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Abstract. We show that the automorphism group of the countable universal dis-
tributive lattice has strong uncountable cofinality, and we adapt the method to deduce
the strong uncountable cofinality of the automorphism group of the countable universal
generalized boolean algebra.

1. Introduction

In [6] a detailed analysis was given of the automorphism group of the
countable universal homogeneous distributive lattice D. In particular, its
normal subgroups were determined, and the small index property was veri-
fied. The question of whether Aut(D) has uncountable cofinality was however
left open, and it is our purpose in this paper to establish this. The same
methods are used to demonstrate the uncountable cofinality of the automor-
phism group of the countable universal homogeneous generalized boolean
algebra.

The background to this problem is explained in [7], but we recap here
on the main points. A group G is said to have uncountable cofinality if it
cannot be written as the union of a countable chain of proper subgroups.
This notion has been studied by a number of authors, originally Koppelberg
and Tits [13], who, in response to a question of Serre, proved the uncount-
able cofinality of the direct power of infinitely many copies of a finite perfect
group. Macpherson and Neumann [14] established the same result for the
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symmetric group on a countably infinite set, and building on these meth-
ods, uncountable cofinality has been established in a number of other cases,
for instance the automorphism group A(Q) of the rational numbers as an
ordered set [10], for other (partially or totally) ordered sets [5, 7], and for
the homeomorphism groups of certain topological spaces [4]. For a survey
of this field, see Thomas [15]. A rather stronger condition is that G have
strong uncountable cofinality, and this means that G cannot be written as
the union of an ascending chain of proper subsets (Un : n ∈ ω) each closed
under formation of inverses, and such that for each i and j, there is k such
that UiUj ⊆ Uk. It was shown in [5] that strong uncountable cofinality is
equivalent to uncountable cofinality together with a property introduced in
[2] called ‘Bergman’s property’: for any generating set E for G which con-
tains the identity and is closed under inverses, there is n ∈ N such that
G = En. This property has also found considerable recent interest, cf., e.g.,
[2, 4, 5, 12]. We work here exclusively with strong uncountable cofinality,
thereby establishing for the present automorphism groups both uncountable
cofinality and the Bergman property.

2. The uncountable cofinality of the automorphism group of the

countable universal homogeneous distributive lattice

In this section we shall establish the uncountable cofinality of Aut(D).
This follows a combination of methods used in other cases, principally those
of the rationals [10] and the countable atomless boolean algebra [4]. For
these we require the following definitions.

First we recall what D is. It is known that the class of finite distributive
lattices is an amalgamation class, so it follows by the general Fraïssé theory
(see [11] for instance) that there is a unique countable universal homogeneous
distributive lattice, which we denote by D. This has no greatest or least
element, all the maximal chains are isomorphic to Q, and any ‘interval’
[a, b] = {x ∈ D : a ≤ x ≤ b} is itself a lattice, which is isomorphic to the
countable atomless boolean algebra. Modifying this a little, we may also
consider the class of finite ‘generalized boolean algebras’, which are finite
distributive lattices with a least element 0. This is an amalgamation class
under the class of maps which are required to fix 0 (as well as the lattice
operations ∧ and ∨), and the resulting structure is a universal homogeneous
generalized boolean algebra B. For this structure, there is a least but no
greatest element, all maximal chains are isomorphic to the rational interval
[0, 1), and again any interval is isomorphic to the countable atomless boolean
algebra. Both D and B are ‘relatively complemented’, which means that for
any a ≤ x ≤ b there is y ∈ [a, b] such that x∧ y = a and x∨ y = b. We shall
quote various results proved in [6] about D and B.
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By a coterminal Z-chain in D (or more generally in any partially ordered
set) we understand a family {ai : i ∈ Z} indexed by the integers, such that
ai < ai+1 for each i, and for every x ∈ D, there are i and j such that
ai ≤ x ≤ aj . A moiety is a subset of D of the form

⋃
n∈Z

(a2n, a2n+1),
for some coterminal Z-chain {ai : i ∈ Z}. The sets (a2n, a2n+1) are called
‘components’ of the moiety. The notion of moiety was originally introduced
by Neumann [3] in the proof of the small index property for the symmetric
group on ω, signifying a set which is ‘half’ of the whole, and versions of the
same idea have appeared in many other similar proofs of the small index
property or uncountable cofinality.

For any permutation group G, we denote the setwise and pointwise stabi-
lizers of a subset A of the set on which G acts by G{A} and GA respectively.

We need the following result, which we give without proof. This is similar
to Lemmas 2.2 and 2.3 in [6], adapted for our current purposes.

Lemma 2.1. For i = 1, 2, let Li be a relatively complemented distributive

lattice, and L′
i ⊆ Li a sublattice such that the smallest relatively comple-

mented sublattice of Li containing L′
i is Li itself. Then each isomorphism

from L′
1 to L′

2 extends uniquely to an isomorphism of L1 to L2.

Theorem 2.2. The automorphism group of the countable universal homo-

geneous distributive lattice D has strong uncountable cofinality.

Proof. Let U0 ⊆ U1 ⊆ U2 ⊆ . . . ⊆ Aut(D) = G have union equal to G

and be such that U−1
n = Un and (∀i, j)(∃k)UiUj ⊆ Uk. We aim to show

that Un = G for some n. As in [7], this is accomplished in a series of steps.
By [9] Thm.II.4.20, the countable atomless boolean algebra B is generated
by some maximal chain. Now choose a coterminal Z-chain (an)n∈Z in D.
Then each [an, an+1] is isomorphic to B, so we let Cn be a maximal chain of
[an, an+1] which generates [an, an+1] as a boolean algebra. We remark that
C =

⋃
n∈Z

Cn generates D as a relatively complemented lattice, as follows
by the argument given in the proof of Lemma 2.3 in [6], and we fix this C

in what follows.

(1) Any isomorphism f from C to C extends uniquely to an automor-
phism of D.

This is immediate by Lemma 2.1 from the fact that C generates D as a
relatively complemented lattice.

(2) Let (an), (a′n) be coterminal Z-chains in C. Then any isomorphism
f from C ∪

⋃
n∈Z

[a2n, a2n+1] to C ∪
⋃

n∈Z
[a′2n, a′2n+1] extends uniquely to an

automorphism of D.
This is proved by the same method as (1).

(3) There is m0 such that G{C} ⊆ Um0
.
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To prove this we consider the intersections of the sequence (Un) with the
setwise stabilizer G{C} of C in G. Since C ∼= Q, and by (1), G{C}

∼= A(Q).
By the strong uncountable cofinality of A(Q) [5] we deduce that there is m0

such that Um0
∩ G{C} = G{C}, which gives the result.

(4) There are a moiety M =
⋃

n∈Z
(a2n, a2n+1) such that each an lies in

C, and an integer m1 ≥ m0, such that every automorphism fixing C \ M

pointwise agrees with some member of Um1
on M .

This is done by a standard diagonalization argument as in earlier proofs.
We start with any moiety of the form

⋃
n∈Z

(a′2n, a′2n+1) where each a′n lies
in C, and express it as the disjoint union of an infinite sequence of moieties
(Mi : i ≥ m0). We shall show that M in the statement of (4) may be taken as
some Mi with i = m1 ≥ m0. If not, then for each i ≥ m0 there is gi ∈ GC\Mi

which does not agree with any member of Ui on Mi. Let g be the map on⋃
i≥m0

Mi obtained by ‘patching’ all these gis, that is, which agrees with gi

on Mi and which fixes all members of C\
⋃

n∈Z
(a′2n, a′2n+1). By (2), g extends

to an automorphism of D, also written as g. Since G =
⋃

i∈ω Ui, g ∈ Ui for
some i ≥ m0. But now g and gi agree on Mi, which is a contradiction.

In what follows we fix this choice of M and (an).

(5) There is m2 ≥ m1 such that GC\M ⊆ Um2
.

For this we choose h ∈ GC\M which fixes each component of M setwise
but acts non-trivially there. Let h ∈ Um. Since [a2n, a2n+1] is isomorphic
to the countable atomless boolean algebra, and also using (2) again, such
h exists. Now Anderson showed in [1] that the automorphism group of the
countable atomless boolean algebra is simple, and furthermore, that for any
non-identity elements f and f ′, there are fi such that

f ′ = ff1(f−1)f2ff3(f−1)f4ff5(f−1)f6

(where superscripts indicate conjugation). Thus on each component of M ,
we may write any g ∈ GC\M as a product of 6 conjugates of h and its inverse

of this form, and by (2), we may find fi ∈ GC\M such that g = hf1(h−1)f2hf3

(h−1)f4hf5(h−1)f6 . By (4), the fi agree with members f ′
i of Um1

on M . Hence
g agrees with hf ′

1(h−1)f ′

2hf ′

3(h−1)f ′

4hf ′

5(h−1)f ′

6 on D. Since h ∈ Um and each
f ′

i lies in Um1
, using (∀j, k)(∃l)UjUk ⊆ Ul, we find the desired m2 ≥ m, m1.

(6) There is m3 ≥ m2 such that for every moiety M ′ of the form⋃
n∈Z

(ai2n
, ai2n+1

), where in are integers such that in < in+1 for all n,
GC\M ′ ⊆ Um3

.
To see the truth of this we let m3 be such that Um0

Um2
Um0

⊆ Um3
.

Now we observe that there is g ∈ G{C} such that gan = ain for each n. Let

h ∈ GC\M ′ . Then g−1hg ∈ GC\M , so by (5) lies in Um2
. Hence h ∈ gUm2

g−1.
But by (3), g ∈ Um0

, so h ∈ Um0
Um2

Um0
⊆ Um3

.
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(7) There is m4 ≥ m3 such that for every choice of (in) as in (6), every
automorphism fixing each ain lies in Um4

.

Let m4 be such that Um3
Um3

⊆ Um4
, and let g ∈ G fix each ain .

Then g may be written in the form g2g1 where g1 fixes all members of
C ∩

⋃
n∈Z

[ai2n
, ai2n+1

] and g2 fixes all members of C ∩
⋃

n∈Z
[ai2n+1

, ai2n+2
].

By (6), g1, g2 ∈ Um3
, and hence g ∈ Um4

.

To conclude the proof, choose any g ∈ G. We can find a sequence of
integers (in)n∈Z such that for every n, both ain+1

and g(ain+1
) are greater

than both ain and g(ain). Then for each n, ai2n+1
and g(ai2n+1

) lie between
ai2n

and ai2n+2
. Hence there is an automorphism h fixing each ai2n

and
taking g(ai2n+1

) to ai2n+1
. Now hg fixes each ai2n+1

, so by (7), g = h−1hg ∈
Um4

Um4
⊆ Um5

, for some (fixed) m5 ≥ m4.

3. The uncountable cofinality of the automorphism group of the

countable universal homogeneous generalized boolean algebra

We can use the same method to show the uncountable cofinality of the
automorphism group of the closely related generalized boolean algebra. This
is a combination of the proof given in the previous section, and the strong
uncountable cofinality of the automorphism group of the countable atomless
boolean algebra, established in [4] (remembering that this automorphism
group is isomorphic to the group of homeomorphisms to itself of Cantor
space).

Theorem 3.1. The automorphism group of the countable universal homo-

geneous generalized boolean algebra B has strong uncountable cofinality.

Proof. We first remark that in [6], some of the lemmas for D carry over
to B with small modifications. For instance, Lemma 2.6 there says that
three earlier results carry over with Z-chains replaced by ω-chains. The
corresponding versions of (1) and (2) in the proof of Theorem 2.2 are thus
as follows:

(1) For a suitable choice of maximal chain C of B, any isomorphism from
C to C extends uniquely to an automorphism of B.

As before, this C may be chosen to be a maximal chain generating B,
and we let this be fixed for the rest of the proof.

(2) If (an), (a′n) are cofinal ω-sequences in C such that a0 = a′0 = 0, then
any isomorphism from C∪

⋃
n∈ω[a2n, a2n+1] to C∪

⋃
n∈ω[a′2n, a′2n+1] (or from

C ∪
⋃

n∈ω[a2n+1, a2n+2] to C ∪
⋃

n∈ω[a′2n+1, a
′
2n+2]) extends uniquely to an

automorphism of B.
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We continue with versions of the other steps in the proof of Theorem 2.2.
The proofs of (3), (4), (5), (6), and (7) are as before.

(3) There is m0 such that G{C} ⊆ Um0
.

(4) There are a moiety M =
⋃

n∈ω(a2n+1, a2n+2) such that each an lies
in C, and m1 ≥ m0, such that every automorphism fixing C \ M pointwise
agrees with some member of Um1

on M .

This time, by ‘moiety’ we mean a subset of B of the form⋃
n∈ω(a2n+1, a2n+2) where (an) is a cofinal ω-sequence.

From now on, M and the sequence (an) are fixed.

(5) There is m2 ≥ m1 such that GC\M ⊆ Um2
.

We also need a version of this for ‘moieties’ which may include the bottom
level.

(5′) There is m3 ≥ m2 such that GC\M ′ ⊆ Um3
, where M ′ =⋃

n∈ω(a2n, a2n+1).

Since [a0, a1] is isomorphic to the countable atomless boolean algebra,
by [4], Aut([a0, a1]) has strong uncountable cofinality. By considering the
intersections of the sequence (Un) with GC\[a0,a1] (which by (2) is isomorphic
to Aut([a0, a1])) we find m′ such that GC\[a0,a1] ⊆ Um′ . Choose m3 ≥ m2

such that Um0
Um2

Um0
Um′ ⊆ Um3

.

Now let g ∈ GC\M ′ . Then we may write g as g2g1 where g1 fixes all
members of C \ [a0, a1] and g2 fixes all members of C \

⋃
n≥1[a2n, a2n+1]. Let

h ∈ G{C} map an to an+1 for all n ≥ 1. Then h−1g2h fixes all members of

C \M , so by (5), lies in Um2
. Hence g = h(h−1g2h)h−1g1 ∈ Um0

Um2
Um0

Um′

⊆ Um3
.

(6) There is m4 ≥ m3 such that for every moiety M ′ of the form⋃
n∈ω(ai2n+1

, ai2n+2
), where in are natural numbers such that in < in+1 for

all n, GC\M ′ ⊆ Um3
.

(7) There is m5 ≥ m4 such that for every choice of (in) as in (6), every
automorphism fixing each ain lies in Um5

.

The proof is concluded as in Theorem 2.2.

We remark in conclusion that in [7], we established the strong uncount-
able cofinality for various uncountable chains. It is tempting to ask whether
these results extend to the distributive lattices generated by these chains, in
the style of the present paper. It would be necessary to derive results about
simplicity similar to those in [1], in a strong version providing explicitly for
expressions using finitely many conjugates, such as we used in step (5) of
the proof of Theorem 2.2.
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