congruence of (A, f), respectively, such that (a,b) € of (a, b)
and (a,b) € 67 (a,b).

It is easy to see that the following lemma is valid:

LEMMA 2.1. Let (A, f) be a monounary algebra. If a,b € A, a and b do not
belong to the same connected component, then of (a,b) = AU{(f*(a), f1(b)) :
i e NU{0}}.

From the paper of Berman [1] concerning congruences it follows that if
n € N, then # is a congruence relation of an n-element cycle (C, f) if and
only if there is d € N such that d divides n and [z]g = {f*(z) : K = 0
mod d} for each z € C.

The congruence with this property will be denoted 64. It is easy to
verify that for each x € C, 6, is the smallest congruence of the cycle (C, f),
containing the pair (x, f%(z)); moreover, 4 does not depend on the choice
of z. In [8] the following assertion was proved:

LEMMA 2.2. Let (A, f) be an n-element cycle, n € N. Then Quord(A, f) =
Con(A, f) = {0, : d divides n}.

Now we are going to describe several properties of a monounary algebra
(A, f), which can be characterized by means of quasiorders (congruences) of
(A, f), without using the operation explicitly; about such properties it will
be said that they can be determined by means of quasiorders (determined by
means of congruences, respectively).

We will suppose that (A, f) is a monounary algebra, card A > 2.
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LEMmMmA 2.3. ([5], 4.10.1) Con(A, f) = Equiv(A) if and only if either f is

the identity function or f is a constant function on A.

LEMMA 2.4. Quord(A, f) = Reftr(A) if and only if either f is the identity
function or f is a constant function on A.

Proof. Suppose that Quord(A4, f) = Reftr(A). Then o/ (z,y) = AU{(z,9)}

for each x,y € A. If there are a,b € A, a # b with f(a) # f(b), then

(f(a), f(b) € af (a,b) < A, from which it follows f(a) = a, f(b) = b, thus f

is the identity function on A. Otherwise f is a constant function on A.
The opposite implication is trivial. =

COROLLARY 2.5. Con(A4, f) = Equiv(A) if and only if Quord(A, f) =
Reftr(A).

According to [5], 2.1 and 2.6 we have the following assertion:
LEMMA 2.6.

(i) Let x € A. The property that K'(z) possesses no cycle can be deter-
mined by means of congruences.

(i) If there exists a connected component of (A, f) possessing no cycle, then
f can be determined by means of congruences.

COROLLARY 2.7.

(i) Let x € A. The property that K'(z) possesses no cycle can be deter-
mined by means of quasiorders.

(i) If there exists a connected component of (A, f) possessing no cycle, then
f can be determined by means of quasiorders.

LEMMA 2.8. Let a,b € A, a # b. Then {a,b} is a cycle if and only if
of (a,b) = AU {(a,b), (b,a)}.

Proof. If {a, b} is a two-element cycle, then the assertion is valid. Suppose
that of (a,b) = A U {(a,b),(b,a)}. Clearly, (f(a), f(b)) € af(a,b). Since
f(a) = f(b) implies o/ (a,b) = AU {(a,b)}, a contradiction, we get f(a) #
f(b). This yields (f(a), f(b)) € {(a,b),(b,a)}. If f(a) = a, f(b) = b, then
af(a,b) = AU {(a,b)}, which is a contradiction as well. Therefore f(a) =
b, f(b) = a, ie., {a,b} is a cycle. m

LEMMA 2.9. Let x,y,v be distinct elements of A. Then the property that
f@) =y, f(y) = f(v) =v can be determined by means of quasiorders.
Proof. Due to [5], 3.3, the following two conditions are equivalent:

e (a) f(z) =y, fy) = f(v) =0, or (b) f(z) =0, fly) = f(v) =y, or (c)

f(.%'):.%', f(y)zv, f(v):yv
o 0/ (y,v) = AU {y,v}? 6/ (x,y) = 6/ (x,v) = AU {z,y,v}°
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The second condition is expressed by means of congruences, hence by means
of congruences we can deduce that one of the cases (a), (b), (¢) occurs. We
will show that the case (a) can be distinguished from (b) and from (c), when
we apply quasiorders.

If (c) is valid, then {y,v} is a two-element cycle and due to 2.8, o/ (y,v)
is a symmetric relation; if (a) holds, then o (y,v) = AU{(y,v)}, which fails
to be symmetric. In the case (a), o (z,y) = AU {(2,%), (y,v), (x,v)}, and
n (b), o/ (z,y) = AU{(z,y), (v, 9)}. =

LEMMA 2.10. ([5], 3.12) Let a, b, c € A be distinct. The following conditions
are equivalent:

e (a) fla) = f(b) = ¢, f(c) = b, or (b) fla) = f(b) = b,f(c) = ¢, or
(c) fla) =a, f(b) = f()—b or (d) f(a) =0b, f(b) = f(c) =a,
e 0/(a,b) = AU {a,b}?, 6/(b,c) = AU {b,c}?, 6/ (a,c) = AU{(L b, c}?.
b./—\«c b C b c c
a'/ a %) a
(a) (b) (c) (d)

The next lemma deals with the case that no triple with the property of
2.9 exists.

LEMMA 2.11. Assume that for each x,y,v € A such that x # y and
f(x) =y, f(y) = f(v) = v, there holds y = v. Let a,b, c be distinct elements
of A. Then the property f(a) = f(b) = b, f(¢) = ¢ can be determined by

means of quasiorders.

Proof. Since in the cases (a) and (d) in Lemma 2.10 the algebra (A, f)
possesses a two-element cycle and a two-element cycle can be determined
by means of quasiorders due to 2.8, we must distinguish the case (b) from
the case (c). If (b) holds, then af(a,c) = A U {(a,c),(b,c)}, otherwise
of(a,¢) = AU{(a,c), (a,b)}. m

Further, we will use the following results:

LEMMA 2.12. ([5], 3.1) A large cycle (as a set of elements) can be deter-
mined by means of congruences.

LEMMmA 2.13. (5], 1.4, 1.5) Suppose that each connected component of
(A, f) possesses a small cycle. Let u,w € A be such distinct elements, that
either f(u) = f(w) = w or f(u) = w, f(w) =wu. Ift € A, then f(t) can be

determined by means of congruences.
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LEMMA 2.14. Suppose that Quord(A, f) # Reftr(A).

(i) The property that each connected component of (A, f) possesses a small
cycle can be determined by means of quasiorders.

(ii) If each connected component of (A, f) possesses a small cycle, then f
can be determined by means of quasiorders.

Proof. By 2.7, the case when there is a connected component of (A, f)
containing no cycle, can be determined by means of quasiorders. Since each
large cycle can be determined by means of congruences in view of 2.12, we
obtain that (i) is valid.

Suppose that each connected component of (A, f) has a small cycle. First
assume that there is a two-element cycle in (A, f), which in view of 2.8
can be determined by means of quasiorders. Then f(¢) can be determined
by means of congruences for each t € A by 2.13, hence the assertion is
valid. Now let (A, f) possess no two-element cycle and let there exist distinct
elements z,y,v € A with f(z) =y, f(y) = f(v) = v. Due to 2.9, this case
can be determined by means of quasiorders. Then the assertion follows
from 2.13 (take u = y,w = v). Finally, suppose that no two-element cycle
and no z,y,v having the above property exist in (A, f). Then 2.4 and the
assumption Quord(A, f) # Reftr(A) imply that there are distinct elements
a,b,c € A such that f(a) = f(b) = b, f(¢) = ¢; this is determined by means
of quasiorders in view of 2.11, too. Again 2.13 for u = a,w = b implies that
the assertion holds. =

3. Same quasiorders
In the first part of this section we will deal with the assumption

e (A, f) is a monounary algebra such that each of its components contains
a cycle,
e there exists at least one large cycle in (A, f).

In view of 2.7 and by 2.12, this property can be determined by means of
quasiorders.

At the end of the section we summarize all obtained results for the general
case into our main theorem concerning the same quasiorders.

First let us recall some results of |5] and |6] which will be applied in this
section (they are denoted by the numbers of the corresponding assertions in
[5] and [6]). The notations introduced here will be used also in the following
section without other quotation.

(6.4) The sets A{ and Ag can be determined by means of congruences. If
T € A{ U Ag , then f(x) can be described by means of congruences.
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(6.5) Let z belong to a large cycle, n € N U {0}. The set Cj[z] can be
determined by means of congruences.

COROLLARY 3.1. Let k € N. The sets A£ and B,{ can be determined by
means of congruences. Also, connected components can be determined by
means of congruences.

Proof. If k = 1,2, then the assertion is valid due to (6.4). Let k > 2.
By 2.12, B,{ is determined by means of congruences, and then according
to (6.5), the corresponding components can be determined by means of
congruences as well. m

(6.7.1) Let the assumption of the previous assertion hold. If y € C}j[2] and
n > 1, then f(y) can be described by means of congruences.
(6.8) Let x belong to a large cycle, y € C’{ [x], z € C’g [x]. The equality
f(y) = f(z) can be determined by means of congruences.

The set of pairs (y, z) from (6.8) is denoted P/. It can be determined
by means of congruences.

(6.9) Let x,v,z belong to the same large cycle C' with k elements. Next
suppose that n € N, y € 07]:+1[$]~ Then the pair (z,v) with f*1(z) =
" (y), v = f(z) can be determined by means of congruences.

If (z,v) are as in (6.9), then we say that this pair is determined by the
surroundings of the cycle C. By MY (z) we denote the system of all pairs
which are determined by the surroundings of C' = C’({ [z]. Then the set
M7 (x) can be determined by means of congruences.

Let us remind that in the following four lemmas we will suppose that
(A, f) is a monounary algebra such that each its component contains a cycle
and that there exists at least one large cycle. Further, let g be a unary
operation on A such that Con(A, f) = Con(A4,g).

Let a,b € A, a # b. We will distinguish several cases and prove in each
of them, that of (a,b) = a9(a,b).

LEMMA 3.2. If a,b belong to the same cycle, then of (a,b) = a9(a,b).

Proof. According to 2.2 the assumption yields of (a,b) = 67 (a,b) = 69(a, b)
=ad(a,b). m

LEMMA 3.3. If a,b belong to distinct cycles, then of (a,b) = a9(a, b).

Proof. Suppose that a € C, b € D, where C and D are m-element and
n-element cycles, respectively. Let d = ged(m,n). Then

Hf(a, b) =AU {(fz(q:), f](y)) :A{x,y} C {a,b},d divides i — j}.
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Next, Lemma 2.1 implies of (a,b) = A U {(f*(a), f7(b)) : d divides i — 5},
thus we obtain

af(a,0) = AU (07 (a,b) N (D x A U C x O)).
Since 64 (a,b) = 69(a,b), we get of (a,b) = a9(a,b). =

Let us remark, that the case of Lemma 3.3 is included in the next lemma,
nevertheless, having proved 3.3 separately, it is more transparent.

LEMMA 3.4. Leta, b belong to distinct connected components. Then af(a, b)
= a9(a,b).
Proof. There are cyclic elements z,y € A such that a € Cilz], b € Cy[y],
where k,n € NU{0}. Without loss of generality suppose that n > k. In view
of (6.7.1), fi(a) = g*(a) for each 0 < i < k, f*(b) = g*(b) for each 0 < i < n.
Then
ol (a,b) = AU{(a,b), (f(a), f(B)), ..., (f*H(a), fF(0))}
Ual (ff (a), /¥ (b))
= AU{(a,b), (9(a),9(b)),- -, (¢" " (a), 6" 1 (b))}
Ual(g" ! (a),¢" (1))
Denote a’ = ¢g"1(a),b’ = ¢g*~1(b). We have
of (@ V) =AU (07 (V) N (KT (y) x A U K'(2) x K'(2))),
from which, according to 3.1, it follows that o (a’,b') = a9(a’, V). Therefore
ol (a,b) = a9(a,b). =
LEMMA 3.5. Let a,b belong to the same connected component. Then
of (a,b) = a9(a,b).

Proof. There is a cyclic x € A such that a € Ciz], b € C,[z], where
k,n € NU{0}. Let n > k. If n = k = 0, then a,b are cyclic and we can
use 3.2.

First assume that 0 = k < n. By (6.7.1), f(b) = ¢*(b) for each 0 < i <
n. This yields

af(a,b):AU(Qf(a,b)\{fi(b) :0<i<n—1}x A) =

AU (09(a,b) ~ {g"(b) : 0 < i <n—1} x A) = a¥(a,b).
Now suppose that 0 < k& < n. As in the previous proof, f(a) = ¢*(a) for
each 0 < i < k, fi(b) = g*(b) for each 0 < i < n. Also analogously, if we

denote a’ = ¢g¥1(a), b’ = ¢g*~1(b), then to finish the proof it suffices to show
that of (a/,1') = a9(a’,b'). Thus let a’ # V. Then

of (V) =AU (Gf(a',b') S{fY)0< i <n—k} x A).
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Since for 0 < i <n —k,
F1O) = F1g" ) = ) = fH0) = g ) = g (),
we obtain that of (a/, ) = a9(a’, V). m

Before formulating the main result on the same quasiorders, we will divide
monounary algebras into four pairwise disjoint types:

A monounary algebra (A, f) with more than two elements is of exactly
one of the following types:

(T1) f is the identity function or f is a constant function on A,

(T2) (A, f) possesses a connected component without a cycle,

(T3) (A, f) is neither of type (T1) nor of (T2) and all its cycles are small,

(T4) each connected component of (A, f) possesses a cycle and at least one
of them is large.

THEOREM 3.6. Let (A, f) be a monounary algebra with card A > 2 and let
g be a unary operation on A.

(i) For m € {1,2,3,4}, the property that (A, f) is of type (Tm) can be
determined by means of quasiorders.
(i1) If (A, f) is of type (T2) or (T3), then f can be determined by means of
quastorders.
(i) If (A, f) is of type (T1), (T2) or (T4), then Quord(A, f) = Quord(A4, g)
if and only if Con(A, f) = Con(A4, g).

Proof. The condition (i) for m = 1 follows from 2.4, for m = 2 from 2.7
and for m = 3 from 2.14. Since an algebra is of type (T4) if and only if it is
of none of types (T1), (T2), (T3), the condition is satisfied also for m = 4.
According to 2.7 and 2.14 we get (ii).

Let us show (iii). Since Quord(A, f) = Quord(A4, g) implies Con(A4, f) =
Con(A4,g), it suffices to prove only the converse implication. Suppose that
Con(A, f) = Con(A4, g). First let (A, f) be of type (T1). Then (i) yields that
(A, g) be of type (T1), too. We get by 2.4 that (A, f) is of type (T1) if
and only if Quord(A, f) = Reftr(A), and analogously for (A,g). Therefore
Quord(A, f) = Quord(A,g). If (A, f) is of type (T2), then 2.6 yields that
g = f, thus the assertion holds trivially. If (A, f) is of type (T4), then we
obtain that Quord(A, f) = Quord(A4, g) is valid according to 3.4 and 3.5. m

4. Connection between quasiorders and retracts

In this section we describe a connection between quasiorders and re-
tracts. Namely, we show that if (A, f) and (A, g) are monounary algebras
with Quord(A, f) # Reftr(A) and such that (A, f) and (A, g) have the same

quasiorders, then they have the same retracts.
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Further, we characterize the monounary algebras which are uniquely de-
termined by means of their sets of retracts. Also, a characterization of
connected monounary algebras which are uniquely determined by means of
their sets of quasiorders is found.

In what follows, the theorem characterizing retracts of connected mo-
nounary algebras will be frequently applied.

THEOREM 4.1. ([7], 1.2) Let (A, f) be a connected monounary algebra and
let (M, f) be a subalgebra of (A, f). Then M is a retract of (A, f) if and
only if the following condition is satisfied:

Ify € f~Y(M), then there is z € M with f(y) = f(2) and s/ (y) < s/(2).

Suppose that (A, f) is a monounary algebra, K;, i € I is the system of
all its connected components and cardl > 1. For ¢ € I denote by f; the
operation f reduced to the set K;. If B C A is a retract of (A, f), it is easy
to show that for each i € I such that BN K; # (0, the set BN K is a retract
of (Kj, f;). Further, for each ¢ € I such that BN K; = () there is j € I with
BN K;j # () and there exists a homomorphism ¢;; : K; — Kj. Conversely, if
B C A satisfies these two conditions, then B is a retract of (A, f).

4.1. Same quasiorders imply same retracts
For a monounary algebra (A, f) we will denote by R(A4, f) the set of all
retracts of (A, f).

LEMMA 4.2. Assume that (A, f) and (A, g) are monounary algebras such
that Quord(A, f) = Quord(A,g) # Reftr(A). If (A, f) is connected, then
R(4, f) = R(4,9).

Proof. If A has 2 elements and Quord(A4, f) = Quord(A, g) # Reftr(A), then
(A, f) and (A, g) form a cycle, thus g = f and R(A4, f) = R(4, g).

If (A, f) contains no cycle or (A, f) possesses a small cycle (i.e., (A, f)
is of type (T2) or (T3)), then 3.6 implies g = f, thus the assertion holds
trivially. Further, we can suppose that (A, f) contains a large cycle C. Let
x € C. According to (6.5), if k¥ € N U {0}, then the set C,{[x] can be
determined by means of congruences. By (6.7.1), if y € C’,f [z] and k > 1,
then f(y) can be described by means of congruences, i.e., g(y) = f(y).

Suppose that B € R(A, f). Obviously, C C B. In view of the character-
ization of retracts (cf. 4.1) we have

Yy [TH(B) 3z € B: f(y) = f(2), s (y) <57 (2).
To prove that B € R(4, g), take y € g~1(B). Denote t = g(y) € B. If t € C,
then there is z € C such that g(y) = g(z). In this case s9(y) < oo = s9(z).
Now let t € C,f(m), ke N. Theny € C,irl(x), which yields f(y) = g(y) =
t,ie, y € f~1(B). From this it follows that there exists z € B such that
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fy) = f(2), s'(y) < s/(2). By (6.5) and (6.7.1) we obtain that

{ve A:3Im e Nwith f"(v) =t} ={ve A:3Im e N with ¢"(v) =t}
and f(u) = g(u) for each u € {v € A : Im € N with f™(v) = t}. This
yields s/ (u) = s9(u) for each u € {v € A: Im € N with f™(v) = t}. Hence
9(5) = 1(y) = £(2) = 9() and s9(y) = s/ (y) = s/ (2) = s9(2). Therefore
B eR(4,g).

Similarly, R(A4, g) CR(A, f), thus we have shown that R(4, f)=R(4,g). =

THEOREM 4.3. Suppose that (A, f) and (A, g) are monounary algebras
such that Quord(A, f) = Quord(A4, g) # Reftr(A). Then R(A, f) = R(A,g).

Proof. If g = f, then the assertion holds trivially, thus assume that g # f.
Due to 3.6, each connected component of (A, f) possesses a cycle. Let Kj,
i € I be the system of all connected components of (A, f). By 3.1, K;,i € I
is the system of all connected components of (A, g), too. For i € I denote
by fi, ¢g; the operation f, g, respectively, reduced to the set K;. Then the
assumption yields that if ¢ € I, then Quord(Kj, f;) = Quord(Kj;, g;), hence
R(K;, fi) = R(Kj, gi) according to 4.2. Analogously as above, it suffices to
prove that R(A4, f) C R(4,g).

Let B € R(A, f), i € I. First assume that BN K; # (. Then BN K; is a
retract of (K, f;), thus BN K is a retract of (K, g;). Now let BN K; = (.
Then there is j € I with BN K; # 0 and there is a homomorphism ¢;; of
(K, fi) to (Kj, f;). A homomorphism from (Kj, f;) to (Kj, f;) exists if and
only if for the cycles C; and C; of (K;, f;) and (K, f;), respectively, we have

card C; divides card C;.

This condition is equivalent with the fact that there exists a homomorphism
ij of (K, g;) to (K, g;). Thus we have shown that B is a retract of (4,¢). =

The following example shows that the converse implication from Theorem
4.3 fails to hold:

ExAMPLE 4.4. Let A ={0,1,2,a}, f(0) =g(0) =1=g(a), f(1) =9g(1) =
2, f(2) =¢(2) =0= f(a). Then

ol (a,2) = AU{(a,2)} #A U (A x {0,1,2}) = a9(a, 2),
Quord(A, f) # Quord(A4, g),
R(A7 f) = {A7{07 172}} - R(Aag)'
/

g

L
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4.2. Uniqueness of an operation by means of retracts

Let (A, f) be a monounary algebra and x,y € A be arbitrary elements.
We say that a retract M € R(A, f) separates the elements z,y (or x,y are
separable by M) if x € M and y ¢ M, or x ¢ M and y € M.

We say that (A, f) has the retract separation property if every pair of
distinct elements is separable by some retract of (A, f).

Let us notice that each retract is a subalgebra, thus for M € R(A, f), if
a € M then f"(a) € M, for each n € NU {0}.

THEOREM 4.5. Let (A, f) be a monounary algebra containing no two ele-
ment cycle as a component. The following conditions are equivalent:

(1) R(A, f) = R(A, g) implies g = f for each unary operation g on A;

(2) (A, f) has the retract separation property;

(3) (a) (A, f) has no cycle with more than one element,

(b) if z € A, f(2) # 2z and 21 € f~Y(2), then there exists x5 € f~1(2),
xo # 21 such that sf(x1) < s¥(x3).

Proof. (1) = (2) Suppose that there exist a,b € A which are not separa-
ble by any retract from R(A, f). We define an operation g on A as follows:

f@) ifx¢ f~Ha)UfH(b) U {a,b},
a if z € f71(b),

gle)y=9b  ifze fHa),

f(a) ifx=0b,

f(b) ifzx=a.

Note that the elements a, b “interchanged their positions” in the algebra
(A, g). The mapping ¢ : A — A defined by ¢(a) = b, ¢(b) = a and p(x) =z
for x ¢ {a,b} is an isomorphism between (A, f) and (A4,g). Since M is a
retract of (4, f) if and only if (M) is a retract of (A, g) and since a, b are not
separable, we obtain that R(A, f) = R(A, g). According to the assumptions
there is no two element cycle as a component of (A, f), thus g # f.

(2) = (1) Let (A, f), (4, g) be such algebras that R(A4, f) = R(4, 9)
and suppose that (A, f) has the retract separation property. Under this
assumption we show that f = g.

If there is an element a € A with f(a) = a, then the one-element sub-
set {a} is a retract, thus g(a) = @ and vice versa, the same holds for the
operation g. Hence f(a) = a if and only if g(a) = a.

By the way of contradiction suppose that there exists an element a € A
with a # f(a) # g(a) # a. According to the assumption there is a retract
M € R(A, f) =R(A4,g) separating f(a) and g(a). Without loss of generality
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we may assume that f(a) € M and g(a) ¢ M. Since f*(a) € M forn > 1
we have g(a) # f™(a) for n > 1.

Obviously, g(a) ¢ U,enf "(a). Otherwise there exists m € N with
f™(g(a)) = a and thus any retract K € R(A, f) containing g(a) also contains
a. Conversely, any retract K € R(A, g) contains together with the element a
also g(a). Since R(A, f) = R(4, g), we obtain that the elements a and g(a)
are not separable, which is a contradiction.

Finally, suppose that a and g(a) are incomparable with respect to the
operation f, i.e., there is no n € NU {0} satisfying f"(g(a)) = a or f"(a) =
g(a). Denote

Mi=MuU |J f™a.
neNU{0}
Now using 4.1, it can be verified that M; is a retract of (A, f). Clearly, a €
M;. Since g(a) ¢ M and g(a) & U,enugoy /™" (@), we get that g(a) ¢ M.
This yields a contradiction, because M; € R(A, g).

(2) = (3) Let (2) hold. Clearly (a) is valid, since distinct elements
of a cycle are not separable. Suppose that z € A is such that f(z) # z
and x1 € f1(2). There exists a retract M separating z and z1. Since
f(z1) = z and M is a subalgebra of (A4, f), we obtain z1 ¢ M, z € M. We
have z1 € f~1(M), thus according to 4.1, there exists x5 € f~1(2) N M with
sf(21) < sf(x3). Since z1 ¢ M and x5 € M, we get a1 # 5.

(3) = (2) Let (3) be valid and let a, b be distinct elements of A. First
assume that they belong to the same connected component, which yields
that there exist m,n € NU {0} with f™(a) = f™(b). We can suppose that
for any m/,n’ € NU{0} such that m’ < m or n/ <n, f™ (a) # f* (b) holds.
Let n < m.

Suppose that n > 0. Denote a’ = f™ 1(a), ¥’ = f*~1(b). Then f(a') =
f (V). Without loss of generality, sf(a’) < s7(¥'). Denote

M=AN\ U k).
keNU{0}
According to 4.1, M is a retract and a ¢ M, b € M, thus a, b are separable.

Let n = 0. Then m > 0. If f(b) = b, then {b} is a retract not containing
a. Suppose that f(b) # b and put a’ = f™ !(a). We have f(a’) = b, hence
according to (b) there is € f~1(b), = # a’ such that sf(a’) < s/(z). This
implies that there exists a retract M such that o’ ¢ M, b € M. As above,
M separates a, b.

Now assume that a,b belong to distinct components. If f(a) = a, then
{a} is a retract separating a,b. Thus let f(a) # a. Denote K the connected
component containing the element a. According to the previous considera-
tion, the elements a, f(a) can be separated by a retract M of the (connected)
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monounary algebra (K, f). Obviously, a ¢ M. Now put
M = (A~ K)UM.

Clearly, M; is a retract of (A, f) with a ¢ My, b € M, hence M; separates
a,b. m

4.3. Uniqueness of an operation by means of quasiorders and con-
gruences

In this subsection we will characterize all connected monounary algebras
(A, f) such that for each unary operation g on A, Quord(A, f) = Quord(A4, g)
implies g = f.

In view of Theorem 3.6, for monounary algebras possessing no large cy-
cles, Quord(A, f) = Quord(A, g) implies ¢ = f. Note that for monounary
algebras possessing no large cycles, the analogous implication for congru-
ences does not hold in general.

Let us remark that we do not deal with the case when (A, f) fails to be
connected, because in such characterization we would obtain too complicated
conditions.

THEOREM 4.6. ([6], 6.10) Suppose that (A, f) is a connected monounary
algebra with a large cycle C' = Cg[x], x € A. Let g be a unary operation on
the set A. The following conditions are equivalent:

(1) Con(A, f) = Con(4,qg);

(2) (a) C is a cycle of (A, g) and Con(C, f) = Con(C, g),
(b) M9(z) = M/ (),
(¢) g(u) = f(w) for each u € U,,51 Cilal],
(d) P9 = P7.

Note that the notions of P/ and M/ were defined above, between Corol-
lary 3.1 and Lemma 3.2.

If n € N, then we denote by Z, the set of all integers modulo n. We
write Zy = {0y, 1p,...,(n — 1), } and the operations are counted modulo n.

In what follows, let n = p{'p¥* ... p)F, k, j1,...,jk € N, where p1,...,pj
are distinct primes.

THEOREM 4.7. Let (A, f) be a connected monounary algebra possessing a
large cycle C' = Zy (with the successor operation x +— x + 1, counted modulo
n on C). The following conditions are equivalent:

(1) Con(A, f) = Con(A, g) implies g = f for each unary operation g on A,
(2) there are m € N and 2, ... 2™ € Z (i.e., xﬁ”,...,xf{”) e C), such
that
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(a) (xg‘t), x,(f) +1,) is determined by means of the surroundings of C for
each 1 <t < m, ‘ '

b)) {0<r<pi:r=2® modpl1<t<m}=1{01,...,p/'—1}
for each 1 <1 <k.

Proof. Assume that (1) holds. Let xﬁl),...,xgm) € C be the set of all
y € C such that the pair (y,y+ 1) is determined by the surroundings of the
cycle C.

Suppose that (b) fails to hold. This yields that there is 1 < i < k for
which the above sets are not equal, i.e., there is 0 < g < pfz such that g is
not a reminder of any ), 1 <t < m, after dividing by pJ".

We are going to define an operation g on A. Let y, € C. Take z € Z such
that

z=y+1 modp{L foreach 1 < ¢ <k, ¢ # 1,

z=gq mod pl'.
Since the modules in the system of congruences are relatively prime, this
system has a unique solution modulo n. Then we put g(y,) = z,. According
to [6], Theorem 5.4, Con(C, f) = Con(C, g).

For y € C[z] there is y' € Co[x] such that (y,y') € PT; we set g(y) =
g(y'). Finally, we set g(u) = f(u) for each u € {J,,~; ci, []. This implies that
the condition (2) of Theorem 4.6 is fulfilled, hence Con(A, f) = Con(A4, g).
Since g # f, we obtain a contradiction to (1).

Conversely, assume that (2) is valid and let g be a unary operation on A
with Con(A4, f) = Con(A, g). In order to prove f = g it is sufficient to show
that g(yn) = f(yn) for each y, € C, because then (c) and (d) of Theorem
4.6 imply that g = f.

Let y, € C. From (2)(b) it follows that to each 1 < ¢ < k there ex-
ists 1 < ¢, < m having the property y = z(*) mod p/*. By (2)(a) we
get (:c,&m,f(xs,t‘)) = (xs,t‘),xs,t‘) + 1,) € M/ (y,) = M9(y,), which implies
g(x&tb)) = xg,tb) + 1, = f(ms,tb)). We will apply the Berman’s result which
was stated below Lemma 2.1. Since y = () mod pL‘L, we obtain that the
pair (yn,xg,tL)) € epr € Con(C, f). Hence pr" € Con(C, g), which yields

(g(yn)jg(xﬁm)) €0, ..
(t.)

Let z € Z be such that z, = g(yn). Now, from (g(yn),g(zn*’)) € 0., we
get the following system of congruences:

zzx(“)—i—lzy—kl modp{b, foreach 1 <. < k.

One of the solutions of this system is z = y 4+ 1. Since the solution is unique
modulo n, we obtain g(yn) = zn = Yn + 1n = f(yn). Therefore g = f. m
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According to Theorem 3.6, under the assumption of the previous theorem

we have Quord(A, f) = Quord(A4, g) if and only if Con(A, f) = Con(4,g),
which implies:

COROLLARY 4.8. Let (A, f) be a connected monounary algebra possessing
a large cycle C = Zyn. Then the condition Quord(A, f) = Quord(A, g) implies
g = f for each unary operation g on A, is equivalent to the condition (2) of

Theorem 4.7.
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