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SOME SEMILATTICE DECOMPOSITIONS OF DIMONOIDS

Abstract. We show that the system of axioms of a dimonoid is independent and
prove that every dimonoid with a commutative operation is a semilattice of archimedean
subdimonoids, every dimonoid with a commutative periodic semigroup is a semilattice of
unipotent subdimonoids, every dimonoid with a commutative operation is a semilattice of
a-connected subdimonoids and every idempotent dimonoid is a semilattice of rectangular
subdimonoids.

1. Introduction

The notion of a non-commutative Lie algebra (Leibniz algebra) appeared
in the researches on a homology theory for Lie algebras [1]. It is well-known
that for Lie algebras there is a notion of a universal enveloping associative
algebra. Jean-Louis Loday [2] found a universal enveloping algebra for Leib-
niz algebras. Dialgebras play a role of such object, that is, vector spaces
D with two bilinear associative operations ≺ and ≻ satisfying the following
axioms:

(x ≺ y) ≺ z = x ≺ (y ≻ z),

(x ≻ y) ≺ z = x ≻ (y ≺ z),

(x ≺ y) ≻ z = x ≻ (y ≻ z)

for all x, y, z ∈ D. Dialgebras were investigated in different papers (see,
for example, [2]–[7]). So, recently L. A. Bokut, Yuqun Chen and Cihua
Liu [3] gave the composition-diamond lemma for dialgebras and obtained
a Gröbner-Shirshov basis for dialgebras. Kolesnikov [4] has shown that any
dialgebra can be obtained from some associative conformal algebra. The
conformal algebras were introduced by Kac [8] as a formal language of the
description of properties of algebraic structures occurring in mathematical
physics. The notion of a variety of dialgebras was introduced in [4] with the
help of the notion of an operad.
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A set D equipped with two binary associative operations ≺ and ≻ sat-
isfying the axioms indicated above is called a dimonoid [2]. So, a dialgebra
is a linear analogue of a dimonoid. At the present time dimonoids have
became a standard tool in the theory of Leibniz algebras. One of the first
results about dimonoids is the description of the free dimonoid generated by
a given set [2]. With the help of properties of free dimonoids, free dialgebras
were described and a homology of dialgebras was investigated [2]. In [9]
K. Liu used the notion of a dimonoid to introduce the notion of a one-sided
diring and studied basic properties of dirings. The notion of a diband of
subdimonoids was introduced in [10]. This notion generalizes the notion of
a band of semigroups [11] and is effective to describe structural properties
of dimonoids. In terms of dibands of subdimonoids, in particular, it was
proved that every commutative dimonoid is a semilattice of archimedean
subdimonoids [10]. The semilattice decompositions of dimonoids also were
given in [12]–[14]. In [15] the author constructed a free commutative di-
monoid and described the least idempotent congruence on this dimonoid.
The structure of an arbitrary diband of subdimonoids was described in [16].
In [17] it has been proved that the free dimonoid is a semilattice of s-simple
subdimonoids each being a rectangular band of subdimonoids. Some new
dialgebras were introduced in terms of dimonoids in [2]. It is also well-known
that the notion of a dimonoid generalizes the notion of a digroup [6], [18].
Recently Phillips [18] gave a simple basis of independent axioms for the va-
riety of digroups. Digroups play a prominent role in an important open
problem from the theory of Leibniz algebras. Pirashvili [19] considered du-
plexes which are sets with two binary associative operations and described
a free duplex. Dimonoids in the sense of Loday [2] are examples of duplexes.
Moreover, it should be noted that algebras with two associative operations
(so-called bisemigroups) were considered earlier in some other aspects in the
paper of B. M. Schein [20].

Obviously, if the operations of a dimonoid coincide then it becomes
a semigroup. Therefore studying dimonoids via semigroup techniques may
constitute a research direction.

The purpose of this work is to obtain some semilattice decompositions of
dimonoids. In section 2 we give necessary definitions and some properties of
dimonoids (Lemmas 1–7 and Theorem 8). In section 3 we show that the sys-
tem of axioms of a dimonoid is independent (Theorem 9) and give different
examples of dimonoids (Propositions 10–14). In section 4 we prove that ev-
ery dimonoid with a commutative operation is a semilattice of archimedean
subdimonoids (Theorem 15), every dimonoid with a commutative periodic
semigroup is a semilattice of unipotent subdimonoids (Theorem 16), every
dimonoid with a commutative operation is a semilattice of a-connected sub-



Some semilattice decompositions of dimonoids 631

dimonoids (Theorem 17) and every idempotent dimonoid is a semilattice of
rectangular subdimonoids (Theorem 18). Theorems 15, 16 and 18 extend,
respectively, Theorem 2 from [10] about the decomposition of commutative
dimonoids into semilattices of archimedean subdimonoids, Schwarz’s theo-
rem [21] about the decomposition of commutative periodic semigroups into
semilattices of unipotent semigroups and McLean’s decomposition [22] of
bands into semilattices of rectangular bands. In this section we also con-
struct examples of dimonoids with one and two idempotent operations.

2. Preliminaries

A nonempty set D with two binary operations ≺ and ≻ satisfying the
following five axioms:

(x ≺ y) ≺ z = x ≺ (y ≺ z),(D1)

(x ≺ y) ≺ z = x ≺ (y ≻ z),(D2)

(x ≻ y) ≺ z = x ≻ (y ≺ z),(D3)

(x ≺ y) ≻ z = x ≻ (y ≻ z),(D4)

(x ≻ y) ≻ z = x ≻ (y ≻ z)(D5)

for all x, y, z ∈ D, is called a dimonoid (see [2, p. 11]).
A map f from a dimonoid D1 to a dimonoid D2 is a homomorphism, if

(x ≺ y)f = xf ≺ yf, (x ≻ y)f = xf ≻ yf for all x, y ∈ D1. A subset T of
a dimonoid (D,≺,≻) is called a subdimonoid, if for any a, b ∈ D, a, b ∈ T
implies a ≺ b, a ≻ b ∈ T .

As usual N denotes the set of positive integers.
Let (D,≺,≻) be a dimonoid, a ∈ D, n ∈ N . Denote the degree n of an

element a concerning the operation ≺ (respectively, ≻) by an (respectively,
by na).

Lemma 1. ([10], Lemma 1) Let (D,≺,≻) be a dimonoid with a commutative
operation ≺. For all b, c ∈ D, m ∈ N, m > 1,

(b ≺ c)m = bm ≻ cm = (b ≻ c)m.

Lemma 2. ([10], Lemma 4) Let (D,≺,≻) be a dimonoid with a commutative
operation ≻. For all b ∈ D, m ∈ N ,

2 bm = (2m) b.

A commutative idempotent semigroup is called a semilattice. A commu-
tative semigroup S is separative, if for any s, t ∈ S, s2 = st = t2 implies
s = t. A semigroup S is called globally idempotent, if S2 = S.

Lemma 3. The operations of a dimonoid (D,≺,≻) coincide, if one of the
following conditions holds:
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(i) (D,≺) is a semilattice;
(ii) (D,≺) is a left cancellative (cancellative) semigroup;
(iii) (D,≺) is a commutative separative semigroup;
(iv) (D,≺) is a commutative globally idempotent semigroup.

Proof. (i) For all x, y, z ∈ D we have

(x ≻ y) ≺ z = z ≺ (x ≻ y) = (z ≺ x) ≺ y = x ≺ (y ≺ z) = x ≻ (y ≺ z)

according to the commutativity of the operation ≺ and the axioms (D1),
(D2), (D3) of a dimonoid. Substituting z = y in the last equality and using
the idempotent property of the operation ≺, we obtain x ≺ y = x ≻ y.

(ii) By the axioms (D1), (D2) of a dimonoid we have

(x ≺ y) ≺ z = x ≺ (y ≺ z) = x ≺ (y ≻ z)

for all x, y, z ∈ D. Hence, using the left cancellability, we obtain y ≺ z =
y ≻ z for all y, z ∈ D.

Analogously, the case with a cancellative semigroup can be proved.

(iii) Let x, y be arbitrary elements of D. Assume a = x ≺ y, b = x ≻ y.
Then

a2 = (x ≺ y) ≺ (x ≺ y) = (x ≺ y)2,

a ≺ b = (x ≺ y) ≺ (x ≻ y) = (x ≺ y)2,

b2 = (x ≻ y) ≺ (x ≻ y) = (x ≻ y)2 = (x ≺ y)2

according to the axioms (D1), (D2) of a dimonoid and Lemma 1. As the
commutative semigroup (D,≺) is separative, then a2 = a ≺ b = b2 implies
a = b.

(iv) Let x, y ∈ D and y = y1 ≺ y2, y1, y2 ∈ D. Then

x ≺ y = x ≺ (y1 ≺ y2) = (y2 ≺ x) ≺ y1 = y2 ≺ (x ≻ y1) = (x ≻ y1) ≺ y2

= x ≻ (y1 ≺ y2) = x ≻ y

according to the commutativity of the operation ≺ and the axioms (D1),
(D2), (D3) of a dimonoid.

Lemma 4. Let (D,≺,≻) be an arbitrary dimonoid. For all x, y, t ∈ D,
n ∈ N

(i) (x ≺ y)n ≻ t = n(x ≻ y) ≻ t = n(x ≺ y) ≻ t;
(ii) t ≺ n(x ≻ y) = t ≺ (x ≺ y)n = t ≺ (x ≻ y)n.

Proof. We prove (i) using an induction on n. For n = 1 we have

(x ≺ y) ≻ t = (x ≻ y) ≻ t
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according to the axioms (D4), (D5) of a dimonoid. Let (x ≺ y)k ≻ t =
k(x ≻ y) ≻ t for n = k. Then for n = k + 1 we obtain

(x ≺ y)k+1 ≻ t = ((x ≺ y) ≺ (x ≺ y)k) ≻ t = ((x ≺ y) ≻ (x ≺ y)k) ≻ t

= ((x ≻ y) ≻ (x ≺ y)k) ≻ t = (x ≻ y) ≻ ((x ≺ y)k ≻ t)

= (x ≻ y) ≻ k(x ≻ y) ≻ t = (k + 1)(x ≻ y) ≻ t

according to the axioms (D4), (D5) of a dimonoid and the supposition.
Thus, (x ≺ y)n ≻ t = n(x ≻ y) ≻ t for all n ∈ N .

Now we show that (x ≺ y)n ≻ t = n(x ≺ y) ≻ t for all x, y, t ∈ D, n ∈ N .
For n = 1, obviously, the equality is correct. Let (x ≺ y)k ≻ t = k(x ≺ y) ≻ t
for n = k. Then for n = k + 1 we obtain

(x ≺ y)k+1 ≻ t = ((x ≺ y) ≺ (x ≺ y)k) ≻ t = (x ≺ y) ≻ ((x ≺ y)k ≻ t)

= (x ≺ y) ≻ k(x ≺ y) ≻ t = (k + 1)(x ≺ y) ≻ t

according to the axioms (D4), (D5) of a dimonoid and the supposition. Thus,
(x ≺ y)n ≻ t = n(x ≺ y) ≻ t for all n ∈ N .

Dually, the equalities (ii) can be proved.

Lemma 5. Let (D,≺,≻) be an arbitrary dimonoid. For all x ∈ D, n ∈ N

(i) xn ≻ x = (n+ 1)x;
(ii) x ≺ nx = xn+1.

Proof. We prove (i) using an induction on n. For n = 1 we have x ≻ x = 2x.
Let xk ≻ x = (k + 1)x for n = k. Then for n = k + 1 we obtain

xk+1 ≻ x = (x ≺ xk) ≻ x = x ≻ (xk ≻ x) = x ≻ (k + 1)x = (k + 2)x

according to the axiom (D4) of a dimonoid and the supposition. Thus,
xn ≻ x = (n+ 1)x for all n ∈ N .

Dually, the equality (ii) can be proved.

Let S be a semigroup and a ∈ S. The elements x, y ∈ S are called a-
connected, if there exist n,m ∈ N such that (xa)n ∈ yaS and (ya)m ∈ xaS.
The semigroup S is a-connected, if x, y are a-connected for all x, y ∈ S [23].

Note that if (xa)n ∈ yaS and (ya)m ∈ xaS, then (xa)p ∈ yaS and
(ya)p ∈ xaS, where p = max {n,m}, n,m, p ∈ N [23].

Recall that a semigroup S is called archimedean, if for any a, b ∈ S there
exists n ∈ N such that bn belongs to the principial two-sided ideal J(a)
generated by a. If (D,≺,≻) is a dimonoid, then we denote the semigroup
(D,≺) (respectively, (D,≻)) with an identity by D1

≺ (respectively, by D1
≻ ).

Lemma 6. Let (D,≺,≻) be a dimonoid and let a ∈ D be an arbitrary fixed
element. Then
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(i) If (D,≺) is a a-connected semigroup, then (D,≻) is a a-connected semi-
group;

(ii) (D,≺) is an archimedean semigroup if and only if (D,≻) is an archi-
medean semigroup.

Proof. (i) Let (D,≺) be a a-connected semigroup, x, y ∈ D. Then there
exists n ∈ N such that (x ≺ a)n ∈ y ≺ a ≺ D and (y ≺ a)n ∈ x ≺ a ≺ D.
Hence

(x ≺ a)n = y ≺ a ≺ t1,(1)

(y ≺ a)n = x ≺ a ≺ t2(2)

for some t1, t2 ∈ D. Assume t3 = t1 ≻ x ≻ a, t4 = t2 ≻ y ≻ a. Multiply the
equalities (1) and (2) by x ≻ a and, respectively, by y ≻ a:

(x ≺ a)n ≻ (x ≻ a) = n(x ≻ a) ≻ (x ≻ a) = (n+ 1)(x ≻ a)

= (y ≺ a ≺ t1) ≻ (x ≻ a) = ((y ≺ a) ≻ t1) ≻ (x ≻ a)

= y ≻ a ≻ t1 ≻ x ≻ a = y ≻ a ≻ t3,

(y ≺ a)n ≻ (y ≻ a) = n(y ≻ a) ≻ (y ≻ a) = (n+ 1)(y ≻ a)

= (x ≺ a ≺ t2) ≻ (y ≻ a) = ((x ≺ a) ≻ t2) ≻ (y ≻ a)

= x ≻ a ≻ t2 ≻ y ≻ a = x ≻ a ≻ t4

according to Lemma 4(i) and the axioms (D4), (D5) of a dimonoid. Thus,
(n + 1)(x ≻ a) ∈ y ≻ a ≻ D, (n + 1)(y ≻ a) ∈ x ≻ a ≻ D. Consequently,
(D,≻) is a a-connected semigroup.

(ii) Let (D,≺) be an archimedean semigroup. Then for all a, b ∈ D there
exist x, y ∈ D1

≺, n ∈ N such that x ≺ a ≺ y = bn. Multiply both parts of
the last equality by b concerning the operation ≻:

(x ≺ a ≺ y) ≻ b = ((x ≺ a) ≺ y) ≻ b = (x ≺ a) ≻ (y ≻ b)

= x ≻ a ≻ (y ≻ b) = bn ≻ b = (n+ 1)b

according to the axioms (D4), (D5) of a dimonoid and Lemma 5(i). Analo-
gously, using the axioms (D1), (D2) of a dimonoid and Lemma 5(ii), we can
prove the sufficiency.

A dimonoid (D,≺,≻) will be called an idempotent dimonoid or a diband,
if x ≺ x = x = x ≻ x for all x ∈ D.

Lemma 7. Let (D,≺,≻) be an idempotent dimonoid. Then (D,≺) is a
rectangular band if and only if (D,≻) is a rectangular band.

Proof. If (D,≺) is a rectangular band, a, b ∈ D, then a ≺ b ≺ a = a. From
the last equality we have
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(a ≺ b ≺ a) ≻ a = (a ≺ (b ≻ a)) ≻ a

= a ≻ ((b ≻ a) ≻ a) = a ≻ b ≻ a = a ≻ a = a

according to the axioms (D2), (D4), (D5) of a dimonoid and the idempotent
property of the operation ≻. Hence (D,≻) is a rectangular band.

Conversely, from the equality a ≻ b ≻ a = a we obtain

a ≺ (a ≻ b ≻ a) = a ≺ (a ≻ (b ≻ a)) = (a ≺ a) ≺ (b ≻ a)

= a ≺ (b ≻ a) = a ≺ b ≺ a = a ≺ a = a

according to the axioms (D2), (D5) of a dimonoid and the idempotent prop-
erty of the operation ≺. Hence (D,≺) is a rectangular band.

The notion of a diband of subdimonoids was introduced in [10] and in-
vestigated in [16]. Recall this definition.

If ϕ : S → T is a homomorphism of dimonoids, then the corresponding
congruence on S will be denoted by ∆ϕ.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. Let

α : S → J : x 7→ xα,

be a homomorphism. Then every class of the congruence ∆α is a subdi-
monoid of the dimonoid S, and the dimonoid S itself is a union of such
dimonoids Sξ, ξ ∈ J that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S |(x; t) ∈ ∆α},

Sξ ≺ Sε ⊆ Sξ≺ ε, Sξ ≻ Sε ⊆ Sξ≻ε,

ξ 6= ε ⇒ Sξ

⋂

Sε = ∅.

In this case we say that S is decomposable into a diband of subdimonoids (or
S is a diband J of subdimonoids Sξ (ξ ∈ J)). If J is a band (=idempotent
semigroup), then we say that S is a band J of subdimonoids Sξ (ξ ∈ J). If
J is a commutative band (=semilattice), then we say that S is a semilattice
J of subdimonoids Sξ (ξ ∈ J).

Let S be a diband J of subdimonoids Sξ, ξ ∈ J . Note that if the
operations of S coincide, then S is a band of semigroups [11].

If ρ is a congruence on the dimonoid (D,≺,≻) such that (D,≺,≻)/ρ is
an idempotent dimonoid, then we say that ρ is an idempotent congruence.

Let (D,≺,≻) be a dimonoid with a commutative operation ≺, a, b ∈ D.
We say that a ≺-divide b and write a≺|b, if there exists such element x from
D1

≺ that a ≺ x = b. A dimonoid (D,≺,≻) will be called commutative, if
semigroups (D,≺) and (D,≻) are commutative.

Define a relation η on the dimonoid (D,≺,≻) with a commutative oper-
ation ≺ by
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aηb if and only if there exist positive integers
m,n, m 6= 1, n 6= 1 such that a≺|b

m, b≺|a
n.

Theorem 8. ([10], Theorem 1) The relation η on the dimonoid (D,≺,≻)
with a commutative operation ≺ is the least idempotent congruence, and
(D,≺,≻)/η is a commutative idempotent dimonoid which is a semilattice.

3. Independence of axioms and examples of dimonoids

In this section we show that the system of axioms of a dimonoid is inde-
pendent and give different examples of dimonoids.

The following theorem proves the independence of axioms of a dimonoid.

Theorem 9. The system of axioms (D1), (D2), (D3), (D4), (D5) of a
dimonoid is independent.

Proof. Let N be the set of positive integers. Define the operations ≺ and
≻ on N by

x ≺ y = 2y, x ≻ y = y

for all x, y ∈ N . The model (N,≺,≻) satisfies the axioms (D2)–(D5), but
not (D1). Indeed,

(x ≺ y) ≺ z = 2z = x ≺ (y ≻ z),

(x ≻ y) ≺ z = 2z = x ≻ (y ≺ z),

(x ≺ y) ≻ z = z = x ≻ (y ≻ z),

x ≻ (y ≻ z) = z = (x ≻ y) ≻ z,

x ≺ (y ≺ z) = 4z 6= 2z = (x ≺ y) ≺ z

for all x, y, z ∈ N .
Assume x ≺ y = x, x ≻ y = 2x for all x, y ∈ N . Similarly to the

preceding case we can show that the model (N,≺,≻) satisfies the axioms
(D1)–(D4), but not (D5).

Let x ≺ y = x + y, x ≻ y = y for all x, y ∈ N . In this case the model
(N,≺,≻) satisfies the axioms (D1), (D3)–(D5), but not (D2). Indeed,

x ≺ (y ≺ z) = x+ y + z = (x ≺ y) ≺ z,

(x ≻ y) ≺ z = y + z = x ≻ (y ≺ z),

(x ≺ y) ≻ z = z = x ≻ (y ≻ z),

x ≻ (y ≻ z) = z = (x ≻ y) ≻ z,

(x ≺ y) ≺ z = x+ y + z 6= x+ z = x ≺ (y ≻ z)

for all x, y, z ∈ N .
Assume x ≺ y = x, x ≻ y = x + y for all x, y ∈ N . Similarly to the

preceding case we can show that the model (N,≺,≻) satisfies the axioms
(D1)–(D3), (D5), but not (D4).
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Finally we construct the last model. Let X be an arbitrary nonempty set,
|X| > 1 and let X∗ be the set of finite nonempty words in the alphabet X.
We denote the first (respectively, the last) letter of a word w ∈ X∗ by w(0)

(respectively, by w(1)). Define the operations ≺ and ≻ on X∗ by

w ≺ u = w(0), w ≻ u = u(1)

for all w, u ∈ X∗. The model (X∗,≺,≻) satisfies the axioms (D1), (D2),
(D4), (D5), but not (D3). Indeed,

w ≺ (u ≺ ω) = w(0) = (w ≺ u) ≺ ω,

(w ≺ u) ≺ ω = w(0) = w ≺ (u ≻ ω),

(w ≺ u) ≻ ω = ω(1) = w ≻ (u ≻ ω),

w ≻ (u ≻ ω) = ω(1) = (w ≻ u) ≻ ω

for all w, u, ω ∈ X∗. As |X| > 1, then there exists u ∈ X∗ such that
u(1) 6= u(0). Then

(w ≻ u) ≺ ω = u(1) 6= u(0) = w ≻ (u ≺ ω)

for all w, ω ∈ X∗.

Now we give examples of dimonoids.
a) Let S be a semigroup and let f be its idempotent endomorphism.

Define the operations ≺ and ≻ on S by

x ≺ y = x(yf), x ≻ y = (xf)y

for all x, y ∈ S.

Proposition 10. ([10], Proposition 1) (S,≺,≻) is a dimonoid.

b) Let S and T be semigroups, θ : T → S be a homomorphism. Define
the operations ≺ and ≻ on S × T by

(s, t) ≺ (p, g) = (s, tg), (s, t) ≻ (p, g) = ((tθ)p, tg)

for all (s, t), (p, g) ∈ S × T .

Proposition 11. ([10], Proposition 2) (S × T,≺,≻) is a dimonoid.

c) Let 2N be the set of even positive integers and 2N -1 be the set of odd
positive integers. Fix t, t1, t2 ∈ 2N -1 and define the operations ≺ and ≻ on
N by

x ≺ y =

{

x+ y + t1, x, y ∈ 2N,

t otherwise,

x ≻ y =

{

x+ y + t2, x, y ∈ 2N,

t otherwise

for all x, y ∈ N .
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Proposition 12. (N,≺,≻) is a commutative dimonoid.

Proof. It is immediate to check that (N,≺,≻) is a dimonoid. It is clear
that the operations ≺ and ≻ are commutative.

d) Let A be an alphabet, F [A] be the free commutative semigroup over
A, G be a set of non-ordered pairs (p, q), p, q ∈ A. Define the operations ≺
and ≻ on the set F [A]

⋃
G by

a1...am ≺ b1...bn = a1...amb1...bn,

a1...am ≻ b1...bn =

{

a1...amb1...bn, mn > 1,

(a1, b1), m = n = 1,

a1...am ≺ (p, q) = a1...am ≻ (p, q) = a1...ampq,

(p, q) ≺ a1...am = (p, q) ≻ a1...am = pqa1...am,

(p, q) ≺ (r, s) = (p, q) ≻ (r, s) = pqrs

for all a1...am, b1...bn ∈ F [A], (p, q), (r, s) ∈ G.

Proposition 13. ([15], Theorem 3) (F [A]
⋃
G,≺,≻) is the free commu-

tative dimonoid.

e) Let X be an arbitrary nonempty set. Considering the disjoint union

D(X) =
∐

n≥1

(Xn
⋃

...
⋃

Xn)
︸ ︷︷ ︸

n copies

and denoting by x1...x̆i...xn an element in the i-th summand, define the
operations ≺ and ≻ on D(X) by

(x1...x̆i...xk) ≺ (xk+1...x̆j...xl) = x1...x̆i...xl,

(x1...x̆i...xk) ≻ (xk+1...x̆j...xl) = x1...x̆j...xl

for all x1...x̆i...xk, xk+1...x̆j...xl ∈ D(X).

Proposition 14. ([2], Corollary 1.8) (D(X),≺,≻) is the free dimonoid
on the set X.

Other examples of dimonoids can be found in [2], [10], [15]–[17].

4. Decompositions

In this section we prove that every dimonoid with a commutative oper-
ation is a semilattice of archimedean subdimonoids (Theorem 15), every di-
monoid with a commutative periodic semigroup is a semilattice of unipotent
subdimonoids (Theorem 16), every dimonoid with a commutative operation
is a semilattice of a-connected subdimonoids (Theorem 17) and every idem-
potent dimonoid is a semilattice of rectangular subdimonoids (Theorem 18).
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We say that a dimonoid is archimedean, if its both semigroups are archi-
medean (see section 2).

Theorem 15. Every dimonoid (D,≺,≻) with a commutative operation ≺
is a semilattice Y of archimedean subdimonoids Di, i ∈ Y .

Proof. Let (D,≺,≻) be a dimonoid with a commutative operation ≺. By
Theorem 8 (D,≺,≻)/η is a semilattice. From the theorem by Tamura and
Kimura [24] it follows that every class A of the congruence η is an archi-
medean semigroup concerning the operation ≺. Hence according to Lemma
6(ii) A is an archimedean semigroup concerning the operation ≻. Thus, A is
an archimedean subdimonoid of (D,≺,≻).

This theorem extends Theorem 2 from [10] about the decomposition of
commutative dimonoids into semilattices of archimedean subdimonoids and
the theorem by Tamura and Kimura [24] about the decomposition of com-
mutative semigroups into semilattices of archimedean semigroups.

Recall that a semigroup S is called a periodic semigroup, if every element
of S has a finite order, that is, if for every element a of S the subsemigroup
〈a〉 = {a, a2, ..., an, ...} generated by a contains a finite number of different
elements.

A dimonoid (D,≺,≻) will be called unipotent, if it contains exactly one
element x ∈ D such that x ≺ x = x ≻ x = x. If ρ is a congruence on the
dimonoid (D,≺,≻) such that the operations of (D,≺,≻)/ρ coincide and it
is a semilattice, then we say that ρ is a semilattice congruence.

Theorem 16. Every dimonoid (D,≺,≻) with a commutative periodic
semigroup (D,≺) is a semilattice L of unipotent subdimonoids Di, i ∈ L.

Proof. Define a relation γ on (D,≺,≻) by
aγ b if and only if there exists an

idempotent ε of the semigroup (D,≺) such
that al = bk = ε for some l, k ∈ N.

The fact that the relation γ is a semilattice congruence on the semigroup
(D,≺) has been proved by Schwarz [21]. Let us show that γ is compatible
concerning the operation ≻.

Let aγb, a, b, c ∈ D. Then a ≺ c γb ≺ c. It means that there exists an
idempotent e of the semigroup (D,≺) such that

(a ≺ c)n = (b ≺ c)m = e

for some n,m ∈ N. Hence

(a ≺ c)n ≺ (a ≺ c)n = (a ≺ c)2n = e,(3)

(b ≺ c)m ≺ (b ≺ c)m = (b ≺ c)2m = e.(4)
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By Lemma 1 from (3) and (4) it follows that (a ≻ c)2n = (b ≻ c)2m = e
and so, a ≻ c γ b ≻ c.

Dually, the left compatibility of the relation γ concerning the operation
≻ can be proved. So, γ is a congruence on (D,≺,≻).

As (D,≺)/γ is a semilattice, then by Lemma 3(i) the operations of (D,≺
,≻)/γ coincide and so, it is a semilattice.

From [21] it follows that every class A of the congruence γ is a unipotent
subsemigroup of the semigroup (D,≺). Let e ∈ A and e ≺ e = e. For an
arbitrary element a ∈ A there exists p ∈ N, p > 1 such that ap = e. Hence

e ≻ e = ap ≻ ap = ap ≻ (ap−1 ≺ a) = (ap ≻ ap−1) ≺ a

= a ≺ (ap ≻ ap−1) = (a ≺ ap) ≺ ap−1 = (a ≺ ap−1) ≺ ap

= ap ≺ ap = e ≺ e = e

according to the commutativity of the operation ≺ and the axioms (D1),
(D2), (D3) of a dimonoid. So, e is an idempotent of the subsemigroup A of
(D,≻). Thus, A is a unipotent subdimonoid of (D,≺,≻).

This theorem extends Schwarz’s theorem [21] about the decomposition of
commutative periodic semigroups into semilattices of unipotent semigroups.

Let (D,≺,≻) be a dimonoid and a ∈ D. A dimonoid (D,≺,≻) will be
called a-connected, if semigroups (D,≺) and (D,≻) are a-connected (see
section 2).

Theorem 17. Let (D,≺,≻) be a dimonoid with a commutative operation ≺
and let a ∈ D be an arbitrary fixed element. Then (D,≺,≻) is a semilattice
R of a-connected subdimonoids Di, i ∈ R.

Proof. Define a relation ζ on (D,≺,≻) by

xζy ⇔ (∃n ∈ N) (x ≺ a)n ∈ y ≺ a ≺ D,

(y ≺ a)n ∈ x ≺ a ≺ D.

By Protić and Stevanović [23] ζ is a semilattice congruence on the semi-
group (D,≺). Let us show that ζ is a congruence on the semigroup (D,≻).

Let xζy, x, y, c ∈ D. Then x ≺ cζy ≺ c. It means that

(x ≺ c ≺ a)m = y ≺ c ≺ a ≺ t1,

(y ≺ c ≺ a)m = x ≺ c ≺ a ≺ t2

for some m ∈ N, t1, t2 ∈ D. Hence

(x ≺ c ≺ a)m = ((a ≺ x) ≺ c)m = (a ≺ (x ≻ c))m = ((x ≻ c) ≺ a)m

= y ≺ c ≺ a ≺ t1 = ((a ≺ t1) ≺ y) ≺ c = (a ≺ t1) ≺ (y ≻ c)

= (y ≻ c) ≺ a ≺ t1
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according to the commutativity of the operation ≺ and the axioms (D1),
(D2) of a dimonoid. Analogously,

((y ≻ c) ≺ a)m = (x ≻ c) ≺ a ≺ t2.

Consequently, x ≻ cζy ≻ c.

Dually, the left compatibility of the relation ζ concerning the operation
≻ can be proved. So, ζ is a congruence on (D,≺,≻).

As (D,≺)/ζ is a semilattice, then by Lemma 3(i) the operations of (D,≺
,≻)/ζ coincide and so, it is a semilattice.

Let A be an arbitrary class of the congruence ζ. By the definition of ζ
the class A is a a-connected semigroup concerning the operation ≺. From
Lemma 6(i) it follows that A is a a-connected semigroup concerning the
operation ≻. Thus, A is a a-connected subdimonoid of (D,≺,≻).

We say that a dimonoid is rectangular, if its both semigroups are rectan-
gular bands. Define a relation ℑ on the dimonoid (D,≺,≻) with an idem-
potent operation ≺ by

aℑb if and only if a = a ≺ b ≺ a, b = b ≺ a ≺ b.

Theorem 18. The relation ℑ on the dimonoid (D,≺,≻) with an idem-
potent operation ≺ is the least semilattice congruence. Every idempotent
dimonoid (D,≺,≻) is a semilattice Ω of rectangular subdimonoids Di, i ∈ Ω.

Proof. The fact that the relation ℑ is a semilattice congruence on the semi-
group (D,≺) has been proved by McLean [22]. Let us show that ℑ is com-
patible concerning the operation ≻.

Let aℑb, a, b, c ∈ D. Then a ≺ cℑb ≺ c. It means that

(a ≺ c) ≺ (b ≺ c) ≺ (a ≺ c) = a ≺ c,(5)

(b ≺ c) ≺ (a ≺ c) ≺ (b ≺ c) = b ≺ c.(6)

Multiply both parts of the equality (5) by a ≻ c and of the equality (6) by
b ≻ c:

(a ≻ c) ≺ ((a ≺ c) ≺ (b ≺ c) ≺ (a ≺ c))

= ((a ≻ c) ≺ (a ≺ c)) ≺ (b ≺ c) ≺ (a ≺ c)

= ((a ≻ c) ≺ (a ≻ c)) ≺ (b ≺ c) ≺ (a ≺ c)

= (a ≻ c) ≺ (b ≺ c) ≺ (a ≺ c)

= ((a ≻ c) ≺ (b ≻ c)) ≺ (a ≺ c)

= (a ≻ c) ≺ (b ≻ c) ≺ (a ≻ c)

= (a ≻ c) ≺ (a ≺ c) = (a ≻ c) ≺ (a ≻ c) = a ≻ c,
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(b ≻ c) ≺ ((b ≺ c) ≺ (a ≺ c) ≺ (b ≺ c))

= ((b ≻ c) ≺ (b ≺ c)) ≺ (a ≺ c) ≺ (b ≺ c)

= ((b ≻ c) ≺ (b ≻ c)) ≺ (a ≺ c) ≺ (b ≺ c)

= (b ≻ c) ≺ (a ≺ c) ≺ (b ≺ c)

= ((b ≻ c) ≺ (a ≻ c)) ≺ (b ≺ c)

= (b ≻ c) ≺ (a ≻ c) ≺ (b ≻ c)

= (b ≻ c) ≺ (b ≺ c) = (b ≻ c) ≺ (b ≻ c) = b ≻ c

according to the axioms (D1), (D2) of a dimonoid and the idempotent prop-
erty of the operation ≺. Consequently, a ≻ cℑb ≻ c.

Dually, the left compatibility of the relation ℑ concerning the operation
≻ can be proved. So, ℑ is a congruence on (D,≺,≻).

As (D,≺)/ℑ is a semilattice, then according to Lemma 3(i) the opera-
tions of (D,≺,≻)/ℑ coincide and so, it is a semilattice.

The proof of the first statement of the theorem will be completed, if we
show that ℑ is contained in every semilattice congruence ρ on (D,≺,≻). Let
aℑb, a, b ∈ D. Then a ≺ b ≺ a = a, b ≺ a ≺ b = b. As ρ is a semilattice
congruence, then a = a ≺ b ≺ aρ b ≺ a ≺ b = b. So, aρb and ℑ ⊆ ρ.

Now we shall prove the second statement of the theorem.

Since ℑ is a congruence on (D,≺,≻) and (D,≺,≻)/ℑ is a semilattice,
then

(D,≺,≻) → (D,≺,≻)/ℑ : x 7→ [x]

is a homomorphism ([x] is a class of the congruence ℑ, which contains x).
From McLean’s theorem [22] it follows that every class A of the congruence
ℑ is a rectangular band concerning the operation ≺. According to Lemma 7
A is a rectangular band concerning the operation ≻. Thus, A is a rectangular
subdimonoid of (D,≺,≻).

This theorem extends McLean’s description [22] of the least semilattice
congruence on bands and McLean’s decomposition [22] of bands into semi-
lattices of rectangular bands.

In section 3, we gave examples of commutative dimonoids (see also [10],
[15]). We finish this section with the construction of different examples of
dimonoids with one and two idempotent operations.

a) Let (X,≺) be a left zero semigroup, (X,≻) be a zero semigroup. Then
(X,≺,≻) is a dimonoid with the idempotent operation ≺. It is easy to see
that the least semilattice congruence ℑ = X ×X on (X,≺,≻).

b) Let X∗ be the set of finite nonempty words in the alphabet X. Recall
that we denote the first (respectively, the last) letter of a word w ∈ X∗ by
w(0) (respectively, by w(1)).
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Assuming the operations ≺ and ≻ on the set X∗ by

w ≺ u = w, w ≻ u = w(0)u(1)

for all w, u ∈ X∗, we obtain a dimonoid with the idempotent operation ≺.
At that ℑ = X∗ ×X∗.

c) Let (X,≺) be a left zero semigroup, (X,≻) be a rectangular band.
Then (X,≺,≻) is an idempotent dimonoid. It is easy to see that the least
semilattice congruence ℑ = X ×X on (X,≺,≻).

d) Let (X,≺) be a rectangular band, (X,≻) be a right zero semigroup.
Then (X,≺,≻) is an idempotent dimonoid. It is easy to see that the least
semilattice congruence ℑ = X ×X on (X,≺,≻).

e) We prove the following statement.

Proposition 19. Let (D,≺,≻) be a dimonoid, H(D) = {e ∈ D | e ≻
z = z ≺ e for all z ∈ D}. If H(D) 6= ∅, then H(D) is a subdimonoid of
(D,≺,≻).

Proof. If e, ε ∈ H(D), then e ≻ z = z ≺ e, ε ≻ z = z ≺ ε for all z ∈ D. For
all z ∈ D we have

z ≺ (e ≺ ε) = (z ≺ e) ≺ ε = (e ≻ z) ≺ ε = e ≻ (z ≺ ε)

= e ≻ (ε ≻ z) = (e ≺ ε) ≻ z,

z ≺ (e ≻ ε) = (z ≺ e) ≺ ε = (e ≻ z) ≺ ε = e ≻ (z ≺ ε)

= e ≻ (ε ≻ z) = (e ≻ ε) ≻ z

according to the preceding equalities and the axioms (D1)–(D5) of a di-
monoid. It means that e ≺ ε, e ≻ ε ∈ H(D). So, H(D) is a subdimonoid of
(D,≺,≻).

Let R(D) = {e ∈ D | e ≻ z = z = z ≺ e for all z ∈ D}. From
Proposition 19 it follows that R(D) is a subdimonoid of H(D) (if R(D) 6= ∅).
Moreover, it is easy to see that R(D) is an idempotent dimonoid. Obviously,
its least semilattice congruence ℑ coincides with the universal relation on
R(D).

f) Let S be an arbitrary idempotent semigroup, R be a rectangular band.
Define the operations ≺ and ≻ on the set S ×R by

(s1, p1) ≺ (s2, p2) = (s1s2, p1p2), (s1, p1) ≻ (s2, p2) = (s1s2, p2)

for all (s1, p1), (s2, p2) ∈ S×R. It is not difficult to check that (S×R,≺,≻)
is an idempotent dimonoid. We denote this dimonoid by SR.

Define a relation ℑ on S by aℑb if and only if aba = a, bab = b. By
McLean’s theorem [22] ℑ is a congruence on S. From Theorem 18 it follows
that

(s1, p1)ℑ(s2, p2) ⇔ s1ℑ s2
for all (s1, p1), (s2, p2) ∈ SR.
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We denote the semigroup S/ℑ by P . According to [22] S is a semilattice
P of rectangular bands Si, i ∈ P .

Using Theorem 18 it is easy to prove the following statement.

Proposition 20. The dimonoid SR is a semilattice P of rectangular sub-
dimonoids SR

i , i ∈ P .
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