

Anatolii V. Zhuchok

SOME SEMILATTICE DECOMPOSITIONS OF DIMONOID

Abstract. We show that the system of axioms of a dimonoid is independent and prove that every dimonoid with a commutative operation is a semilattice of archimedean subdimonoids, every dimonoid with a commutative periodic semigroup is a semilattice of unipotent subdimonoids, every dimonoid with a commutative operation is a semilattice of a -connected subdimonoids and every idempotent dimonoid is a semilattice of rectangular subdimonoids.

1. Introduction

The notion of a non-commutative Lie algebra (Leibniz algebra) appeared in the researches on a homology theory for Lie algebras [1]. It is well-known that for Lie algebras there is a notion of a universal enveloping associative algebra. Jean-Louis Loday [2] found a universal enveloping algebra for Leibniz algebras. Dialgebras play a role of such object, that is, vector spaces D with two bilinear associative operations \prec and \succ satisfying the following axioms:

$$(x \prec y) \prec z = x \prec (y \succ z),$$

$$(x \succ y) \prec z = x \succ (y \prec z),$$

$$(x \prec y) \succ z = x \succ (y \succ z)$$

for all $x, y, z \in D$. Dialgebras were investigated in different papers (see, for example, [2]–[7]). So, recently L. A. Bokut, Yuqun Chen and Cihua Liu [3] gave the composition-diamond lemma for dialgebras and obtained a Gröbner-Shirshov basis for dialgebras. Kolesnikov [4] has shown that any dialgebra can be obtained from some associative conformal algebra. The conformal algebras were introduced by Kac [8] as a formal language of the description of properties of algebraic structures occurring in mathematical physics. The notion of a variety of dialgebras was introduced in [4] with the help of the notion of an operad.

2000 *Mathematics Subject Classification*: 08A05, 20M10, 20M50, 17A30, 17A32.

Key words and phrases: dimonoid, semigroup, semilattice of subdimonoids.

A set D equipped with two binary associative operations \prec and \succ satisfying the axioms indicated above is called a dimonoid [2]. So, a dialgebra is a linear analogue of a dimonoid. At the present time dimonoids have became a standard tool in the theory of Leibniz algebras. One of the first results about dimonoids is the description of the free dimonoid generated by a given set [2]. With the help of properties of free dimonoids, free dialgebras were described and a homology of dialgebras was investigated [2]. In [9] K. Liu used the notion of a dimonoid to introduce the notion of a one-sided dirings and studied basic properties of dirings. The notion of a diband of subdimonoids was introduced in [10]. This notion generalizes the notion of a band of semigroups [11] and is effective to describe structural properties of dimonoids. In terms of dibands of subdimonoids, in particular, it was proved that every commutative dimonoid is a semilattice of archimedean subdimonoids [10]. The semilattice decompositions of dimonoids also were given in [12]–[14]. In [15] the author constructed a free commutative dimonoid and described the least idempotent congruence on this dimonoid. The structure of an arbitrary diband of subdimonoids was described in [16]. In [17] it has been proved that the free dimonoid is a semilattice of s -simple subdimonoids each being a rectangular band of subdimonoids. Some new dialgebras were introduced in terms of dimonoids in [2]. It is also well-known that the notion of a dimonoid generalizes the notion of a digroup [6], [18]. Recently Phillips [18] gave a simple basis of independent axioms for the variety of digroups. Digroups play a prominent role in an important open problem from the theory of Leibniz algebras. Pirashvili [19] considered duplexes which are sets with two binary associative operations and described a free duplex. Dimonoids in the sense of Loday [2] are examples of duplexes. Moreover, it should be noted that algebras with two associative operations (so-called bisemigroups) were considered earlier in some other aspects in the paper of B. M. Schein [20].

Obviously, if the operations of a dimonoid coincide then it becomes a semigroup. Therefore studying dimonoids via semigroup techniques may constitute a research direction.

The purpose of this work is to obtain some semilattice decompositions of dimonoids. In section 2 we give necessary definitions and some properties of dimonoids (Lemmas 1–7 and Theorem 8). In section 3 we show that the system of axioms of a dimonoid is independent (Theorem 9) and give different examples of dimonoids (Propositions 10–14). In section 4 we prove that every dimonoid with a commutative operation is a semilattice of archimedean subdimonoids (Theorem 15), every dimonoid with a commutative periodic semigroup is a semilattice of unipotent subdimonoids (Theorem 16), every dimonoid with a commutative operation is a semilattice of a -connected sub-

dimonoids (Theorem 17) and every idempotent dimonoid is a semilattice of rectangular subdimonoids (Theorem 18). Theorems 15, 16 and 18 extend, respectively, Theorem 2 from [10] about the decomposition of commutative dimonoids into semilattices of archimedean subdimonoids, Schwarz's theorem [21] about the decomposition of commutative periodic semigroups into semilattices of unipotent semigroups and McLean's decomposition [22] of bands into semilattices of rectangular bands. In this section we also construct examples of dimonoids with one and two idempotent operations.

2. Preliminaries

A nonempty set D with two binary operations \prec and \succ satisfying the following five axioms:

- (D1) $(x \prec y) \prec z = x \prec (y \prec z),$
- (D2) $(x \prec y) \prec z = x \prec (y \succ z),$
- (D3) $(x \succ y) \prec z = x \succ (y \prec z),$
- (D4) $(x \prec y) \succ z = x \succ (y \succ z),$
- (D5) $(x \succ y) \succ z = x \succ (y \succ z)$

for all $x, y, z \in D$, is called a dimonoid (see [2, p. 11]).

A map f from a dimonoid D_1 to a dimonoid D_2 is a homomorphism, if $(x \prec y)f = xf \prec yf$, $(x \succ y)f = xf \succ yf$ for all $x, y \in D_1$. A subset T of a dimonoid (D, \prec, \succ) is called a subdimonoid, if for any $a, b \in D$, $a, b \in T$ implies $a \prec b$, $a \succ b \in T$.

As usual N denotes the set of positive integers.

Let (D, \prec, \succ) be a dimonoid, $a \in D$, $n \in N$. Denote the degree n of an element a concerning the operation \prec (respectively, \succ) by a^n (respectively, by na).

LEMMA 1. ([10], Lemma 1) *Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec . For all $b, c \in D$, $m \in N$, $m > 1$,*

$$(b \prec c)^m = b^m \succ c^m = (b \succ c)^m.$$

LEMMA 2. ([10], Lemma 4) *Let (D, \prec, \succ) be a dimonoid with a commutative operation \succ . For all $b \in D$, $m \in N$,*

$$2 b^m = (2m) b.$$

A commutative idempotent semigroup is called a semilattice. A commutative semigroup S is separative, if for any $s, t \in S$, $s^2 = st = t^2$ implies $s = t$. A semigroup S is called globally idempotent, if $S^2 = S$.

LEMMA 3. *The operations of a dimonoid (D, \prec, \succ) coincide, if one of the following conditions holds:*

- (i) (D, \prec) is a semilattice;
- (ii) (D, \prec) is a left cancellative (cancellative) semigroup;
- (iii) (D, \prec) is a commutative separative semigroup;
- (iv) (D, \prec) is a commutative globally idempotent semigroup.

Proof. (i) For all $x, y, z \in D$ we have

$$(x \succ y) \prec z = z \prec (x \succ y) = (z \prec x) \prec y = x \prec (y \prec z) = x \succ (y \prec z)$$

according to the commutativity of the operation \prec and the axioms (D1), (D2), (D3) of a dimonoid. Substituting $z = y$ in the last equality and using the idempotent property of the operation \prec , we obtain $x \prec y = x \succ y$.

- (ii) By the axioms (D1), (D2) of a dimonoid we have

$$(x \prec y) \prec z = x \prec (y \prec z) = x \prec (y \succ z)$$

for all $x, y, z \in D$. Hence, using the left cancellability, we obtain $y \prec z = y \succ z$ for all $y, z \in D$.

Analogously, the case with a cancellative semigroup can be proved.

(iii) Let x, y be arbitrary elements of D . Assume $a = x \prec y, b = x \succ y$. Then

$$\begin{aligned} a^2 &= (x \prec y) \prec (x \prec y) = (x \prec y)^2, \\ a \prec b &= (x \prec y) \prec (x \succ y) = (x \prec y)^2, \\ b^2 &= (x \succ y) \prec (x \succ y) = (x \succ y)^2 = (x \prec y)^2 \end{aligned}$$

according to the axioms (D1), (D2) of a dimonoid and Lemma 1. As the commutative semigroup (D, \prec) is separative, then $a^2 = a \prec b = b^2$ implies $a = b$.

- (iv) Let $x, y \in D$ and $y = y_1 \prec y_2, y_1, y_2 \in D$. Then

$$\begin{aligned} x \prec y &= x \prec (y_1 \prec y_2) = (y_2 \prec x) \prec y_1 = y_2 \prec (x \succ y_1) = (x \succ y_1) \prec y_2 \\ &= x \succ (y_1 \prec y_2) = x \succ y \end{aligned}$$

according to the commutativity of the operation \prec and the axioms (D1), (D2), (D3) of a dimonoid. ■

LEMMA 4. *Let (D, \prec, \succ) be an arbitrary dimonoid. For all $x, y, t \in D, n \in N$*

- (i) $(x \prec y)^n \succ t = n(x \succ y) \succ t = n(x \prec y) \succ t$;
- (ii) $t \prec n(x \succ y) = t \prec (x \prec y)^n = t \prec (x \succ y)^n$.

Proof. We prove (i) using an induction on n . For $n = 1$ we have

$$(x \prec y) \succ t = (x \succ y) \succ t$$

according to the axioms (D4), (D5) of a dimonoid. Let $(x \prec y)^k \succ t = k(x \succ y) \succ t$ for $n = k$. Then for $n = k + 1$ we obtain

$$\begin{aligned} (x \prec y)^{k+1} \succ t &= ((x \prec y) \prec (x \prec y)^k) \succ t = ((x \prec y) \succ (x \prec y)^k) \succ t \\ &= ((x \succ y) \succ (x \prec y)^k) \succ t = (x \succ y) \succ ((x \prec y)^k \succ t) \\ &= (x \succ y) \succ k(x \succ y) \succ t = (k+1)(x \succ y) \succ t \end{aligned}$$

according to the axioms (D4), (D5) of a dimonoid and the supposition. Thus, $(x \prec y)^n \succ t = n(x \succ y) \succ t$ for all $n \in N$.

Now we show that $(x \prec y)^n \succ t = n(x \prec y) \succ t$ for all $x, y, t \in D$, $n \in N$. For $n = 1$, obviously, the equality is correct. Let $(x \prec y)^k \succ t = k(x \prec y) \succ t$ for $n = k$. Then for $n = k + 1$ we obtain

$$\begin{aligned} (x \prec y)^{k+1} \succ t &= ((x \prec y) \prec (x \prec y)^k) \succ t = (x \prec y) \succ ((x \prec y)^k \succ t) \\ &= (x \prec y) \succ k(x \prec y) \succ t = (k+1)(x \prec y) \succ t \end{aligned}$$

according to the axioms (D4), (D5) of a dimonoid and the supposition. Thus, $(x \prec y)^n \succ t = n(x \prec y) \succ t$ for all $n \in N$.

Dually, the equalities (ii) can be proved. ■

LEMMA 5. *Let (D, \prec, \succ) be an arbitrary dimonoid. For all $x \in D$, $n \in N$*

- (i) $x^n \succ x = (n+1)x$;
- (ii) $x \prec nx = x^{n+1}$.

Proof. We prove (i) using an induction on n . For $n = 1$ we have $x \succ x = 2x$. Let $x^k \succ x = (k+1)x$ for $n = k$. Then for $n = k + 1$ we obtain

$$x^{k+1} \succ x = (x \prec x^k) \succ x = x \succ (x^k \succ x) = x \succ (k+1)x = (k+2)x$$

according to the axiom (D4) of a dimonoid and the supposition. Thus, $x^n \succ x = (n+1)x$ for all $n \in N$.

Dually, the equality (ii) can be proved. ■

Let S be a semigroup and $a \in S$. The elements $x, y \in S$ are called *a*-connected, if there exist $n, m \in N$ such that $(xa)^n \in yaS$ and $(ya)^m \in xaS$. The semigroup S is *a*-connected, if x, y are *a*-connected for all $x, y \in S$ [23].

Note that if $(xa)^n \in yaS$ and $(ya)^m \in xaS$, then $(xa)^p \in yaS$ and $(ya)^p \in xaS$, where $p = \max \{n, m\}$, $n, m, p \in N$ [23].

Recall that a semigroup S is called archimedean, if for any $a, b \in S$ there exists $n \in N$ such that b^n belongs to the principal two-sided ideal $J(a)$ generated by a . If (D, \prec, \succ) is a dimonoid, then we denote the semigroup (D, \prec) (respectively, (D, \succ)) with an identity by D_\prec^1 (respectively, by D_\succ^1).

LEMMA 6. *Let (D, \prec, \succ) be a dimonoid and let $a \in D$ be an arbitrary fixed element. Then*

- (i) If (D, \prec) is a a -connected semigroup, then (D, \succ) is a a -connected semigroup;
- (ii) (D, \prec) is an archimedean semigroup if and only if (D, \succ) is an archimedean semigroup.

Proof. (i) Let (D, \prec) be a a -connected semigroup, $x, y \in D$. Then there exists $n \in N$ such that $(x \prec a)^n \in y \prec a \prec D$ and $(y \prec a)^n \in x \prec a \prec D$. Hence

$$(1) \quad (x \prec a)^n = y \prec a \prec t_1,$$

$$(2) \quad (y \prec a)^n = x \prec a \prec t_2$$

for some $t_1, t_2 \in D$. Assume $t_3 = t_1 \succ x \succ a$, $t_4 = t_2 \succ y \succ a$. Multiply the equalities (1) and (2) by $x \succ a$ and, respectively, by $y \succ a$:

$$\begin{aligned} (x \prec a)^n \succ (x \succ a) &= n(x \succ a) \succ (x \succ a) = (n+1)(x \succ a) \\ &= (y \prec a \prec t_1) \succ (x \succ a) = ((y \prec a) \succ t_1) \succ (x \succ a) \\ &= y \succ a \succ t_1 \succ x \succ a = y \succ a \succ t_3, \end{aligned}$$

$$\begin{aligned} (y \prec a)^n \succ (y \succ a) &= n(y \succ a) \succ (y \succ a) = (n+1)(y \succ a) \\ &= (x \prec a \prec t_2) \succ (y \succ a) = ((x \prec a) \succ t_2) \succ (y \succ a) \\ &= x \succ a \succ t_2 \succ y \succ a = x \succ a \succ t_4 \end{aligned}$$

according to Lemma 4(i) and the axioms (D4), (D5) of a dimonoid. Thus, $(n+1)(x \succ a) \in y \succ a \succ D$, $(n+1)(y \succ a) \in x \succ a \succ D$. Consequently, (D, \succ) is a a -connected semigroup.

(ii) Let (D, \prec) be an archimedean semigroup. Then for all $a, b \in D$ there exist $x, y \in D_{\prec}^1$, $n \in N$ such that $x \prec a \prec y = b^n$. Multiply both parts of the last equality by b concerning the operation \succ :

$$\begin{aligned} (x \prec a \prec y) \succ b &= ((x \prec a) \prec y) \succ b = (x \prec a) \succ (y \succ b) \\ &= x \succ a \succ (y \succ b) = b^n \succ b = (n+1)b \end{aligned}$$

according to the axioms (D4), (D5) of a dimonoid and Lemma 5(i). Analogously, using the axioms (D1), (D2) of a dimonoid and Lemma 5(ii), we can prove the sufficiency. ■

A dimonoid (D, \prec, \succ) will be called an idempotent dimonoid or a diband, if $x \prec x = x = x \succ x$ for all $x \in D$.

LEMMA 7. *Let (D, \prec, \succ) be an idempotent dimonoid. Then (D, \prec) is a rectangular band if and only if (D, \succ) is a rectangular band.*

Proof. If (D, \prec) is a rectangular band, $a, b \in D$, then $a \prec b \prec a = a$. From the last equality we have

$$\begin{aligned}
(a \prec b \prec a) \succ a &= (a \prec (b \succ a)) \succ a \\
&= a \succ ((b \succ a) \succ a) = a \succ b \succ a = a \succ a = a
\end{aligned}$$

according to the axioms $(D2)$, $(D4)$, $(D5)$ of a dimonoid and the idempotent property of the operation \succ . Hence (D, \succ) is a rectangular band.

Conversely, from the equality $a \succ b \succ a = a$ we obtain

$$\begin{aligned}
a \prec (a \succ b \succ a) &= a \prec (a \succ (b \succ a)) = (a \prec a) \prec (b \succ a) \\
&= a \prec (b \succ a) = a \prec b \prec a = a \prec a = a
\end{aligned}$$

according to the axioms $(D2)$, $(D5)$ of a dimonoid and the idempotent property of the operation \prec . Hence (D, \prec) is a rectangular band. ■

The notion of a diband of subdimonoids was introduced in [10] and investigated in [16]. Recall this definition.

If $\varphi : S \rightarrow T$ is a homomorphism of dimonoids, then the corresponding congruence on S will be denoted by Δ_φ .

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. Let

$$\alpha : S \rightarrow J : x \mapsto x\alpha,$$

be a homomorphism. Then every class of the congruence Δ_α is a subdimonoid of the dimonoid S , and the dimonoid S itself is a union of such dimonoids S_ξ , $\xi \in J$ that

$$\begin{aligned}
x\alpha = \xi &\Leftrightarrow x \in S_\xi = \Delta_\alpha^x = \{t \in S \mid (x; t) \in \Delta_\alpha\}, \\
S_\xi \prec S_\varepsilon &\subseteq S_{\xi \prec \varepsilon}, \quad S_\xi \succ S_\varepsilon \subseteq S_{\xi \succ \varepsilon}, \\
\xi \neq \varepsilon &\Rightarrow S_\xi \bigcap S_\varepsilon = \emptyset.
\end{aligned}$$

In this case we say that S is decomposable into a diband of subdimonoids (or S is a diband J of subdimonoids S_ξ ($\xi \in J$)). If J is a band (=idempotent semigroup), then we say that S is a band J of subdimonoids S_ξ ($\xi \in J$). If J is a commutative band (=semilattice), then we say that S is a semilattice J of subdimonoids S_ξ ($\xi \in J$).

Let S be a diband J of subdimonoids S_ξ , $\xi \in J$. Note that if the operations of S coincide, then S is a band of semigroups [11].

If ρ is a congruence on the dimonoid (D, \prec, \succ) such that $(D, \prec, \succ)/\rho$ is an idempotent dimonoid, then we say that ρ is an idempotent congruence.

Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec , $a, b \in D$. We say that $a \prec$ -divide b and write $a \prec | b$, if there exists such element x from D_\prec^1 that $a \prec x = b$. A dimonoid (D, \prec, \succ) will be called commutative, if semigroups (D, \prec) and (D, \succ) are commutative.

Define a relation η on the dimonoid (D, \prec, \succ) with a commutative operation \prec by

$a\eta b$ if and only if there exist positive integers m, n , $m \neq 1, n \neq 1$ such that $a \prec |b^m$, $b \prec |a^n$.

THEOREM 8. ([10], Theorem 1) *The relation η on the dimonoid (D, \prec, \succ) with a commutative operation \prec is the least idempotent congruence, and $(D, \prec, \succ)/\eta$ is a commutative idempotent dimonoid which is a semilattice.*

3. Independence of axioms and examples of dimonoids

In this section we show that the system of axioms of a dimonoid is independent and give different examples of dimonoids.

The following theorem proves the independence of axioms of a dimonoid.

THEOREM 9. *The system of axioms $(D1)$, $(D2)$, $(D3)$, $(D4)$, $(D5)$ of a dimonoid is independent.*

Proof. Let N be the set of positive integers. Define the operations \prec and \succ on N by

$$x \prec y = 2y, \quad x \succ y = y$$

for all $x, y \in N$. The model (N, \prec, \succ) satisfies the axioms $(D2)$ – $(D5)$, but not $(D1)$. Indeed,

$$\begin{aligned} (x \prec y) \prec z &= 2z = x \prec (y \succ z), \\ (x \succ y) \prec z &= 2z = x \succ (y \prec z), \\ (x \prec y) \succ z &= z = x \succ (y \succ z), \\ x \succ (y \succ z) &= z = (x \succ y) \succ z, \\ x \prec (y \prec z) &= 4z \neq 2z = (x \prec y) \prec z \end{aligned}$$

for all $x, y, z \in N$.

Assume $x \prec y = x$, $x \succ y = 2x$ for all $x, y \in N$. Similarly to the preceding case we can show that the model (N, \prec, \succ) satisfies the axioms $(D1)$ – $(D4)$, but not $(D5)$.

Let $x \prec y = x + y$, $x \succ y = y$ for all $x, y \in N$. In this case the model (N, \prec, \succ) satisfies the axioms $(D1)$, $(D3)$ – $(D5)$, but not $(D2)$. Indeed,

$$\begin{aligned} x \prec (y \prec z) &= x + y + z = (x \prec y) \prec z, \\ (x \succ y) \prec z &= y + z = x \succ (y \prec z), \\ (x \prec y) \succ z &= z = x \succ (y \succ z), \\ x \succ (y \succ z) &= z = (x \succ y) \succ z, \\ (x \prec y) \prec z &= x + y + z \neq x + z = x \prec (y \succ z) \end{aligned}$$

for all $x, y, z \in N$.

Assume $x \prec y = x$, $x \succ y = x + y$ for all $x, y \in N$. Similarly to the preceding case we can show that the model (N, \prec, \succ) satisfies the axioms $(D1)$ – $(D3)$, $(D5)$, but not $(D4)$.

Finally we construct the last model. Let X be an arbitrary nonempty set, $|X| > 1$ and let X^* be the set of finite nonempty words in the alphabet X . We denote the first (respectively, the last) letter of a word $w \in X^*$ by $w^{(0)}$ (respectively, by $w^{(1)}$). Define the operations \prec and \succ on X^* by

$$w \prec u = w^{(0)}, \quad w \succ u = u^{(1)}$$

for all $w, u \in X^*$. The model (X^*, \prec, \succ) satisfies the axioms $(D1)$, $(D2)$, $(D4)$, $(D5)$, but not $(D3)$. Indeed,

$$\begin{aligned} w \prec (u \prec \omega) &= w^{(0)} = (w \prec u) \prec \omega, \\ (w \prec u) \prec \omega &= w^{(0)} = w \prec (u \succ \omega), \\ (w \prec u) \succ \omega &= \omega^{(1)} = w \succ (u \succ \omega), \\ w \succ (u \succ \omega) &= \omega^{(1)} = (w \succ u) \succ \omega \end{aligned}$$

for all $w, u, \omega \in X^*$. As $|X| > 1$, then there exists $u \in X^*$ such that $u^{(1)} \neq u^{(0)}$. Then

$$(w \succ u) \prec \omega = u^{(1)} \neq u^{(0)} = w \succ (u \prec \omega)$$

for all $w, \omega \in X^*$. ■

Now we give examples of dimonoids.

a) Let S be a semigroup and let f be its idempotent endomorphism. Define the operations \prec and \succ on S by

$$x \prec y = x(yf), \quad x \succ y = (xf)y$$

for all $x, y \in S$.

PROPOSITION 10. ([10], Proposition 1) (S, \prec, \succ) is a dimonoid.

b) Let S and T be semigroups, $\theta : T \rightarrow S$ be a homomorphism. Define the operations \prec and \succ on $S \times T$ by

$$(s, t) \prec (p, g) = (s, tg), \quad (s, t) \succ (p, g) = ((t\theta)p, tg)$$

for all $(s, t), (p, g) \in S \times T$.

PROPOSITION 11. ([10], Proposition 2) $(S \times T, \prec, \succ)$ is a dimonoid.

c) Let $2N$ be the set of even positive integers and $2N-1$ be the set of odd positive integers. Fix $t, t_1, t_2 \in 2N-1$ and define the operations \prec and \succ on N by

$$\begin{aligned} x \prec y &= \begin{cases} x + y + t_1, & x, y \in 2N, \\ t & \text{otherwise,} \end{cases} \\ x \succ y &= \begin{cases} x + y + t_2, & x, y \in 2N, \\ t & \text{otherwise} \end{cases} \end{aligned}$$

for all $x, y \in N$.

PROPOSITION 12. (N, \prec, \succ) is a commutative dimonoid.

Proof. It is immediate to check that (N, \prec, \succ) is a dimonoid. It is clear that the operations \prec and \succ are commutative. ■

d) Let A be an alphabet, $F[A]$ be the free commutative semigroup over A , G be a set of non-ordered pairs (p, q) , $p, q \in A$. Define the operations \prec and \succ on the set $F[A] \cup G$ by

$$\begin{aligned} a_1 \dots a_m \prec b_1 \dots b_n &= a_1 \dots a_m b_1 \dots b_n, \\ a_1 \dots a_m \succ b_1 \dots b_n &= \begin{cases} a_1 \dots a_m b_1 \dots b_n, & mn > 1, \\ (a_1, b_1), & m = n = 1, \end{cases} \\ a_1 \dots a_m \prec (p, q) &= a_1 \dots a_m \succ (p, q) = a_1 \dots a_m p q, \\ (p, q) \prec a_1 \dots a_m &= (p, q) \succ a_1 \dots a_m = p q a_1 \dots a_m, \\ (p, q) \prec (r, s) &= (p, q) \succ (r, s) = p q r s \end{aligned}$$

for all $a_1 \dots a_m, b_1 \dots b_n \in F[A], (p, q), (r, s) \in G$.

PROPOSITION 13. ([15], Theorem 3) $(F[A] \cup G, \prec, \succ)$ is the free commutative dimonoid.

e) Let X be an arbitrary nonempty set. Considering the disjoint union

$$D(X) = \coprod_{n \geq 1} \underbrace{(X^n \cup \dots \cup X^n)}_{n \text{ copies}}$$

and denoting by $x_1 \dots \check{x}_i \dots x_n$ an element in the i -th summand, define the operations \prec and \succ on $D(X)$ by

$$\begin{aligned} (x_1 \dots \check{x}_i \dots x_k) \prec (x_{k+1} \dots \check{x}_j \dots x_l) &= x_1 \dots \check{x}_i \dots x_l, \\ (x_1 \dots \check{x}_i \dots x_k) \succ (x_{k+1} \dots \check{x}_j \dots x_l) &= x_1 \dots \check{x}_j \dots x_l \end{aligned}$$

for all $x_1 \dots \check{x}_i \dots x_k, x_{k+1} \dots \check{x}_j \dots x_l \in D(X)$.

PROPOSITION 14. ([2], Corollary 1.8) $(D(X), \prec, \succ)$ is the free dimonoid on the set X .

Other examples of dimonoids can be found in [2], [10], [15]–[17].

4. Decompositions

In this section we prove that every dimonoid with a commutative operation is a semilattice of archimedean subdimonoids (Theorem 15), every dimonoid with a commutative periodic semigroup is a semilattice of unipotent subdimonoids (Theorem 16), every dimonoid with a commutative operation is a semilattice of a -connected subdimonoids (Theorem 17) and every idempotent dimonoid is a semilattice of rectangular subdimonoids (Theorem 18).

We say that a dimonoid is archimedean, if its both semigroups are archimedean (see section 2).

THEOREM 15. *Every dimonoid (D, \prec, \succ) with a commutative operation \prec is a semilattice Y of archimedean subdimonoids D_i , $i \in Y$.*

Proof. Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec . By Theorem 8 $(D, \prec, \succ)/\eta$ is a semilattice. From the theorem by Tamura and Kimura [24] it follows that every class A of the congruence η is an archimedean semigroup concerning the operation \prec . Hence according to Lemma 6(ii) A is an archimedean semigroup concerning the operation \succ . Thus, A is an archimedean subdimonoid of (D, \prec, \succ) . ■

This theorem extends Theorem 2 from [10] about the decomposition of commutative dimonoids into semilattices of archimedean subdimonoids and the theorem by Tamura and Kimura [24] about the decomposition of commutative semigroups into semilattices of archimedean semigroups.

Recall that a semigroup S is called a periodic semigroup, if every element of S has a finite order, that is, if for every element a of S the subsemigroup $\langle a \rangle = \{a, a^2, \dots, a^n, \dots\}$ generated by a contains a finite number of different elements.

A dimonoid (D, \prec, \succ) will be called unipotent, if it contains exactly one element $x \in D$ such that $x \prec x = x \succ x = x$. If ρ is a congruence on the dimonoid (D, \prec, \succ) such that the operations of $(D, \prec, \succ)/\rho$ coincide and it is a semilattice, then we say that ρ is a semilattice congruence.

THEOREM 16. *Every dimonoid (D, \prec, \succ) with a commutative periodic semigroup (D, \prec) is a semilattice L of unipotent subdimonoids D_i , $i \in L$.*

Proof. Define a relation γ on (D, \prec, \succ) by

$a\gamma b$ if and only if there exists an

idempotent ε of the semigroup (D, \prec) such
that $a^l = b^k = \varepsilon$ for some $l, k \in N$.

The fact that the relation γ is a semilattice congruence on the semigroup (D, \prec) has been proved by Schwarz [21]. Let us show that γ is compatible concerning the operation \succ .

Let $a\gamma b$, $a, b, c \in D$. Then $a \prec c \gamma b \prec c$. It means that there exists an idempotent e of the semigroup (D, \prec) such that

$$(a \prec c)^n = (b \prec c)^m = e$$

for some $n, m \in N$. Hence

$$(3) \quad (a \prec c)^n \prec (a \prec c)^n = (a \prec c)^{2n} = e,$$

$$(4) \quad (b \prec c)^m \prec (b \prec c)^m = (b \prec c)^{2m} = e.$$

By Lemma 1 from (3) and (4) it follows that $(a \succ c)^{2n} = (b \succ c)^{2m} = e$ and so, $a \succ c \gamma b \succ c$.

Dually, the left compatibility of the relation γ concerning the operation \succ can be proved. So, γ is a congruence on (D, \prec, \succ) .

As $(D, \prec)/\gamma$ is a semilattice, then by Lemma 3(i) the operations of $(D, \prec, \succ)/\gamma$ coincide and so, it is a semilattice.

From [21] it follows that every class A of the congruence γ is a unipotent subsemigroup of the semigroup (D, \prec) . Let $e \in A$ and $e \prec e = e$. For an arbitrary element $a \in A$ there exists $p \in N$, $p > 1$ such that $a^p = e$. Hence

$$\begin{aligned} e \succ e &= a^p \succ a^p = a^p \succ (a^{p-1} \prec a) = (a^p \succ a^{p-1}) \prec a \\ &= a \prec (a^p \succ a^{p-1}) = (a \prec a^p) \prec a^{p-1} = (a \prec a^{p-1}) \prec a^p \\ &= a^p \prec a^p = e \prec e = e \end{aligned}$$

according to the commutativity of the operation \prec and the axioms (D1), (D2), (D3) of a dimonoid. So, e is an idempotent of the subsemigroup A of (D, \succ) . Thus, A is a unipotent subdimonoid of (D, \prec, \succ) . ■

This theorem extends Schwarz's theorem [21] about the decomposition of commutative periodic semigroups into semilattices of unipotent semigroups.

Let (D, \prec, \succ) be a dimonoid and $a \in D$. A dimonoid (D, \prec, \succ) will be called a -connected, if semigroups (D, \prec) and (D, \succ) are a -connected (see section 2).

THEOREM 17. *Let (D, \prec, \succ) be a dimonoid with a commutative operation \prec and let $a \in D$ be an arbitrary fixed element. Then (D, \prec, \succ) is a semilattice R of a -connected subdimonoids D_i , $i \in R$.*

Proof. Define a relation ζ on (D, \prec, \succ) by

$$\begin{aligned} x \zeta y &\Leftrightarrow (\exists n \in N) (x \prec a)^n \in y \prec a \prec D, \\ &\quad (y \prec a)^n \in x \prec a \prec D. \end{aligned}$$

By Protić and Stevanović [23] ζ is a semilattice congruence on the semigroup (D, \prec) . Let us show that ζ is a congruence on the semigroup (D, \succ) .

Let $x \zeta y$, $x, y, c \in D$. Then $x \prec c \zeta y \prec c$. It means that

$$\begin{aligned} (x \prec c \prec a)^m &= y \prec c \prec a \prec t_1, \\ (y \prec c \prec a)^m &= x \prec c \prec a \prec t_2 \end{aligned}$$

for some $m \in N, t_1, t_2 \in D$. Hence

$$\begin{aligned} (x \prec c \prec a)^m &= ((a \prec x) \prec c)^m = (a \prec (x \succ c))^m = ((x \succ c) \prec a)^m \\ &= y \prec c \prec a \prec t_1 = ((a \prec t_1) \prec y) \prec c = (a \prec t_1) \prec (y \succ c) \\ &= (y \succ c) \prec a \prec t_1 \end{aligned}$$

according to the commutativity of the operation \prec and the axioms (D1), (D2) of a dimonoid. Analogously,

$$((y \succ c) \prec a)^m = (x \succ c) \prec a \prec t_2.$$

Consequently, $x \succ c \zeta y \succ c$.

Dually, the left compatibility of the relation ζ concerning the operation \succ can be proved. So, ζ is a congruence on (D, \prec, \succ) .

As $(D, \prec)/\zeta$ is a semilattice, then by Lemma 3(i) the operations of $(D, \prec, \succ)/\zeta$ coincide and so, it is a semilattice.

Let A be an arbitrary class of the congruence ζ . By the definition of ζ the class A is a a -connected semigroup concerning the operation \prec . From Lemma 6(i) it follows that A is a a -connected semigroup concerning the operation \succ . Thus, A is a a -connected subdimonoid of (D, \prec, \succ) . ■

We say that a dimonoid is rectangular, if its both semigroups are rectangular bands. Define a relation \mathfrak{S} on the dimonoid (D, \prec, \succ) with an idempotent operation \prec by

$$a \mathfrak{S} b \text{ if and only if } a = a \prec b \prec a, \quad b = b \prec a \prec b.$$

THEOREM 18. *The relation \mathfrak{S} on the dimonoid (D, \prec, \succ) with an idempotent operation \prec is the least semilattice congruence. Every idempotent dimonoid (D, \prec, \succ) is a semilattice Ω of rectangular subdimonoids D_i , $i \in \Omega$.*

Proof. The fact that the relation \mathfrak{S} is a semilattice congruence on the semigroup (D, \prec) has been proved by McLean [22]. Let us show that \mathfrak{S} is compatible concerning the operation \succ .

Let $a \mathfrak{S} b$, $a, b, c \in D$. Then $a \prec c \mathfrak{S} b \prec c$. It means that

$$(5) \quad (a \prec c) \prec (b \prec c) \prec (a \prec c) = a \prec c,$$

$$(6) \quad (b \prec c) \prec (a \prec c) \prec (b \prec c) = b \prec c.$$

Multiply both parts of the equality (5) by $a \succ c$ and of the equality (6) by $b \succ c$:

$$\begin{aligned} & (a \succ c) \prec ((a \prec c) \prec (b \prec c) \prec (a \prec c)) \\ &= ((a \succ c) \prec (a \prec c)) \prec (b \prec c) \prec (a \prec c) \\ &= ((a \succ c) \prec (a \succ c)) \prec (b \prec c) \prec (a \prec c) \\ &= (a \succ c) \prec (b \prec c) \prec (a \prec c) \\ &= ((a \succ c) \prec (b \succ c)) \prec (a \prec c) \\ &= (a \succ c) \prec (b \succ c) \prec (a \succ c) \\ &= (a \succ c) \prec (a \prec c) = (a \succ c) \prec (a \succ c) = a \succ c, \end{aligned}$$

$$\begin{aligned}
& (b \succ c) \prec ((b \prec c) \prec (a \prec c) \prec (b \prec c)) \\
& = ((b \succ c) \prec (b \prec c)) \prec (a \prec c) \prec (b \prec c) \\
& = ((b \succ c) \prec (b \succ c)) \prec (a \prec c) \prec (b \prec c) \\
& = (b \succ c) \prec (a \prec c) \prec (b \prec c) \\
& = ((b \succ c) \prec (a \succ c)) \prec (b \prec c) \\
& = (b \succ c) \prec (a \succ c) \prec (b \succ c) \\
& = (b \succ c) \prec (b \prec c) = (b \succ c) \prec (b \succ c) = b \succ c
\end{aligned}$$

according to the axioms $(D1)$, $(D2)$ of a dimonoid and the idempotent property of the operation \prec . Consequently, $a \succ c \mathfrak{S} b \succ c$.

Dually, the left compatibility of the relation \mathfrak{S} concerning the operation \succ can be proved. So, \mathfrak{S} is a congruence on (D, \prec, \succ) .

As $(D, \prec)/\mathfrak{S}$ is a semilattice, then according to Lemma 3(i) the operations of $(D, \prec, \succ)/\mathfrak{S}$ coincide and so, it is a semilattice.

The proof of the first statement of the theorem will be completed, if we show that \mathfrak{S} is contained in every semilattice congruence ρ on (D, \prec, \succ) . Let $a \mathfrak{S} b$, $a, b \in D$. Then $a \prec b \prec a = a$, $b \prec a \prec b = b$. As ρ is a semilattice congruence, then $a = a \prec b \prec a \rho b \prec a \prec b = b$. So, $a \rho b$ and $\mathfrak{S} \subseteq \rho$.

Now we shall prove the second statement of the theorem.

Since \mathfrak{S} is a congruence on (D, \prec, \succ) and $(D, \prec, \succ)/\mathfrak{S}$ is a semilattice, then

$$(D, \prec, \succ) \rightarrow (D, \prec, \succ)/\mathfrak{S} : x \mapsto [x]$$

is a homomorphism ($[x]$ is a class of the congruence \mathfrak{S} , which contains x). From McLean's theorem [22] it follows that every class A of the congruence \mathfrak{S} is a rectangular band concerning the operation \prec . According to Lemma 7 A is a rectangular band concerning the operation \succ . Thus, A is a rectangular subdimonoid of (D, \prec, \succ) . ■

This theorem extends McLean's description [22] of the least semilattice congruence on bands and McLean's decomposition [22] of bands into semilattices of rectangular bands.

In section 3, we gave examples of commutative dimonoids (see also [10], [15]). We finish this section with the construction of different examples of dimonoids with one and two idempotent operations.

a) Let (X, \prec) be a left zero semigroup, (X, \succ) be a zero semigroup. Then (X, \prec, \succ) is a dimonoid with the idempotent operation \prec . It is easy to see that the least semilattice congruence $\mathfrak{S} = X \times X$ on (X, \prec, \succ) .

b) Let X^* be the set of finite nonempty words in the alphabet X . Recall that we denote the first (respectively, the last) letter of a word $w \in X^*$ by $w^{(0)}$ (respectively, by $w^{(1)}$).

Assuming the operations \prec and \succ on the set X^* by

$$w \prec u = w, \quad w \succ u = w^{(0)}u^{(1)}$$

for all $w, u \in X^*$, we obtain a dimonoid with the idempotent operation \prec . At that $\mathfrak{J} = X^* \times X^*$.

c) Let (X, \prec) be a left zero semigroup, (X, \succ) be a rectangular band. Then (X, \prec, \succ) is an idempotent dimonoid. It is easy to see that the least semilattice congruence $\mathfrak{J} = X \times X$ on (X, \prec, \succ) .

d) Let (X, \prec) be a rectangular band, (X, \succ) be a right zero semigroup. Then (X, \prec, \succ) is an idempotent dimonoid. It is easy to see that the least semilattice congruence $\mathfrak{J} = X \times X$ on (X, \prec, \succ) .

e) We prove the following statement.

PROPOSITION 19. *Let (D, \prec, \succ) be a dimonoid, $H(D) = \{e \in D \mid e \succ z = z \prec e \text{ for all } z \in D\}$. If $H(D) \neq \emptyset$, then $H(D)$ is a subdimonoid of (D, \prec, \succ) .*

Proof. If $e, \varepsilon \in H(D)$, then $e \succ z = z \prec e$, $\varepsilon \succ z = z \prec \varepsilon$ for all $z \in D$. For all $z \in D$ we have

$$\begin{aligned} z \prec (e \prec \varepsilon) &= (z \prec e) \prec \varepsilon = (e \succ z) \prec \varepsilon = e \succ (z \prec \varepsilon) \\ &= e \succ (\varepsilon \succ z) = (e \prec \varepsilon) \succ z, \\ z \prec (e \succ \varepsilon) &= (z \prec e) \prec \varepsilon = (e \succ z) \prec \varepsilon = e \succ (z \prec \varepsilon) \\ &= e \succ (\varepsilon \succ z) = (e \succ \varepsilon) \succ z \end{aligned}$$

according to the preceding equalities and the axioms (D1)–(D5) of a dimonoid. It means that $e \prec \varepsilon, e \succ \varepsilon \in H(D)$. So, $H(D)$ is a subdimonoid of (D, \prec, \succ) . ■

Let $R(D) = \{e \in D \mid e \succ z = z \prec e \text{ for all } z \in D\}$. From Proposition 19 it follows that $R(D)$ is a subdimonoid of $H(D)$ (if $R(D) \neq \emptyset$). Moreover, it is easy to see that $R(D)$ is an idempotent dimonoid. Obviously, its least semilattice congruence \mathfrak{J} coincides with the universal relation on $R(D)$.

f) Let S be an arbitrary idempotent semigroup, R be a rectangular band. Define the operations \prec and \succ on the set $S \times R$ by

$$(s_1, p_1) \prec (s_2, p_2) = (s_1 s_2, p_1 p_2), \quad (s_1, p_1) \succ (s_2, p_2) = (s_1 s_2, p_2)$$

for all $(s_1, p_1), (s_2, p_2) \in S \times R$. It is not difficult to check that $(S \times R, \prec, \succ)$ is an idempotent dimonoid. We denote this dimonoid by S^R .

Define a relation $\overline{\mathfrak{J}}$ on S by $a \overline{\mathfrak{J}} b$ if and only if $aba = a$, $bab = b$. By McLean's theorem [22] $\overline{\mathfrak{J}}$ is a congruence on S . From Theorem 18 it follows that

$$(s_1, p_1) \mathfrak{J} (s_2, p_2) \Leftrightarrow s_1 \overline{\mathfrak{J}} s_2$$

for all $(s_1, p_1), (s_2, p_2) \in S^R$.

We denote the semigroup $S/\overline{\mathfrak{S}}$ by P . According to [22] S is a semilattice P of rectangular bands S_i , $i \in P$.

Using Theorem 18 it is easy to prove the following statement.

PROPOSITION 20. *The dimonoid S^R is a semilattice P of rectangular sub-dimonoids S_i^R , $i \in P$.*

References

- [1] J.-L. Loday, *Une version non commutative des algèbres de Lie: les algèbres de Leibniz*, Enseign. Math. 39 (1993), 269–293.
- [2] J.-L. Loday, *Dialgebras*, In: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7–66.
- [3] L. A. Bokut, Y. Chen, C. Liu, *Gröbner-Shirshov bases for dialgebras*, Int. J. Algebra Comput. 20 (2010), no. 3, 391–415.
- [4] P. S. Kolesnikov, *Varieties of dialgebras and conformal algebras*, Siberian Math. J. 49 (2008), 322–339 (in Russian).
- [5] A. P. Pozhidaev, *Dialgebras and related triple systems*, Siberian Math. J. 49 (2008), 870–885 (in Russian).
- [6] R. Felipe, *Generalized Loday algebras and digroups*, Comunicaciones del CIMAT, No I-04-01/21-01-2004.
- [7] R. Felipe, *An analogue to functional analysis in dialgebras*, Int. Math. Forum 2 (2007), no. 21–24, 1069–1091.
- [8] V. G. Kac, *Vertex algebras for beginners*, University Lecture Series, V. 10, AMS, Providence, RI, 1996.
- [9] K. Liu, *A Class of ring-like objects*, submitted. Preprint available at arXiv:math.RA/0311396.
- [10] A. V. Zhuchok, *Commutative dimonoids*, Algebra and Discrete Math. 2 (2009), 116–127.
- [11] A. H. Clifford, G. B. Preston, *The Algebraic Theory of Semigroups*, Amer. Math. Soc., Providence, 1964.
- [12] A. V. Zhuchok, *On idempotent dimonoids*, Intern. Conf. on Semigroups and Related Topics: Abstracts, 2009, Porto, Portugal, 2009, p. 87.
- [13] A. V. Zhuchok, *Dimonoids with a commutative periodic semigroup*, Intern. Conf. Mal'tsev Meeting dedicated to the 70th anniversary of Acad. Y. L. Ershov, Collection of Abstracts, Novosibirsk, 2010, p. 125.
- [14] A. V. Zhuchok, *Some semilattice decompositions of dimonoids*, AAA80 Workshop on General Algebra in connection with the Workshop on Non-Classical Algebraic Structures, Abstracts, Będlewo, Poland, 2010, available at <http://www.mini.pw.edu.pl/aaa80/abstractsaaa80/58.pdf>.
- [15] A. V. Zhuchok, *Free commutative dimonoids*, Algebra and Discrete Math. 9 (2010), no. 1, 109–119.
- [16] A. V. Zhuchok, *Dibands of subdimonoids*, Mat. Stud. 33 (2010), 120–124.
- [17] A. V. Zhuchok, *Free dimonoids*, Ukr. Math. J. 63 (2011), no. 2, 165–175 (in Ukrainian).
- [18] J. D. Phillips, *A short basis for the variety of digroups*, Semigroup Forum 70 (2005), 466–470.

- [19] T. Pirashvili, *Sets with two associative operations*, Cent. Eur. J. Math. 2 (2003), 169–183.
- [20] B. M. Schein, *Restrictive bisemigroups*, Izv. Vyssh. Uchebn. Zaved. Mat. 1(44) (1965), 168–179 (in Russian).
- [21] Š. Schwarz, *K teorii periodicheskikh polugrupp*, Czechoslovak Math. J. 3(78), (1953), 7–21.
- [22] D. McLean, *Idempotent semigroups*, Amer. Math. Monthly 61 (1954), 110–113.
- [23] P. V. Protić, N. Stevanović, *Some decompositions of semigroups*, Matematichki Vesnik 61 (2009), 153–158.
- [24] T. Tamura, N. Kimura, *On decomposition of a commutative semigroup*, Kodai Math. Sem. Rep. 4 (1954), 109–112.

DEPARTMENT OF MECHANICS AND MATHEMATICS
KYIV NATIONAL TARAS SHEVCHENKO UNIVERSITY
Volodymyrska str., 64
KYIV, 01033, UKRAINE
E-mail: zhuchok_a@mail.ru

Received September 7, 2010; revised version January 16, 2011.