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SOME SEMILATTICE DECOMPOSITIONS OF DIMONOIDS

Abstract. We show that the system of axioms of a dimonoid is independent and
prove that every dimonoid with a commutative operation is a semilattice of archimedean
subdimonoids, every dimonoid with a commutative periodic semigroup is a semilattice of
unipotent subdimonoids, every dimonoid with a commutative operation is a semilattice of
a-connected subdimonoids and every idempotent dimonoid is a semilattice of rectangular
subdimonoids.

1. Introduction

The notion of a non-commutative Lie algebra (Leibniz algebra) appeared
in the researches on a homology theory for Lie algebras [1]. It is well-known
that for Lie algebras there is a notion of a universal enveloping associative
algebra. Jean-Louis Loday [2] found a universal enveloping algebra for Leib-
niz algebras. Dialgebras play a role of such object, that is, vector spaces
D with two bilinear associative operations < and > satisfying the following
axioms:

(x<y)<z=z<(y > 2),

(xry)<z=x (y<2),
(x<y)=z=z (y = 2)

for all x,y,z € D. Dialgebras were investigated in different papers (see,
for example, [2]-]7]). So, recently L. A. Bokut, Yuqun Chen and Cihua
Liu [3| gave the composition-diamond lemma for dialgebras and obtained
a Grobner-Shirshov basis for dialgebras. Kolesnikov [4] has shown that any
dialgebra can be obtained from some associative conformal algebra. The
conformal algebras were introduced by Kac [8] as a formal language of the
description of properties of algebraic structures occurring in mathematical
physics. The notion of a variety of dialgebras was introduced in [4] with the
help of the notion of an operad.
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A set D equipped with two binary associative operations < and > sat-
isfying the axioms indicated above is called a dimonoid [2|. So, a dialgebra
is a linear analogue of a dimonoid. At the present time dimonoids have
became a standard tool in the theory of Leibniz algebras. One of the first
results about dimonoids is the description of the free dimonoid generated by
a given set [2]. With the help of properties of free dimonoids, free dialgebras
were described and a homology of dialgebras was investigated [2]. In [9]
K. Liu used the notion of a dimonoid to introduce the notion of a one-sided
diring and studied basic properties of dirings. The notion of a diband of
subdimonoids was introduced in [10]. This notion generalizes the notion of
a band of semigroups [11] and is effective to describe structural properties
of dimonoids. In terms of dibands of subdimonoids, in particular, it was
proved that every commutative dimonoid is a semilattice of archimedean
subdimonoids [10]. The semilattice decompositions of dimonoids also were
given in [12|-{14]. In [15] the author constructed a free commutative di-
monoid and described the least idempotent congruence on this dimonoid.
The structure of an arbitrary diband of subdimonoids was described in [16].
In [17] it has been proved that the free dimonoid is a semilattice of s-simple
subdimonoids each being a rectangular band of subdimonoids. Some new
dialgebras were introduced in terms of dimonoids in [2]. It is also well-known
that the notion of a dimonoid generalizes the notion of a digroup [6], [18].
Recently Phillips [18] gave a simple basis of independent axioms for the va-
riety of digroups. Digroups play a prominent role in an important open
problem from the theory of Leibniz algebras. Pirashvili [19] considered du-
plexes which are sets with two binary associative operations and described
a free duplex. Dimonoids in the sense of Loday [2] are examples of duplexes.
Moreover, it should be noted that algebras with two associative operations
(so-called bisemigroups) were considered earlier in some other aspects in the
paper of B. M. Schein [20].

Obviously, if the operations of a dimonoid coincide then it becomes
a semigroup. Therefore studying dimonoids via semigroup techniques may
constitute a research direction.

The purpose of this work is to obtain some semilattice decompositions of
dimonoids. In section 2 we give necessary definitions and some properties of
dimonoids (Lemmas 1-7 and Theorem 8). In section 3 we show that the sys-
tem of axioms of a dimonoid is independent (Theorem 9) and give different
examples of dimonoids (Propositions 10-14). In section 4 we prove that ev-
ery dimonoid with a commutative operation is a semilattice of archimedean
subdimonoids (Theorem 15), every dimonoid with a commutative periodic
semigroup is a semilattice of unipotent subdimonoids (Theorem 16), every
dimonoid with a commutative operation is a semilattice of a-connected sub-
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dimonoids (Theorem 17) and every idempotent dimonoid is a semilattice of
rectangular subdimonoids (Theorem 18). Theorems 15, 16 and 18 extend,
respectively, Theorem 2 from [10] about the decomposition of commutative
dimonoids into semilattices of archimedean subdimonoids, Schwarz’s theo-
rem [21] about the decomposition of commutative periodic semigroups into
semilattices of unipotent semigroups and McLean’s decomposition [22| of
bands into semilattices of rectangular bands. In this section we also con-
struct examples of dimonoids with one and two idempotent operations.

2. Preliminaries

A nonempty set D with two binary operations < and > satisfying the
following five axioms:

(D1) (z<y)<z=2<(y<2),
(D2) (r<y)<z=x<(y > 2),
(D3) (z-y)<z=x> (y<2),
(D4) (x<y)=z=a> (y > 2),
(D5) (x=y)=z=a (y = 2)

for all z,y,z € D, is called a dimonoid (see |2, p. 11]).

A map f from a dimonoid D; to a dimonoid D is a homomorphism, if
(x=<y)f=xf <yf, (x>=y)f =af = yf for all z,y € Dy. A subset T of
a dimonoid (D, <, ) is called a subdimonoid, if for any a,b € D, a, b € T
impliesa < b, a > beT.

As usual N denotes the set of positive integers.

Let (D, <,>) be a dimonoid, a € D, n € N. Denote the degree n of an
element a concerning the operation < (respectively, >) by a™ (respectively,
by na).

LEMMA 1. ([10], Lemma 1) Let (D, <, >) be a dimonoid with a commutative
operation <. For allb,ce D, m € N, m > 1,
(b=<c)"=0b">=c"=(b>c)".
LEMMA 2. (|10], Lemma4) Let (D, <, >) be a dimonoid with a commutative
operation >=. For allbe D, m € N,
26™ = (2m)b.
A commutative idempotent semigroup is called a semilattice. A commu-

tative semigroup S is separative, if for any s,t € S, 52 = st = t? implies
s =t. A semigroup S is called globally idempotent, if S? = S.

LEMMA 3. The operations of a dimonoid (D, <, ) coincide, if one of the
following conditions holds:
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) is a semilattice;

) is a left cancellative (cancellative) semigroup;

) is a commutative separative semigroup;

) is a commutative globally idempotent semigroup.

(x=y)<z=z<@x>y)=GG<z)ky=zx<(y<z2)=z> (y < 2)

according to the commutativity of the operation < and the axioms (D1),
(D2), (D3) of a dimonoid. Substituting z = y in the last equality and using
the idempotent property of the operation <, we obtain z <y =z > y.

(ii) By the axioms (D1), (D2) of a dimonoid we have

(z<y)<z=zx<(@y<z2)=x<(y>=2)

for all x,y,z € D. Hence, using the left cancellability, we obtain y < z =
y >z forall y,z € D.
Analogously, the case with a cancellative semigroup can be proved.

(iii) Let x,y be arbitrary elements of D. Assume a =z < y,b =z > y.
Then

@’ =(x =<y <(z=<y)=(xr=<y)?

a<b=(x=<y)=<(r=y) =(=<y)?
= (2-y) < (z-y)=(2-y)° = (z<y)’
according to the axioms (D1),(D2) of a dimonoid and Lemma 1. As the
commutative semigroup (D, <) is separative, then a? = a < b = b? implies
a=b.
(iv) Let z,y € D and y = y1 < y2, y1,¥2 € D. Then
r=<y=x<(n<y)==<2)n=n<(@-yn)=(@>y) <y
=x>=(y<y2)=x>y
according to the commutativity of the operation < and the axioms (D1),

(D2), (D3) of a dimonoid. m

LEMMA 4. Let (D,=<,>) be an arbitrary dimonoid. For all x,y,t € D,
nenN

(i) (x=<y)"=t=n(x>y)=t=n(x<y) =t;
i) t<nz=y)=t<(z=<y)"=t<(z>y"

Proof. We prove (i) using an induction on n. For n = 1 we have

(z<y)=t=(x=y) =t
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according to the axioms (D4),(D5) of a dimonoid. Let (z < y)¥ = t =
k(z > y) >t for n = k. Then for n = k 4+ 1 we obtain

(@ =y) T =t=(e=<y) < (@=<y")=t=(z=<y) = (==<y") ~t

=((z=y) = (@ =y =t=(ry) = ((z=<y"~1)
=@>y)=klx-y)-t=(k+1)(z>y) =t
according to the axioms (D4), (D5) of a dimonoid and the supposition.
Thus, (x <y)" =t=n(z >y) =t foralln e N.
Now we show that (xr < y)" =t =n(z <y) = tforallz,y,t € D,n € N.
For n = 1, obviously, the equality is correct. Let (z < y)* =t =k(z < y) =t
for n = k. Then for n = k 4+ 1 we obtain

=yt -t=(@=<y <@y =t=@=<y) = (z=<y)" =1
=<y =klzx<y)-t=(k+1)(z<y) =t

according to the axioms (D4), (D5) of a dimonoid and the supposition. Thus,
(x<y)"=t=n(zx<y)>tforallne N.
Dually, the equalities (ii) can be proved. =

LEMMA 5. Let (D, =<, >) be an arbitrary dimonoid. For all x € D, n € N

(i) 2" =2 =(n+1)z;
(ii) z < nz = 2",

Proof. We prove (i) using an induction on n. For n = 1 we have z > = = 2.
Let 2% = 2 = (k4 1)z for n = k. Then for n = k + 1 we obtain

Pl =@ <)== @"-2)=2~ (k+ Dz =(k+2)z
according to the axiom (D4) of a dimonoid and the supposition. Thus,

2" =z = (n+1)x for alln € N.
Dually, the equality (ii) can be proved. =

Let S be a semigroup and a € S. The elements x,y € S are called a-
connected, if there exist n,m € N such that (za)" € yaS and (ya)™ € zaS.
The semigroup S is a-connected, if z,y are a-connected for all z,y € S [23].

Note that if (za)" € yaS and (ya)™ € zaS, then (za)? € yaS and
(ya)P € zaS, where p = max {n,m},n,m,p € N [23].

Recall that a semigroup S is called archimedean, if for any a,b € S there
exists n € N such that b™ belongs to the principial two-sided ideal J(a)
generated by a. If (D, <,>) is a dimonoid, then we denote the semigroup
(D, <) (respectively, (D, =)) with an identity by DL (respectively, by DL ).

LEMMA 6. Let (D, <,>) be a dimonoid and let a € D be an arbitrary fized
element. Then
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(i) If (D, <) is a a-connected semigroup, then (D, ) is a a-connected semi-
group;
(ii) (D, =) is an archimedean semigroup if and only if (D,>) is an archi-
medean semigroup.
Proof. (i) Let (D, <) be a a-connected semigroup, x,y € D. Then there
exists n € N such that (r <a)" €y <a <D and (y <a)" €x <a < D.
Hence
(1) (x<a)"=y<a<t,
(2) (y<a)"=x<a<t
for some t1,to € D. Assume t3 =t > x > a, t4 = to > y = a. Multiply the
equalities (1) and (2) by = > a and, respectively, by y > a:
(x<a)">(x>=a)=n(x>=a)>(r>=a)=(n+1)(z > a)
=(y<a<t))=(x>=a)=(y<a)>t1) > (x>a)
=y=a-ti1 =T >=a=y>a>t3,

(y<a)" = (y=a)=n(y-a) = (y»a)=@m+1)(y>a)
=(x=<a<t) > (y>a)=(x<a)>t) > (y>a)
=z >=a>ly>=y=a=x>a>1y

according to Lemma 4(i) and the axioms (D4), (D5) of a dimonoid. Thus,
(n+1)(xz>=a)cy>=a>D, (n+1)(y > a) € x> a > D. Consequently,
(D, >) is a a-connected semigroup.

(ii) Let (D, <) be an archimedean semigroup. Then for all a,b € D there

exist x,y € DL, n € N such that z < a < y = b"™. Multiply both parts of
the last equality by b concerning the operation >:

(x<a=<y)>b=((r<a)<y)>b=(zr<a)>(y>>)
=x>=a>(y=b)=0">b=(n+1)b
according to the axioms (D4), (D5) of a dimonoid and Lemma 5(i). Analo-

gously, using the axioms (D1), (D2) of a dimonoid and Lemma 5(ii), we can
prove the sufficiency. m

A dimonoid (D, <, =) will be called an idempotent dimonoid or a diband,
ifr<z=z=z>zforallz e D.

LEMMA 7. Let (D,=<,>) be an idempotent dimonoid. Then (D, <) is a
rectangular band if and only if (D,>) is a rectangular band.

Proof. If (D, <) is a rectangular band, a,b € D, then a < b < a = a. From
the last equality we have



Some semilattice decompositions of dimonoids 635

(a<b=<a)=a=(a<(b>a))=a
=a>((bra)=a)=a>b=-a=a>a=a

according to the axioms (D2), (D4), (D5) of a dimonoid and the idempotent
property of the operation >. Hence (D, ) is a rectangular band.
Conversely, from the equality a > b > a = a we obtain

a<(a-=b-a)=a<(a>(b>a)=(a<a)=<(b>a)
=a<(bra)=a<b<a=a<a=a

according to the axioms (D2), (D5) of a dimonoid and the idempotent prop-
erty of the operation <. Hence (D, <) is a rectangular band. =

The notion of a diband of subdimonoids was introduced in [10] and in-
vestigated in [16]. Recall this definition.

If o : S — T is a homomorphism of dimonoids, then the corresponding
congruence on S will be denoted by A,,.

Let S be an arbitrary dimonoid, J be some idempotent dimonoid. Let

a:S—=J:r—xa,

be a homomorphism. Then every class of the congruence A, is a subdi-
monoid of the dimonoid S, and the dimonoid S itself is a union of such
dimonoids Sg¢, £ € J that

ra=§(exeS=A,={teS|(z;t) € An},
S{ <S5 C S£-<aa S§ = Se C S£>87

E#e=5[)S =2

In this case we say that S is decomposable into a diband of subdimonoids (or
S is a diband J of subdimonoids S (£ € J)). If J is a band (=idempotent
semigroup), then we say that S is a band J of subdimonoids S¢ (§ € J). If
J is a commutative band (=semilattice), then we say that S is a semilattice
J of subdimonoids Sg (§ € J).

Let S be a diband J of subdimonoids S¢, £ € J. Note that if the
operations of S coincide, then S is a band of semigroups [11].

If p is a congruence on the dimonoid (D, <, >) such that (D, <,>)/p is
an idempotent dimonoid, then we say that p is an idempotent congruence.

Let (D, <,>) be a dimonoid with a commutative operation <, a,b € D.
We say that a <-divide b and write a<|b, if there exists such element = from
DY that a < # = b. A dimonoid (D, <, =) will be called commutative, if
semigroups (D, <) and (D, =) are commutative.

Define a relation n on the dimonoid (D, <, >) with a commutative oper-
ation < by
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anb if and only if there exist positive integers
m,n, m # 1,n # 1 such that a<|b™, b<|a™.

THEOREM 8. (|10], Theorem 1) The relation n on the dimonoid (D, <, >)
with a commutative operation < is the least idempotent congruence, and
(D, =<,>)/n is a commutative idempotent dimonoid which is a semilattice.

3. Independence of axioms and examples of dimonoids

In this section we show that the system of axioms of a dimonoid is inde-
pendent and give different examples of dimonoids.

The following theorem proves the independence of axioms of a dimonoid.

THEOREM 9. The system of azioms (D1), (D2), (D3), (D4), (D5) of a
dimonoid is independent.

Proof. Let N be the set of positive integers. Define the operations < and
> on N by
T<yYy=2y, =z>-y=y
for all z,y € N. The model (N, <, ) satisfies the axioms (D2)—(D5), but
not (D1). Indeed,
(x<y)<z=2z2=2<(y = 2),
(x=y)<z=2z=z» (y < 2),
(z<y)=z=z=xa> (y > 2),
x=(y=2)=z= (v =y z,
r<(y=<z2)=42#2z=(x<y) <z
for all z,y,z € N.

Assume ¢ < y = x, ¢ > y = 2z for all x,y € N. Similarly to the
preceding case we can show that the model (N, <, =) satisfies the axioms
(D1)-(D4), but not (D5).

Let x < y=a+y, x>y =y for all xz,y € N. In this case the model
(N, <, >) satisfies the axioms (D1), (D3)—(D5), but not (D2). Indeed,

r<y=<z)=z+y+z=(r<y) <z
(x>-y)<z=y+z=a> (y<2),
(z<y)=z=z=xa> (y > 2),
x=(y=2)=z= (v =y z
(x<y)<z=z+yt+z#azt+z=x<(y>2)
for all z,y,z € N.
Assume v <y =z, z > y = v+ y for all x,y € N. Similarly to the

preceding case we can show that the model (N, <, ) satisfies the axioms
(D1)—(D3), (D5), but not (D4).
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Finally we construct the last model. Let X be an arbitrary nonempty set,
|X| > 1 and let X* be the set of finite nonempty words in the alphabet X.
We denote the first (respectively, the last) letter of a word w € X* by w(®)
(respectively, by w(!)). Define the operations < and > on X* by

w-<u:w(0), w>u:u(1)

for all w,u € X*. The model (X*, <, >) satisfies the axioms (D1), (D2),
(D4), (D5), but not (D3). Indeed,

w=< (u<w)=w?=(w=<u) <w,

(w=<u) <w=uw®=w<(u-w),

(w=<u)>w=wb=wr (u>w),

w- (us-w)=w® =(w=u) -w
for all w,u,w € X*. As |X| > 1, then there exists u € X* such that
u® £ 4O, Then

(w>u) <w=uM £u® =w = (u=<w)

for all w,w € X*. u

Now we give examples of dimonoids.
a) Let S be a semigroup and let f be its idempotent endomorphism.
Define the operations < and > on S by

r<y=z(yf), z>y=(xf)y
for all z,y € S.

ProrosITION 10. ([10], Proposition 1) (S, <, >) is a dimonoid.

b) Let S and T be semigroups, 6 : T'— S be a homomorphism. Define
the operations < and > on S x T by

(s,t) = (p, g) = (s,19), (s,1) = (p, g) = ((t0)p, tg)
for all (s,t),(p,g) € S xT.
ProrosITION 11. ([10], Proposition 2) (S x T, <, >) is a dimonoid.

c) Let 2N be the set of even positive integers and 2N-1 be the set of odd
positive integers. Fix t,t1,to € 2N-1 and define the operations < and > on
N by

o<y — r+y+t, x,y € 2N,
Y t otherwise,

. r+y+ta, T,y € 2N,
€T g
Y t otherwise

for all z,y € N.
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PROPOSITION 12. (N, <, >) is a commutative dimonoid.

Proof. It is immediate to check that (N, <,>) is a dimonoid. It is clear
that the operations < and > are commutative. m

d) Let A be an alphabet, F[A] be the free commutative semigroup over
A, G be a set of non-ordered pairs (p, q), p,q € A. Define the operations <
and > on the set F[A]|JG by

a1...Gm < b1...bp, = aq...amb1...by,
Gy by, > 1,
A1ty = by by = 3 (L AmPL O T
(a1,b1), m=n=1,
ay...0m < (p,q) = a1...apm = (p,q) = ay...ampq,
(p,q) < ay...am = (P, q) > Q1. = PGay...apm,
(p,q) = (r.8) = (p.q) = (r,s) = pgrs
for all aj...am, b1...b, € F[A], (p,q),(r,s) € G.

ProrosITION 13. ([15], Theorem 3) (F[A]UG, <, >) is the free commu-
tative dimonoid.

e) Let X be an arbitrary nonempty set. Considering the disjoint union

px)=JT&x"{J.-Uxm

n>1

n copies

and denoting by x1...%;...x, an element in the i-th summand, define the
operations < and = on D(X) by

(:clgﬁzwk) < (wk+1...i'j...l'l) = x1...24...2],
(xli:lz:k) - (xk+1---i'j~--$l) = xl---i'j---l'l
for all z1...%;...x2, warl...i'j...l'l S D(X)

ProrosITION 14. (|2], Corollary 1.8) (D(X), <, >) is the free dimonoid
on the set X.

Other examples of dimonoids can be found in [2], [10], [15]-[17].

4. Decompositions

In this section we prove that every dimonoid with a commutative oper-
ation is a semilattice of archimedean subdimonoids (Theorem 15), every di-
monoid with a commutative periodic semigroup is a semilattice of unipotent
subdimonoids (Theorem 16), every dimonoid with a commutative operation
is a semilattice of a-connected subdimonoids (Theorem 17) and every idem-
potent dimonoid is a semilattice of rectangular subdimonoids (Theorem 18).
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We say that a dimonoid is archimedean, if its both semigroups are archi-
medean (see section 2).

THEOREM 15. Fvery dimonoid (D, <, =) with a commutative operation <
is a semilattice Y of archimedean subdimonoids D;, 1 €Y.

Proof. Let (D, <, >) be a dimonoid with a commutative operation <. By
Theorem 8 (D, <, >)/n is a semilattice. From the theorem by Tamura and
Kimura [24] it follows that every class A of the congruence 7 is an archi-
medean semigroup concerning the operation <. Hence according to Lemma
6(ii) A is an archimedean semigroup concerning the operation >. Thus, A is
an archimedean subdimonoid of (D, <,>). m

This theorem extends Theorem 2 from [10] about the decomposition of
commutative dimonoids into semilattices of archimedean subdimonoids and
the theorem by Tamura and Kimura [24] about the decomposition of com-
mutative semigroups into semilattices of archimedean semigroups.

Recall that a semigroup S is called a periodic semigroup, if every element
of S has a finite order, that is, if for every element a of S the subsemigroup
(a) = {a,a?, ...,a", ...} generated by a contains a finite number of different
elements.

A dimonoid (D, <, =) will be called unipotent, if it contains exactly one
element « € D such that x < x = x > ¢ = x. If p is a congruence on the
dimonoid (D, <, >) such that the operations of (D, <,>)/p coincide and it
is a semilattice, then we say that p is a semilattice congruence.

THEOREM 16. FEvery dimonoid (D, <,>) with a commutative periodic
semigroup (D, <) is a semilattice L of unipotent subdimonoids D;, i € L.

Proof. Define a relation v on (D, <, >) by
a7y b if and only if there exists an
idempotent ¢ of the semigroup (D, <) such
that a! = bv* = ¢ for some [, k € N.

The fact that the relation -y is a semilattice congruence on the semigroup
(D, <) has been proved by Schwarz [21]|. Let us show that ~ is compatible
concerning the operation >.

Let avb, a,b,c € D. Then a < c¢vyb < c. It means that there exists an
idempotent e of the semigroup (D, <) such that

(a<c)"=(b=<c)"=e

for some n,m € N. Hence

(3) (a<e)"<(a<c)"=(a<c)=e,

(4) b=c)"<(b=c)"=(b=<c)*™ =e.
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By Lemma 1 from (3) and (4) it follows that (a = ¢)?" = (b= ¢)?™ =¢
and so, a > cyb > c.

Dually, the left compatibility of the relation v concerning the operation
> can be proved. So, 7 is a congruence on (D, <, >).

As (D, <)/ is a semilattice, then by Lemma 3(i) the operations of (D, <
, =)/~ coincide and so, it is a semilattice.

From [21] it follows that every class A of the congruence -y is a unipotent
subsemigroup of the semigroup (D, <). Let e € A and ¢ < ¢ = e. For an
arbitrary element a € A there exists p € N, p > 1 such that a? = e. Hence

e-e=al =aP =aP - (@’ <a)=(a? - a"P1) < a
—a<(@=a"H)=(a<aP)<a’t=(a<a" 1) <a’
=d’ <d’=e<e=c¢
according to the commutativity of the operation < and the axioms (D1),
(D2), (D3) of a dimonoid. So, e is an idempotent of the subsemigroup A of
(D, ). Thus, A is a unipotent subdimonoid of (D, <, >). =

This theorem extends Schwarz’s theorem [21] about the decomposition of
commutative periodic semigroups into semilattices of unipotent semigroups.

Let (D, <,>) be a dimonoid and a € D. A dimonoid (D, <, >) will be
called a-connected, if semigroups (D, <) and (D,>) are a-connected (see
section 2).

THEOREM 17. Let (D, <, >) be a dimonoid with a commutative operation <
and let a € D be an arbitrary fived element. Then (D, <,>) is a semilattice
R of a-connected subdimonoids D;, i € R.

Proof. Define a relation ¢ on (D, <, >) by
2y (IneN)(z<a)"€y<a=<D,
(y<a)*€x<a=<D.

By Proti¢ and Stevanovié [23] ¢ is a semilattice congruence on the semi-
group (D, <). Let us show that ¢ is a congruence on the semigroup (D, >).
Let zCy, x,y,c € D. Then x < ¢(y < c. It means that
(x<c=<a)"=y<c=<a=<ty,
(y<c=<a)"=z<c<a<ty

for some m € N,t1,to € D. Hence

(x<c<a)"=((a<x)<c)"=(a<(z>c)"=(z>=c)<a)™
=y<c<a<t1=((a<t1)<y)<c=(a<t) < (y>=c)
=(y=c)<a<t
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according to the commutativity of the operation < and the axioms (D1),
(D2) of a dimonoid. Analogously,

(y=c)<a)" =(x>c)<a=<ts.

Consequently, z = cCy > c.

Dually, the left compatibility of the relation ¢ concerning the operation
> can be proved. So, ( is a congruence on (D, <, >).

As (D, <)/( is a semilattice, then by Lemma 3(i) the operations of (D, <

>)/( coincide and so, it is a semilattice.

Let A be an arbitrary class of the congruence (. By the definition of ¢
the class A is a a-connected semigroup concerning the operation <. From
Lemma 6(i) it follows that A is a a-connected semigroup concerning the
operation . Thus, A is a a-connected subdimonoid of (D, <, ). =

We say that a dimonoid is rectangular, if its both semigroups are rectan-
gular bands. Define a relation & on the dimonoid (D, <, >) with an idem-
potent operation < by

a3b if and only if a =a <b<a, b=b<a=<0b.

THEOREM 18. The relation S on the dimonoid (D, <,>) with an idem-
potent operation < is the least semilattice congruence. Fvery idempotent
dimonoid (D, <, >) is a semilattice Q2 of rectangular subdimonoids D;, i € SQ.

Proof. The fact that the relation < is a semilattice congruence on the semi-
group (D, <) has been proved by McLean [22]. Let us show that < is com-
patible concerning the operation >.

Let aSb, a,b,c € D. Then a < ¢3b < c¢. It means that

(5) (a<c)<(b<c)<(a<c)=a<c,
(6) (b<c)<(a<c)=<(b<c)=b=<c.
Multiply both parts of the equality (5) by a = ¢ and of the equality (6) by
b>c:
(a=c)<((a<ec)<(b<c)<(a=<0))
=((a=c)<(a=<c)<(b=<c)<(a<c)
=((a>c)<(a=c)<(b<c)<(a<c)
arc)<(b<c)<(a<c)
a>c)=<(b=c)<(a=<c)
=c)<(b=c)=<(a>c)
=c)<(a<c)=(a>c)<(a=c)=arc

<
<
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(b=c)<((b<c)<(a<c)=<(b=<0))
=((b-c)<(b=<c)<(a<c)=<(b=<c)
b=c)<(b=c)<(a<c)<(b=<c)
b-c)<(a<c)=<(b=<c)
) <
(

(
= (
((b>=c) < (a*=c) (b<c)
= (
= (

b>c)<(a>c)=<(b>c)
b=c)<(b<c)=0b>c)<(b>c)=b>c

according to the axioms (D1), (D2) of a dimonoid and the idempotent prop-
erty of the operation <. Consequently, a = c¢3b > c.

Dually, the left compatibility of the relation & concerning the operation
> can be proved. So, & is a congruence on (D, <, >).

As (D, <)/S is a semilattice, then according to Lemma 3(i) the opera-
tions of (D, <, )/ coincide and so, it is a semilattice.

The proof of the first statement of the theorem will be completed, if we
show that J is contained in every semilattice congruence p on (D, <, ). Let
a3b, a,b € D. Thena <b<a=a, b<a=<b=0>b. Aspis a semilattice
congruence, then a =a <b<apb<a<b=1>. So, apb and & C p.

Now we shall prove the second statement of the theorem.

Since ¥ is a congruence on (D, <,>) and (D, <, >)/S is a semilattice,
then

(D,<,>) = (D,=<,>)/S:x— [z]

is a homomorphism ([z] is a class of the congruence <, which contains x).
From McLean’s theorem [22] it follows that every class A of the congruence
S is a rectangular band concerning the operation <. According to Lemma 7
A is a rectangular band concerning the operation . Thus, A is a rectangular
subdimonoid of (D, <,>). =

This theorem extends McLean’s description [22] of the least semilattice
congruence on bands and McLean’s decomposition [22] of bands into semi-
lattices of rectangular bands.

In section 3, we gave examples of commutative dimonoids (see also [10],
[15]). We finish this section with the construction of different examples of
dimonoids with one and two idempotent operations.

a) Let (X, <) be a left zero semigroup, (X, >) be a zero semigroup. Then
(X, <,>) is a dimonoid with the idempotent operation <. It is easy to see
that the least semilattice congruence = X x X on (X, <, ).

b) Let X™* be the set of finite nonempty words in the alphabet X. Recall
that we denote the first (respectively, the last) letter of a word w € X* by
w©) (respectively, by w(1).
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Assuming the operations < and > on the set X* by
w<u=w, ws=u=wul
for all w,u € X*, we obtain a dimonoid with the idempotent operation <.
At that &= X™* x X*.

c) Let (X, <) be a left zero semigroup, (X,>) be a rectangular band.
Then (X, <,>) is an idempotent dimonoid. It is easy to see that the least
semilattice congruence § = X x X on (X, <, >).

d) Let (X, <) be a rectangular band, (X, >) be a right zero semigroup.
Then (X, <,>) is an idempotent dimonoid. It is easy to see that the least
semilattice congruence ¥ = X x X on (X, <, >).

e) We prove the following statement.

PROPOSITION 19. Let (D, <,>) be a dimonoid, H(D) = {e € D | e >
z=2z=<e foral z€ D}. If HD) # @, then H(D) is a subdimonoid of
(D,=<,>).
Proof. If e,e € H(D), thene > z=z2<e, e = z=2z <¢eforall z € D. For
all z € D we have
z=<(e<e)=(2<e)<ec=(e>z)
=e>(e=2)=(e<¢)
z=<(exe)=(z<e)<e=(e=2)<ec=e>(2<¢)
=e>(ex2)=(e=¢) >z

e=e>(2<¢)

<
-z,

according to the preceding equalities and the axioms (D1)—(D5) of a di-
monoid. It means that e < e,e = ¢ € H(D). So, H(D) is a subdimonoid of
(D,<,>). m

Let R(D) ={e € D |e>z=2z=2z < eforal z € D}. From
Proposition 19 it follows that R(D) is a subdimonoid of H(D) (if R(D) # ©).
Moreover, it is easy to see that R(D) is an idempotent dimonoid. Obviously,

its least semilattice congruence & coincides with the universal relation on

R(D).
f) Let S be an arbitrary idempotent semigroup, R be a rectangular band.
Define the operations < and > on the set S x R by

(s1,p1) < (82,p2) = (5182, P1P2), (s1,p1) = (82,p2) = (5152, p2)
for all (s1,p1), (s2,p2) € S x R. It is not difficult to check that (S x R, <, >)
is an idempotent dimonoid. We denote this dimonoid by S*.

Define a relation & on S by aSb if and only if aba = a, bab = b. By
McLean’s theorem [22] S is a congruence on S. From Theorem 18 it follows
that .

(51,1)S(s2,p2) & 519 82
for all (s1,p1), (s2,p2) € S™.
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We denote the semigroup S/ by P. According to [22] S is a semilattice

P of rectangular bands S;, i € P.

Using Theorem 18 it is easy to prove the following statement.

PROPOSITION 20. The dimonoid ST is a semilattice P of rectangular sub-
dimonoids SZR, 1€ P.
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