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MONOUNARY ALGEBRAS WITH SAME QUASIORDERS

OR RETRACTS

Abstract. Let (A, f) be a monounary algebra. We describe all monounary algebras
(A, g) having the same set of quasiorders, Quord(A, f) = Quord(A, g). It is proved that
if Quord(A, f) does not coincide with the set of all reflexive and transitive relations on
the set A and (A, f) contains no cycle with more than two elements, then f is uniquely
determined by means of Quord(A, f). In the opposite case, Quord(A, f) = Quord(A, g)
if and only if Con(A, f) = Con(A, g). Further, we show that, except the case when
Quord(A, f) coincides with the set of all reflexive and transitive relations, if the monounary
algebras (A, f) and (A, g) have the same quasiorders, then they have the same retracts.
Next we characterize monounary algebras which are determined by their sets of retracts
and connected monounary algebras which are determined by their sets of quasiorders.

1. Introduction

A quasiorder of an algebra is a binary relation on its support, which is
reflexive, transitive and compatible with all fundamental operations of the
algebra.

In many papers quasiorders of algebras are studied. The system of all
quasiorders of an algebra is a complete algebraic lattice with respect to
inclusion. Also, by [2], [12], every algebraic lattice is isomorphic to the
quasiorder lattice of a suitable algebra.

Let us notice that quasiorders of an algebra A can be considered as
a common generalization of partial orders which are compatible with all
operations of A and its congruences.

We will deal with monounary algebras. The first goal of this paper is,
for a given monounary algebra (A, f), a characterization of all monounary
algebras (A, g) such that the algebras (A, f) and (A, g) have the same sets
of quasiorders. This problem is in a close connection with the papers [3]–[6],
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where similar problems were investigated for congruences or endomorphisms,
respectively.

Further, in the present paper we study an analogous question for sets of
retracts of a given monounary algebra (A, f).

The notion of a retract is in mathematics commonly known: by a re-
tract it is understood a homomorphic image of an algebra by an arbitrary
retraction, i.e., by an idempotent endomorphism.

The investigation of homomorphisms and retracts of monounary algebras
has been shown to be a useful tool for studying some questions concerning
algebras of arbitrary type. Novotný [11], [10] remarks that constructions of
homomorphism of general algebras can be reduced to constructions of homo-
morphisms of monounary algebras. Also, it is possible to apply constructions
of retracts of monounary algebras for obtaining all retracts of any algebra.

We will substantially apply results of [5] and [6], in which all monounary
algebras (A, f) satisfying the condition Con(A, f) = Con(A, g) were de-
scribed, for a given monounary algebra (A, f).

2. Preliminary and auxiliary results

The symbol N will be used for the set of all positive integers and Z for
the set of all integers.

A monounary algebra is defined as a pair (A, f) where A is a nonempty
set and f : A→ A is a mapping (a unary operation on A).

Let (A, f) be a monounary algebra. Then (A, f) is called connected if
for arbitrary x, y ∈ A there are n,m ∈ N ∪ {0} such that fn(x) = fm(y). A
maximal connected subalgebra of (A, f) is called a connected component.

For x ∈ A, the connected component containing x is denoted Kf (x).

An element x ∈ A is called cyclic if there exists n ∈ N such that
fn(x) = x. If n(x) is the least positive integer with this property, then
the set {x, f1(x), f2(x), . . . , fn(x)−1(x)} is said to be a cycle.

A cycle of (A, f) is said to be small if it has at most two elements;
otherwise it is large.

If k ∈ N, then we denote by Af
k the set of all elements of connected

components possessing a k-element cycle, and by Bf
k the set of all cyclic

elements of Af
k .

For a cyclic element x ∈ A and k ∈ N we denote by Cf
0 [x] the cycle

containing x, and by induction we set

Cf
k [x] = {y ∈ Ar Cf

k−1[x] : f(y) ∈ Cf
k−1[x]}.

The notion of a degree sf (y) of an element y ∈ A was defined by M. No-
votný (cf., e.g., [9] or [3]) as follows. Let us denote by Y (∞) the set of all
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elements y ∈ A such that there exists a sequence {yn}n∈N∪{0} of elements
belonging to A with the property y0 = y and f(yn) = yn−1 for each n ∈ N.
Further, we put Y (0) = {y ∈ A : f−1(y) = ∅}. Now we define a set Y (λ) ⊆ A
for an ordinal λ 6= 0 by induction. Assume that we have defined Y (α) for
each ordinal α < λ. Then we put

Y (λ) =
{

y ∈ Ar

⋃

α<λ

Y (α) : f−1(y) ⊆
⋃

α<λ

Y (α)
}

.

The sets Y (λ) are pairwise disjoint. For each y ∈ A, either y ∈ Y (∞) or there
is an ordinal λ with y ∈ Y (λ). In the former case we put sf (y) = ∞, in the
latter we set s(y) = λ. Suppose that if λ is an ordinal, then λ <∞.

The set of all equivalence relations on the set A will be denoted Equiv(A).
Further, the set of all reflexive and transitive relations on A will be denoted
Reftr(A).

Let ∆ = {(a, a) : a ∈ A} be the identity on the set A. Clearly, it is the
smallest quasiorder and also the smallest congruence of the algebra (A, f).

For a, b ∈ A let αf (a, b) and θf (a, b) be the smallest quasiorder of (A, f)
and the smallest congruence of (A, f), respectively, such that (a, b) ∈ αf (a, b)
and (a, b) ∈ θf (a, b).

It is easy to see that the following lemma is valid:

Lemma 2.1. Let (A, f) be a monounary algebra. If a, b ∈ A, a and b do not
belong to the same connected component, then αf (a, b) = ∆∪{(f i(a), f i(b)) :
i ∈ N ∪ {0}}.

From the paper of Berman [1] concerning congruences it follows that if
n ∈ N, then θ is a congruence relation of an n-element cycle (C, f) if and
only if there is d ∈ N such that d divides n and [x]θ = {fk(x) : k ≡ 0
mod d} for each x ∈ C.

The congruence with this property will be denoted θd. It is easy to
verify that for each x ∈ C, θd is the smallest congruence of the cycle (C, f),
containing the pair (x, fd(x)); moreover, θd does not depend on the choice
of x. In [8] the following assertion was proved:

Lemma 2.2. Let (A, f) be an n-element cycle, n ∈ N. Then Quord(A, f) =
Con(A, f) = {θd : d divides n}.

Now we are going to describe several properties of a monounary algebra
(A, f), which can be characterized by means of quasiorders (congruences) of
(A, f), without using the operation explicitly; about such properties it will
be said that they can be determined by means of quasiorders (determined by
means of congruences , respectively).

We will suppose that (A, f) is a monounary algebra, cardA > 2.
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Lemma 2.3. ([5], 4.10.1) Con(A, f) = Equiv(A) if and only if either f is
the identity function or f is a constant function on A.

Lemma 2.4. Quord(A, f) = Reftr(A) if and only if either f is the identity
function or f is a constant function on A.

Proof. Suppose that Quord(A, f) = Reftr(A). Then αf (x, y) = ∆∪ {(x, y)}
for each x, y ∈ A. If there are a, b ∈ A, a 6= b with f(a) 6= f(b), then
(f(a), f(b)) ∈ αf (a, b)r∆, from which it follows f(a) = a, f(b) = b, thus f
is the identity function on A. Otherwise f is a constant function on A.

The opposite implication is trivial.

Corollary 2.5. Con(A, f) = Equiv(A) if and only if Quord(A, f) =
Reftr(A).

According to [5], 2.1 and 2.6 we have the following assertion:

Lemma 2.6.

(i) Let x ∈ A. The property that Kf (x) possesses no cycle can be deter-
mined by means of congruences.

(ii) If there exists a connected component of (A, f) possessing no cycle, then
f can be determined by means of congruences.

Corollary 2.7.

(i) Let x ∈ A. The property that Kf (x) possesses no cycle can be deter-
mined by means of quasiorders.

(ii) If there exists a connected component of (A, f) possessing no cycle, then
f can be determined by means of quasiorders.

Lemma 2.8. Let a, b ∈ A, a 6= b. Then {a, b} is a cycle if and only if
αf (a, b) = ∆ ∪ {(a, b), (b, a)}.

Proof. If {a, b} is a two-element cycle, then the assertion is valid. Suppose
that αf (a, b) = ∆ ∪ {(a, b), (b, a)}. Clearly, (f(a), f(b)) ∈ αf (a, b). Since
f(a) = f(b) implies αf (a, b) = ∆ ∪ {(a, b)}, a contradiction, we get f(a) 6=
f(b). This yields (f(a), f(b)) ∈ {(a, b), (b, a)}. If f(a) = a, f(b) = b, then
αf (a, b) = ∆ ∪ {(a, b)}, which is a contradiction as well. Therefore f(a) =
b, f(b) = a, i.e., {a, b} is a cycle.

Lemma 2.9. Let x, y, v be distinct elements of A. Then the property that
f(x) = y, f(y) = f(v) = v can be determined by means of quasiorders.

Proof. Due to [5], 3.3, the following two conditions are equivalent:

• (a) f(x) = y, f(y) = f(v) = v, or (b) f(x) = v, f(y) = f(v) = y, or (c)
f(x) = x, f(y) = v, f(v) = y,

• θf (y, v) = ∆ ∪ {y, v}2, θf (x, y) = θf (x, v) = ∆ ∪ {x, y, v}2.
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The second condition is expressed by means of congruences, hence by means
of congruences we can deduce that one of the cases (a), (b), (c) occurs. We
will show that the case (a) can be distinguished from (b) and from (c), when
we apply quasiorders.

If (c) is valid, then {y, v} is a two-element cycle and due to 2.8, αf (y, v)
is a symmetric relation; if (a) holds, then αf (y, v) = ∆∪{(y, v)}, which fails
to be symmetric. In the case (a), αf (x, y) = ∆ ∪ {(x, y), (y, v), (x, v)}, and
in (b), αf (x, y) = ∆ ∪ {(x, y), (v, y)}.

Lemma 2.10. ([5], 3.12) Let a, b, c ∈ A be distinct. The following conditions
are equivalent:

• (a) f(a) = f(b) = c, f(c) = b, or (b) f(a) = f(b) = b, f(c) = c, or
(c) f(a) = a, f(b) = f(c) = b, or (d) f(a) = b, f(b) = f(c) = a,

• θf (a, b) = ∆ ∪ {a, b}2, θf (b, c) = ∆ ∪ {b, c}2, θf (a, c) = ∆ ∪ {a, b, c}2.

a

cb

a

cb

a

cb

a

cb

(a) (b) (c) (d)

The next lemma deals with the case that no triple with the property of
2.9 exists.

Lemma 2.11. Assume that for each x, y, v ∈ A such that x 6= y and
f(x) = y, f(y) = f(v) = v, there holds y = v. Let a, b, c be distinct elements
of A. Then the property f(a) = f(b) = b, f(c) = c can be determined by
means of quasiorders.

Proof. Since in the cases (a) and (d) in Lemma 2.10 the algebra (A, f)
possesses a two-element cycle and a two-element cycle can be determined
by means of quasiorders due to 2.8, we must distinguish the case (b) from
the case (c). If (b) holds, then αf (a, c) = ∆ ∪ {(a, c), (b, c)}, otherwise
αf (a, c) = ∆ ∪ {(a, c), (a, b)}.

Further, we will use the following results:

Lemma 2.12. ([5], 3.1) A large cycle (as a set of elements) can be deter-
mined by means of congruences.

Lemma 2.13. ([5], 1.4, 1.5) Suppose that each connected component of
(A, f) possesses a small cycle. Let u,w ∈ A be such distinct elements, that
either f(u) = f(w) = w or f(u) = w, f(w) = u. If t ∈ A, then f(t) can be
determined by means of congruences.
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Lemma 2.14. Suppose that Quord(A, f) 6= Reftr(A).

(i) The property that each connected component of (A, f) possesses a small
cycle can be determined by means of quasiorders.

(ii) If each connected component of (A, f) possesses a small cycle, then f
can be determined by means of quasiorders.

Proof. By 2.7, the case when there is a connected component of (A, f)
containing no cycle, can be determined by means of quasiorders. Since each
large cycle can be determined by means of congruences in view of 2.12, we
obtain that (i) is valid.

Suppose that each connected component of (A, f) has a small cycle. First
assume that there is a two-element cycle in (A, f), which in view of 2.8
can be determined by means of quasiorders. Then f(t) can be determined
by means of congruences for each t ∈ A by 2.13, hence the assertion is
valid. Now let (A, f) possess no two-element cycle and let there exist distinct
elements x, y, v ∈ A with f(x) = y, f(y) = f(v) = v. Due to 2.9, this case
can be determined by means of quasiorders. Then the assertion follows
from 2.13 (take u = y, w = v). Finally, suppose that no two-element cycle
and no x, y, v having the above property exist in (A, f). Then 2.4 and the
assumption Quord(A, f) 6= Reftr(A) imply that there are distinct elements
a, b, c ∈ A such that f(a) = f(b) = b, f(c) = c; this is determined by means
of quasiorders in view of 2.11, too. Again 2.13 for u = a, w = b implies that
the assertion holds.

3. Same quasiorders

In the first part of this section we will deal with the assumption

• (A, f) is a monounary algebra such that each of its components contains
a cycle,

• there exists at least one large cycle in (A, f).

In view of 2.7 and by 2.12, this property can be determined by means of
quasiorders.

At the end of the section we summarize all obtained results for the general
case into our main theorem concerning the same quasiorders.

First let us recall some results of [5] and [6] which will be applied in this
section (they are denoted by the numbers of the corresponding assertions in
[5] and [6]). The notations introduced here will be used also in the following
section without other quotation.

(6.4) The sets Af
1 and Af

2 can be determined by means of congruences. If

x ∈ Af
1 ∪Af

2 , then f(x) can be described by means of congruences.
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(6.5) Let x belong to a large cycle, n ∈ N ∪ {0}. The set Cf
n [x] can be

determined by means of congruences.

Corollary 3.1. Let k ∈ N. The sets Af
k and Bf

k can be determined by
means of congruences. Also, connected components can be determined by
means of congruences.

Proof. If k = 1, 2, then the assertion is valid due to (6.4). Let k > 2.

By 2.12, Bf
k is determined by means of congruences, and then according

to (6.5), the corresponding components can be determined by means of
congruences as well.

(6.7.1) Let the assumption of the previous assertion hold. If y ∈ Cf
n [x] and

n > 1, then f(y) can be described by means of congruences.

(6.8) Let x belong to a large cycle, y ∈ Cf
1 [x], z ∈ Cf

0 [x]. The equality
f(y) = f(z) can be determined by means of congruences.

The set of pairs (y, z) from (6.8) is denoted P f . It can be determined
by means of congruences.

(6.9) Let x, v, z belong to the same large cycle C with k elements. Next

suppose that n ∈ N, y ∈ Cf
n+1[x]. Then the pair (z, v) with fn+1(z) =

fn+1(y), v = f(z) can be determined by means of congruences.

If (z, v) are as in (6.9), then we say that this pair is determined by the
surroundings of the cycle C. By Mf (x) we denote the system of all pairs

which are determined by the surroundings of C = Cf
0 [x]. Then the set

Mf (x) can be determined by means of congruences.

Let us remind that in the following four lemmas we will suppose that
(A, f) is a monounary algebra such that each its component contains a cycle
and that there exists at least one large cycle. Further, let g be a unary
operation on A such that Con(A, f) = Con(A, g).

Let a, b ∈ A, a 6= b. We will distinguish several cases and prove in each
of them, that αf (a, b) = αg(a, b).

Lemma 3.2. If a, b belong to the same cycle, then αf (a, b) = αg(a, b).

Proof. According to 2.2 the assumption yields αf (a, b) = θf (a, b) = θg(a, b)
= αg(a, b).

Lemma 3.3. If a, b belong to distinct cycles, then αf (a, b) = αg(a, b).

Proof. Suppose that a ∈ C, b ∈ D, where C and D are m-element and
n-element cycles, respectively. Let d = gcd(m,n). Then

θf (a, b) = ∆ ∪ {(f i(x), f j(y)) : {x, y} ⊆ {a, b}, d divides i− j}.
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Next, Lemma 2.1 implies αf (a, b) = ∆ ∪ {(f i(a), f j(b)) : d divides i − j},
thus we obtain

αf (a, b) = ∆ ∪
(

θf (a, b)r (D ×A ∪ C × C)
)

.

Since θf (a, b) = θg(a, b), we get αf (a, b) = αg(a, b).

Let us remark, that the case of Lemma 3.3 is included in the next lemma,
nevertheless, having proved 3.3 separately, it is more transparent.

Lemma 3.4. Let a, b belong to distinct connected components. Then αf (a, b)
= αg(a, b).

Proof. There are cyclic elements x, y ∈ A such that a ∈ Ck[x], b ∈ Cn[y],
where k, n ∈ N∪{0}. Without loss of generality suppose that n ≥ k. In view
of (6.7.1), f i(a) = gi(a) for each 0 ≤ i < k, f i(b) = gi(b) for each 0 ≤ i < n.
Then

αf (a, b) = ∆ ∪ {(a, b), (f(a), f(b)), . . . , (fk−1(a), fk−1(b))}

∪ αf (fk−1(a), fk−1(b))

= ∆ ∪ {(a, b), (g(a), g(b)), . . . , (gk−1(a), gk−1(b))}

∪ αf (gk−1(a), gk−1(b)).

Denote a′ = gk−1(a), b′ = gk−1(b). We have

αf (a′, b′) = ∆ ∪
(

θf (a′, b′)r (Kf (y)×A ∪ Kf (x)×Kf (x))
)

,

from which, according to 3.1, it follows that αf (a′, b′) = αg(a′, b′). Therefore
αf (a, b) = αg(a, b).

Lemma 3.5. Let a, b belong to the same connected component. Then
αf (a, b) = αg(a, b).

Proof. There is a cyclic x ∈ A such that a ∈ Ck[x], b ∈ Cn[x], where
k, n ∈ N ∪ {0}. Let n ≥ k. If n = k = 0, then a, b are cyclic and we can
use 3.2.

First assume that 0 = k < n. By (6.7.1), f i(b) = gi(b) for each 0 ≤ i <
n. This yields

αf (a, b) = ∆ ∪
(

θf (a, b)r {f i(b) : 0 ≤ i ≤ n− 1} ×A
)

=

∆ ∪
(

θg(a, b)r {gi(b) : 0 ≤ i ≤ n− 1} ×A
)

= αg(a, b).

Now suppose that 0 < k ≤ n. As in the previous proof, f i(a) = gi(a) for
each 0 ≤ i < k, f i(b) = gi(b) for each 0 ≤ i < n. Also analogously, if we
denote a′ = gk−1(a), b′ = gk−1(b), then to finish the proof it suffices to show
that αf (a′, b′) = αg(a′, b′). Thus let a′ 6= b′. Then

αf (a′, b′) = ∆ ∪
(

θf (a′, b′)r {f i(b′) : 0 ≤ i ≤ n− k} ×A
)

.
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Since for 0 ≤ i ≤ n− k,

f i(b′) = f i(gk−1(b)) = f i(fk−1(b)) = f i+k−1(b) = gi+k−1(b) = gi(b′),

we obtain that αf (a′, b′) = αg(a′, b′).

Before formulating the main result on the same quasiorders, we will divide
monounary algebras into four pairwise disjoint types:

A monounary algebra (A, f) with more than two elements is of exactly
one of the following types:

(T1) f is the identity function or f is a constant function on A,
(T2) (A, f) possesses a connected component without a cycle,
(T3) (A, f) is neither of type (T1) nor of (T2) and all its cycles are small,
(T4) each connected component of (A, f) possesses a cycle and at least one

of them is large.

Theorem 3.6. Let (A, f) be a monounary algebra with cardA > 2 and let
g be a unary operation on A.

(i) For m ∈ {1, 2, 3, 4}, the property that (A, f) is of type (Tm) can be
determined by means of quasiorders.

(ii) If (A, f) is of type (T2) or (T3), then f can be determined by means of
quasiorders.

(iii) If (A, f) is of type (T1), (T2) or (T4), then Quord(A, f) = Quord(A, g)
if and only if Con(A, f) = Con(A, g).

Proof. The condition (i) for m = 1 follows from 2.4, for m = 2 from 2.7
and for m = 3 from 2.14. Since an algebra is of type (T4) if and only if it is
of none of types (T1), (T2), (T3), the condition is satisfied also for m = 4.
According to 2.7 and 2.14 we get (ii).

Let us show (iii). Since Quord(A, f) = Quord(A, g) implies Con(A, f) =
Con(A, g), it suffices to prove only the converse implication. Suppose that
Con(A, f) = Con(A, g). First let (A, f) be of type (T1). Then (i) yields that
(A, g) be of type (T1), too. We get by 2.4 that (A, f) is of type (T1) if
and only if Quord(A, f) = Reftr(A), and analogously for (A, g). Therefore
Quord(A, f) = Quord(A, g). If (A, f) is of type (T2), then 2.6 yields that
g = f , thus the assertion holds trivially. If (A, f) is of type (T4), then we
obtain that Quord(A, f) = Quord(A, g) is valid according to 3.4 and 3.5.

4. Connection between quasiorders and retracts

In this section we describe a connection between quasiorders and re-
tracts. Namely, we show that if (A, f) and (A, g) are monounary algebras
with Quord(A, f) 6= Reftr(A) and such that (A, f) and (A, g) have the same
quasiorders, then they have the same retracts.
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Further, we characterize the monounary algebras which are uniquely de-
termined by means of their sets of retracts. Also, a characterization of
connected monounary algebras which are uniquely determined by means of
their sets of quasiorders is found.

In what follows, the theorem characterizing retracts of connected mo-
nounary algebras will be frequently applied.

Theorem 4.1. ([7], 1.2) Let (A, f) be a connected monounary algebra and
let (M, f) be a subalgebra of (A, f). Then M is a retract of (A, f) if and
only if the following condition is satisfied:

If y ∈ f−1(M), then there is z ∈M with f(y) = f(z) and sf (y) ≤ sf (z).

Suppose that (A, f) is a monounary algebra, Ki, i ∈ I is the system of
all its connected components and card I > 1. For i ∈ I denote by fi the
operation f reduced to the set Ki. If B ⊆ A is a retract of (A, f), it is easy
to show that for each i ∈ I such that B ∩Ki 6= ∅, the set B ∩Ki is a retract
of (Ki, fi). Further, for each i ∈ I such that B ∩Ki = ∅ there is j ∈ I with
B ∩Kj 6= ∅ and there exists a homomorphism ϕij : Ki → Kj . Conversely, if
B ⊆ A satisfies these two conditions, then B is a retract of (A, f).

4.1. Same quasiorders imply same retracts
For a monounary algebra (A, f) we will denote by R(A, f) the set of all

retracts of (A, f).

Lemma 4.2. Assume that (A, f) and (A, g) are monounary algebras such
that Quord(A, f) = Quord(A, g) 6= Reftr(A). If (A, f) is connected, then

R(A, f) = R(A, g).

Proof. If A has 2 elements and Quord(A, f) = Quord(A, g) 6= Reftr(A), then
(A, f) and (A, g) form a cycle, thus g = f and R(A, f) = R(A, g).

If (A, f) contains no cycle or (A, f) possesses a small cycle (i.e., (A, f)
is of type (T2) or (T3)), then 3.6 implies g = f , thus the assertion holds
trivially. Further, we can suppose that (A, f) contains a large cycle C. Let

x ∈ C. According to (6.5), if k ∈ N ∪ {0}, then the set Cf
k [x] can be

determined by means of congruences. By (6.7.1), if y ∈ Cf
k [x] and k > 1,

then f(y) can be described by means of congruences, i.e., g(y) = f(y).
Suppose that B ∈ R(A, f). Obviously, C ⊆ B. In view of the character-

ization of retracts (cf. 4.1) we have

∀y ∈ f−1(B) ∃z ∈ B : f(y) = f(z), sf (y) ≤ sf (z).

To prove that B ∈ R(A, g), take y ∈ g−1(B). Denote t = g(y) ∈ B. If t ∈ C,
then there is z ∈ C such that g(y) = g(z). In this case sg(y) ≤ ∞ = sg(z).

Now let t ∈ Cf
k (x), k ∈ N. Then y ∈ Cf

k+1(x), which yields f(y) = g(y) =

t, i.e, y ∈ f−1(B). From this it follows that there exists z ∈ B such that
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f(y) = f(z), sf (y) ≤ sf (z). By (6.5) and (6.7.1) we obtain that

{v ∈ A : ∃m ∈ N with fm(v) = t} = {v ∈ A : ∃m ∈ N with gm(v) = t}

and f(u) = g(u) for each u ∈ {v ∈ A : ∃m ∈ N with fm(v) = t}. This
yields sf (u) = sg(u) for each u ∈ {v ∈ A : ∃m ∈ N with fm(v) = t}. Hence
g(y) = f(y) = f(z) = g(z) and sg(y) = sf (y) = sf (z) = sg(z). Therefore
B ∈ R(A, g).

Similarly, R(A, g)⊆R(A, f), thus we have shown that R(A, f)=R(A, g).

Theorem 4.3. Suppose that (A, f) and (A, g) are monounary algebras
such that Quord(A, f) = Quord(A, g) 6= Reftr(A). Then R(A, f) = R(A, g).

Proof. If g = f , then the assertion holds trivially, thus assume that g 6= f .
Due to 3.6, each connected component of (A, f) possesses a cycle. Let Ki,
i ∈ I be the system of all connected components of (A, f). By 3.1, Ki, i ∈ I
is the system of all connected components of (A, g), too. For i ∈ I denote
by fi, gi the operation f , g, respectively, reduced to the set Ki. Then the
assumption yields that if i ∈ I, then Quord(Ki, fi) = Quord(Ki, gi), hence

R(Ki, fi) = R(Ki, gi) according to 4.2. Analogously as above, it suffices to
prove that R(A, f) ⊆ R(A, g).

Let B ∈ R(A, f), i ∈ I. First assume that B ∩Ki 6= ∅. Then B ∩Ki is a
retract of (Ki, fi), thus B ∩Ki is a retract of (Ki, gi). Now let B ∩Ki = ∅.
Then there is j ∈ I with B ∩Kj 6= ∅ and there is a homomorphism ϕij of
(Ki, fi) to (Kj , fj). A homomorphism from (Ki, fi) to (Kj , fj) exists if and
only if for the cycles Ci and Cj of (Ki, fi) and (Kj , fj), respectively, we have

cardCj divides cardCi.

This condition is equivalent with the fact that there exists a homomorphism
ψij of (Ki, gi) to (Kj , gj). Thus we have shown that B is a retract of (A, g).

The following example shows that the converse implication from Theorem
4.3 fails to hold:

Example 4.4. Let A = {0, 1, 2, a}, f(0) = g(0) = 1 = g(a), f(1) = g(1) =
2, f(2) = g(2) = 0 = f(a). Then

αf (a, 2) = ∆ ∪ {(a, 2)} 6=∆ ∪ (A× {0, 1, 2}) = αg(a, 2),

Quord(A, f) 6= Quord(A, g),

R(A, f) = {A,{0, 1, 2}} = R(A, g).

1

02

a

f

g
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4.2. Uniqueness of an operation by means of retracts

Let (A, f) be a monounary algebra and x, y ∈ A be arbitrary elements.
We say that a retract M ∈ R(A, f) separates the elements x, y (or x, y are
separable by M) if x ∈M and y /∈M , or x /∈M and y ∈M .

We say that (A, f) has the retract separation property if every pair of
distinct elements is separable by some retract of (A, f).

Let us notice that each retract is a subalgebra, thus for M ∈ R(A, f), if
a ∈M then fn(a) ∈M , for each n ∈ N ∪ {0}.

Theorem 4.5. Let (A, f) be a monounary algebra containing no two ele-
ment cycle as a component. The following conditions are equivalent:

(1) R(A, f) = R(A, g) implies g = f for each unary operation g on A;
(2) (A, f) has the retract separation property;
(3) (a) (A, f) has no cycle with more than one element,

(b) if z ∈ A, f(z) 6= z and x1 ∈ f−1(z), then there exists x2 ∈ f−1(z),
x2 6= x1 such that sf (x1) ≤ sf (x2).

Proof. (1) =⇒ (2) Suppose that there exist a, b ∈ A which are not separa-
ble by any retract from R(A, f). We define an operation g on A as follows:

g(x) =































f(x) if x /∈ f−1(a) ∪ f−1(b) ∪ {a, b},

a if x ∈ f−1(b),

b if x ∈ f−1(a),

f(a) if x = b,

f(b) if x = a.

Note that the elements a, b “interchanged their positions” in the algebra
(A, g). The mapping ϕ : A→ A defined by ϕ(a) = b, ϕ(b) = a and ϕ(x) = x
for x /∈ {a, b} is an isomorphism between (A, f) and (A, g). Since M is a
retract of (A, f) if and only if ϕ(M) is a retract of (A, g) and since a, b are not
separable, we obtain that R(A, f) = R(A, g). According to the assumptions
there is no two element cycle as a component of (A, f), thus g 6= f .

(2) =⇒ (1) Let (A, f), (A, g) be such algebras that R(A, f) = R(A, g)
and suppose that (A, f) has the retract separation property. Under this
assumption we show that f = g.

If there is an element a ∈ A with f(a) = a, then the one-element sub-
set {a} is a retract, thus g(a) = a and vice versa, the same holds for the
operation g. Hence f(a) = a if and only if g(a) = a.

By the way of contradiction suppose that there exists an element a ∈ A
with a 6= f(a) 6= g(a) 6= a. According to the assumption there is a retract
M ∈ R(A, f) = R(A, g) separating f(a) and g(a). Without loss of generality
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we may assume that f(a) ∈ M and g(a) /∈ M . Since fn(a) ∈ M for n ≥ 1
we have g(a) 6= fn(a) for n ≥ 1.

Obviously, g(a) /∈
⋃

n∈N f
−n(a). Otherwise there exists m ∈ N with

fm(g(a)) = a and thus any retract K ∈ R(A, f) containing g(a) also contains
a. Conversely, any retract K ∈ R(A, g) contains together with the element a
also g(a). Since R(A, f) = R(A, g), we obtain that the elements a and g(a)
are not separable, which is a contradiction.

Finally, suppose that a and g(a) are incomparable with respect to the
operation f , i.e., there is no n ∈ N ∪ {0} satisfying fn(g(a)) = a or fn(a) =
g(a). Denote

M1 =M ∪
⋃

n∈N∪{0}

f−n(a).

Now using 4.1, it can be verified that M1 is a retract of (A, f). Clearly, a ∈
M1. Since g(a) /∈ M and g(a) /∈

⋃

n∈N∪{0} f
−n(a), we get that g(a) /∈ M1.

This yields a contradiction, because M1 ∈ R(A, g).
(2) =⇒ (3) Let (2) hold. Clearly (a) is valid, since distinct elements

of a cycle are not separable. Suppose that z ∈ A is such that f(z) 6= z
and x1 ∈ f−1(z). There exists a retract M separating z and x1. Since
f(x1) = z and M is a subalgebra of (A, f), we obtain x1 /∈ M , z ∈ M. We
have x1 ∈ f−1(M), thus according to 4.1, there exists x2 ∈ f−1(z)∩M with
sf (x1) ≤ sf (x2). Since x1 /∈M and x2 ∈M , we get x1 6= x2.

(3) =⇒ (2) Let (3) be valid and let a, b be distinct elements of A. First
assume that they belong to the same connected component, which yields
that there exist m,n ∈ N ∪ {0} with fm(a) = fn(b). We can suppose that
for any m′, n′ ∈ N∪ {0} such that m′ ≤ m or n′ ≤ n, fm

′

(a) 6= fn
′

(b) holds.
Let n ≤ m.

Suppose that n > 0. Denote a′ = fm−1(a), b′ = fn−1(b). Then f(a′) =
f(b′). Without loss of generality, sf (a′) ≤ sf (b′). Denote

M = Ar

⋃

k∈N∪{0}

f−k(a′).

According to 4.1, M is a retract and a /∈M , b ∈M , thus a, b are separable.
Let n = 0. Then m > 0. If f(b) = b, then {b} is a retract not containing

a. Suppose that f(b) 6= b and put a′ = fm−1(a). We have f(a′) = b, hence
according to (b) there is x ∈ f−1(b), x 6= a′ such that sf (a′) ≤ sf (x). This
implies that there exists a retract M such that a′ /∈ M , b ∈ M. As above,
M separates a, b.

Now assume that a, b belong to distinct components. If f(a) = a, then
{a} is a retract separating a, b. Thus let f(a) 6= a. Denote K the connected
component containing the element a. According to the previous considera-
tion, the elements a, f(a) can be separated by a retract M of the (connected)
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monounary algebra (K, f). Obviously, a /∈M . Now put

M1 = (ArK) ∪M.

Clearly, M1 is a retract of (A, f) with a /∈ M1, b ∈ M1, hence M1 separates
a, b.

4.3. Uniqueness of an operation by means of quasiorders and con-
gruences

In this subsection we will characterize all connected monounary algebras
(A, f) such that for each unary operation g on A, Quord(A, f) = Quord(A, g)
implies g = f .

In view of Theorem 3.6, for monounary algebras possessing no large cy-
cles, Quord(A, f) = Quord(A, g) implies g = f . Note that for monounary
algebras possessing no large cycles, the analogous implication for congru-
ences does not hold in general.

Let us remark that we do not deal with the case when (A, f) fails to be
connected, because in such characterization we would obtain too complicated
conditions.

Theorem 4.6. ([6], 6.10) Suppose that (A, f) is a connected monounary

algebra with a large cycle C = Cf
0 [x], x ∈ A. Let g be a unary operation on

the set A. The following conditions are equivalent:

(1) Con(A, f) = Con(A, g);
(2) (a) C is a cycle of (A, g) and Con(C, f) = Con(C, g),

(b) Mg(x) =Mf (x),

(c) g(u) = f(u) for each u ∈
⋃

m>1C
f
m[x],

(d) P g = P f .

Note that the notions of P f and Mf were defined above, between Corol-
lary 3.1 and Lemma 3.2.

If n ∈ N, then we denote by Zn the set of all integers modulo n. We
write Zn = {0n, 1n, . . . , (n− 1)n} and the operations are counted modulo n.

In what follows, let n = pj11 p
j2
2 . . . pjkk , k, j1, . . . , jk ∈ N, where p1, . . . , pk

are distinct primes.

Theorem 4.7. Let (A, f) be a connected monounary algebra possessing a
large cycle C = Zn (with the successor operation x 7→ x+1n counted modulo
n on C). The following conditions are equivalent:

(1) Con(A, f) = Con(A, g) implies g = f for each unary operation g on A,

(2) there are m ∈ N and x(1), . . . , x(m) ∈ Z (i.e., x
(1)
n , . . . , x

(m)
n ∈ C), such

that
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(a) (x
(t)
n , x

(t)
n +1n) is determined by means of the surroundings of C for

each 1 ≤ t ≤ m,
(b) {0 ≤ r < pjii : r ≡ x(t) mod pjii , 1 ≤ t ≤ m} = {0, 1, . . . , pjii − 1}

for each 1 ≤ i ≤ k.

Proof. Assume that (1) holds. Let x
(1)
n , . . . , x

(m)
n ∈ C be the set of all

y ∈ C such that the pair (y, y+1n) is determined by the surroundings of the
cycle C.

Suppose that (b) fails to hold. This yields that there is 1 ≤ i ≤ k for

which the above sets are not equal, i.e., there is 0 ≤ q < pjii such that q is

not a reminder of any x(t), 1 ≤ t ≤ m, after dividing by pjii .
We are going to define an operation g on A. Let yn ∈ C. Take z ∈ Z such

that

z ≡ y + 1 mod pjιι for each 1 ≤ ι ≤ k, ι 6= i,

z ≡ q mod pjii .

Since the modules in the system of congruences are relatively prime, this
system has a unique solution modulo n. Then we put g(yn) = zn. According
to [6], Theorem 5.4, Con(C, f) = Con(C, g).

For y ∈ C1[x] there is y′ ∈ C0[x] such that (y, y′) ∈ P f ; we set g(y) =

g(y′). Finally, we set g(u) = f(u) for each u ∈
⋃

m>1C
f
m[x]. This implies that

the condition (2) of Theorem 4.6 is fulfilled, hence Con(A, f) = Con(A, g).
Since g 6= f , we obtain a contradiction to (1).

Conversely, assume that (2) is valid and let g be a unary operation on A
with Con(A, f) = Con(A, g). In order to prove f = g it is sufficient to show
that g(yn) = f(yn) for each yn ∈ C, because then (c) and (d) of Theorem
4.6 imply that g = f .

Let yn ∈ C. From (2)(b) it follows that to each 1 ≤ ι ≤ k there ex-

ists 1 ≤ tι ≤ m having the property y ≡ x(tι) mod pjιι . By (2)(a) we

get (x
(tι)
n , f(x

(tι)
n ) = (x

(tι)
n , x

(tι)
n + 1n) ∈ Mf (yn) = Mg(yn), which implies

g(x
(tι)
n ) = x

(tι)
n + 1n = f(x

(tι)
n ). We will apply the Berman’s result which

was stated below Lemma 2.1. Since y ≡ x(tι) mod pjιι , we obtain that the

pair (yn, x
(tι)
n ) ∈ θ

p
jι
ι

∈ Con(C, f). Hence θ
p
jι
ι

∈ Con(C, g), which yields

(g(yn), g(x
(tι)
n )) ∈ θ

p
jι
ι

.

Let z ∈ Z be such that zn = g(yn). Now, from (g(yn), g(x
(tι)
n )) ∈ θ

p
jι
ι

, we

get the following system of congruences:

z ≡ x(tι) + 1 ≡ y + 1 mod pjιι , for each 1 ≤ ι ≤ k.

One of the solutions of this system is z = y+1. Since the solution is unique
modulo n, we obtain g(yn) = zn = yn + 1n = f(yn). Therefore g = f.
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According to Theorem 3.6, under the assumption of the previous theorem
we have Quord(A, f) = Quord(A, g) if and only if Con(A, f) = Con(A, g),
which implies:

Corollary 4.8. Let (A, f) be a connected monounary algebra possessing
a large cycle C = Zn. Then the condition Quord(A, f) = Quord(A, g) implies
g = f for each unary operation g on A, is equivalent to the condition (2) of
Theorem 4.7.
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