
DEMONSTRATIO MATHEMATICA 
Vol. XLIII No 4 2010 

Paulina Szczuka 

THE CONNECTEDNESS OF ARITHMETIC PROGRESSIONS 
IN FURSTENBERG'S, GOLOMB'S, 

A N D KIRCH'S TOPOLOGIES 

Abstract. In this paper we examine the connectedness of arithmetic progressions in 
the following topologies: Furstenberg's topology on the set of integers, Golomb's topology 
V on the set of positive integers, and Kirch's topology T>' on the set of positive integers. 
Immediate consequences of these studies are theorems concerning the connectedness and 
the locally connectedness of the topologies T> and T>' proved by S. Golomb in 1959 and A. 
M. Kirch in 1969. 

1. Preliminaries 
The letters Z, N and No denote the sets of integers, positive integers, 

and non-negative integers, respectively. The symbol ©(a) denotes the set of 
all prime factors of a G N. For all a, b G N, we use the symbols (a, b) and 
lcm(a, b) to denote the greatest common divisor of a and b and the least 
common multiple of a and 6, respectively. Moreover, for all a, b € N, the 
symbols {an + b} and {an} stand for the infinite arithmetic progressions: 

{an + 6} = a • No + 6 and {an} = a • N. 

For all a G N and b G Z, the symbol {az + b} denotes the infinite arithmetic 
progression: 

{az + b} = a • Z + b. 

We use standard notation. For the basic results and notions concerning 
topology and number theory we refer the reader to the monographs of R. 
Engelking [3] and W. LeVeque [7], respectively. 
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2. Introduction 
In 1955 H. Furstenberg [4] defined the base of a topology Tf on Z by 

means of all arithmetic progressions {az + b] and gave an elegant topologi-
cal proof of the infinitude of primes. Moreover, Furstenberg remarked that 
the topology Tp is normal, and hence metrizable. In 2003 K. Broughan [1] 
defined a metric generating Tp and proved few interesting theorems con-
cerning its structure. It is known that in Furstenberg's topology Tp each 
arithmetic progression is both open and closed [4], i.e. the space (Z,Tp) is 
zero-dimensional [3], whence totally disconnected. In particular, Z is Tp-
disconnected. 

In 1959 S. Golomb [5] presented a similar proof of the infinitude of primes 
using a topology P o n N with the base 

(1) B= { { a n + 6} : (a,b) = l } , 

defined in 1953 by M. Brown [2]. In the same paper Golomb proved that V 
is Hausdorff, N is D-connected, and the Dirichlet's theorem (on primes in 
arithmetic progressions) is equivalent to the D-density of the set of prime 
numbers in N. For these reasons, T> is often referred to as Golomb's topol-
ogy. Immediately from condition (1) follows that each nonempty open set 
in Golomb's topology V is infinite (it contains an arithmetic progression). 
However, all arithmetic progressions {pn}, where p is a prime number, are 
closed but not open in T> [5]. 

In 1969 A. M. Kirch [6] proved, that the topological space (N, V) is not 
locally connected. Moreover, he defined a topology V on N with the base 

(2) B' = { {an + 6} : (a, b) = 1, b < a, a — square-free}, 

and showed that set N with topology V' is Hausdorff, connected and locally 
connected topological space. When we compare the topologies V and V we 
have 

V' £ V. 

Thus Kirch's topology V is weaker then Golomb's topology T>. Immediately 
from condition (2) follows that each nonempty open set in Kirch's topology 
V is infinite. Moreover, all arithmetic progressions {pn}, where p is a prime 
number, are closed but not open in V . 

In this paper we study the connectedness of arithmetic progressions in 
Furstenberg's, Golomb's, and Kirch's topologies (Theorems 3.1, 3.3 and 3.5), 
and the connectedness of the set of primes in each of three given topologies 
(Theorems 5.1, 5.2 and 5.3). The characterizations we obtained for (N, V) 
and (N, V) are generalizations of Theorem 3 proved by Golomb in [5] and 
Theorems 1, 2 and 5 proved by Kirch in [6]. 
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The paper is organized as follows. In the next section we present our 
main results, and their proofs are given in Section 4. In the last section we 
examine the connectedness of the set of primes. 

3. Main results 
First we present the theorem concerning the connectedness of arithmetic 

progressions in Furstenberg's topology Tp on Z. 

THEOREM 3.1. Every arithmetic progression in Z is Tp-disconnected. 

Clearly, all bases of the topology Tp contain some arithmetic progression, 
and Z is equal to the arithmetic progression {z + 1}. So, using Theorem 3.1, 
we obtain the following corollary. 

COROLLARY 3.2. The topology Tp is not connected and not locally con-
nected. 

In the next theorem we give full characterization of the connectedness of 
arithmetic progressions in Golomb's topology T> on N. 

THEOREM 3.3. Let a, b G N. The arithmetic progression {an + b} is con-
nected in (N,V) if and only if 0 ( a ) Ç 6(6). In particular, 

i) the progression {an} is V-connected, and 
ii) if the progression {an + b} is an element of the basis B, then it is T>-

connected only for a — 1. 

We can easily see that every base of the topology V contains some dis-
connected arithmetic progression. Moreover, we have N = {n + 1}. So, 
using Theorem 3.3, we obtain (independently of Golomb's [5, Theorem 3] 
and Kirch's [6, Theorem 1] results) the following corollary. 

COROLLARY 3.4. The topology V is connected and not locally connected. 

In the theorem below we present the connectedness of arithmetic pro-
gressions in Kirch's topology T>'. 

THEOREM 3.5. Every arithmetic progression in N is V-connected. 

Clearly, immediate consequences of Theorem 3.5 are the following results 
proved by Kirch [6, Theorems 2 and 5]. 

COROLLARY 3.6. The topology V is connected and locally connected. 

4. Proofs 

Proof of Theorem 3.1. Since the space (Z, Tp) is totally disconnected and 
all arithmetic progressions are infinite, every arithmetic progression in Z is 
7/7-disconnected. • 



902 P. Szczuka 

Proof of Theorem 3.3. Let B be the base of the topology V (see (1)). Let 
us fix a, 6 G N. 

Part "only if ' . Assume that 0 ( a ) 0(6). Hence a > 1. Then there is a 
prime number p such that p | a and (p, b) = 1. We shall show that in this 
case the arithmetic progression {an + b} is T>-disconnected. 

Since p | a, we obtain 

(3) {an + b} C {pn + b}. 

Moreover, the assumption (p, b) = 1 implies {pn+b} G B and (pn+b,ps) — 1 
for all n,s G No- Let us choose t G N \ {1} such that p t _ 1 | a and pl \ a. 
Then for k G { 0 , . . . ,pt~l — 1} the progressions {p'n + (pk + 6)} are pairwise 
disjoint and D-open (as elements of the basis B) and it is easy to check that 

p ' - ' - i 
(4) {pn + b}= (J {ptn+ (pk + b)}. 

k=0 
From (3) and (4), we obtain 

p'-1—l 
{an + 6} = {an + 6} D ( J {pln + (pk + 6)} = X U V, 

k=0 
where 

X = {an + b} n {pln + b}, 

Y= (J (^{an + b}C]{ptn+(pk + b)}y 
k= 1 

Consequently, the arithmetic progression {an + b} splits into two disjoint 
sets X and Y, which are £>-open in {an + 6}. 

Now we will show both the sets, X and Y, are nonempty. Obviously the 
number b G {an + b} D {pln + 6} = X, whence X is nonempty. Further, 
by (3) we have a + b € {an + b} C {pn + b}, whence 

(5) a + b G {pn + b} n {an + b}. 

Since pl \ a, we have a + b {pln + b}. Hence 

(6) a + 6 i {p*n + 6} n {an + b} = X. 

From conditions (5) and (6) we obtain a + b G Y, and so, Y is nonempty, too. 
We thus have proved that if 0 (o ) ^ ©(6), then the arithmetic progression 
{an + 6} is P-disconnected, as claimed. 

Part "if". Now suppose the condition 

(7) 0 ( a ) C 0(6) 
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is satisfied. We shall prove that the V-disconnectedness of the set {an + b} 
is impossible. 

Assume the contrary: there are two disjoint nonempty sets 0\ and 02, 
which are D-open in {an + b}, such that {an + 6} = 0\ U 02. Hence there 
exist two "D-open sets U\, U2, such that 

(8) Oi = Ui n {an + b} and 0 2 = U2 n {an + b}. 

Since 01 and 02 are nonempty, there are positive integers 61 and b2, such that 
b\ E 0\ C U\ and 62 € 02 C U2. So, there are arithmetic progressions 
{ a i n + 61}, {a2n + 62} E B, such that 

(9) {a\n + bi} C. U\ and {a2n + b2} Q U2. 

Moreover, by (1), we have ( a i , 6 i ) = 1 and ( a 2 , b 2 ) = 1. 
If there was a prime number p with p | a and p | a\, we would have, 

by (7), that p | b. But since b\ £ {an + b}, then p | b\, which contradicts the 
condition (ai,&i) = 1. Hence, we must have 

(10) (a, a0 = 1. 

Similarly, we can show that 

(11) (a,a2) = l. 

Now let us define the set P\ = {an + 6} fl { a i n } . We claim that Pi ^ 0 
and Pi C 01. Since (a, a\) = 1, by the Chinese Remainder Theorem (CRT), 
there is a E P\. So, the set P\ is nonempty indeed. Let ¡3 be an arbitrary 
fixed element of Pi . Since 

(12) 0 E {an + b} = Oi U 02 

and 0\ fl 02 — 0, we must have 

(13) P E Oi or P E 02. 

We shall show that the second case in (13) is impossible. Otherwise, the 
inclusion 02 C U2 would imply an existence of an arithmetic progression 
{An + P} E B, such that 

(14) {An + P}CU2 and (A, 0) = 1 

(recall that U2 is "D-open). Since P E { a i n } , we would have 

(15) (ai,A) — 1 and (a,A) = l 

(in the second case in (15), if {a, A) > 1, then from (7) and (12) we would 
obtain (A, P) > 1, which, by (14), is impossible). By CRT, applied to (10) 
and (15), we would get (ai^4, a) = 1, and hence 

{ a i n + 61} fl {An + P} n {an + b} ± 0. 
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By (8), (9) and (14), we would have 

Oi N 02 = Ui N U2 N {an + b} + 0 , 

which contradicts our assumption Oi D 02 = 0. We thus have proved that 
the second case in (13) is impossible. Therefore f3 G 0\ for arbitrary (3 G Pi, 
as claimed. 

df 
In a similar way we can prove that the set P2 = {an + b} fl {a2n} is 

nonempty and P2 C 02. Let c = lcm(ai,a2). Now we define the set 
P = {an + 6} N {cn}. 

From the definitions of Pi, P2 and c it follows that 

P C P I N P 2 . 

Since (a, c) = 1 (see (10) and (11)), from CRT again, we obtain P ^ 0. 
Finally, 

P C P I N P 2 C O I N 0 2 , 

whence 0\ FL 02 ^ 0, a contradiction. So, the assumption, that the progres-
sion {an + b} may be D-disconnected, was false. 

Part (i). Observe that, if b = a, then 

{an + o} = a - N o + a = o- N = {an}, 

and obviously 0(a) = 0(6). Hence {an} is ^-connected. 

Part (ii). Obvious. 

The proof of Theorem 3.3 is complete. • 

In the proof of Theorem 3.5 we will need the technical lemma below. 

L E M M A 4 . 1 . Assumethata,b,c,d^Nandb<a. If {an+b} N {cn+d} / 0 

and a | c, then {cn + d} C {an + b}. 

Proof. Let us fix a, b, c, d G N and let b < a. Since {an + b} fl {cn + d} 0 
and a | c, then there is an element x G {an + b} fl {cn + d} such that 

rc = 6(moda) and x = d(moda). 

Hence we have 

(16) b = d(moda). 

Now let y e {cn + d}. Therefore y = d(modc). Since a | c, then y = 
(¿(moda) and, by (16), we obtain y = 6(moda). Finally, using assumption 
b < a, we have y G {an + 6}. • 

Proof of Theorem 3.5. Let & be the base of the topology V (see (2)). 
Let us fix a, b G N. We shall prove that the arithmetic progression {an + 6} 
is V-connected in N. 
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Assume the contrary: there are two disjoint nonempty sets 0\ and 02, 
which are D'-open in {an + 6}, such that {an + b} = Oi U 02. Hence there 
exist two P'-open sets U\, U2, such that 

(17) Oi = U\ n {on + 6} and 02 = U2C\ {an + b}. 

Since Oi and O2 are nonempty, there are positive integers ai and a2, such 
that 01 6 Oi C U] and a2 G 02 C U2. So, there are arithmetic progressions 
{qn + 61}, {rn + b2} G B', such that 

(18) 01 G {qn + 61} C U\ and a2 G {rn + b2} C U2. 

By (2), the numbers q and r are square-free, 61 < q, b2 < r, (q,b\) — 1, and 
(r, b2) = 1. Now we consider two cases. 

Case 1. lcm(a, q) = a or lcm(a,r) = a. 
Assume that lcm(a, q) = a. Since 

a\ G {an + b} D {qn + b\}, b\ < q and q | a, 

then Lemma 4.1 implies {an + 6} C {qn + 61}. By conditions (17) and (18) 
we immediately obtain 0\ = {an + b}. Therefore 02 = 0. If lcm(a, r) = a, 
then similarly we show that Oi = 0. So, in this case the assumption, that 
the progression {an + b} may be ©'-disconnected, was false. 

Case 2. lcm(a, q) ^ a and lcm(a, r) ^ a. 
Since q and r are square-free, there are square-free numbers q\,r\ > 2, 

such that 

(19) lcm(a,q) = aq\ and lcm(a, r) = ar\. 

Observe that q\ | q, r\ \ r, (a, q\) = 1, and (a, r i ) = 1. Hence ( a , g i n ) = 1 
and, by CRT, we obtain {an + b} fl {q\r\n} / 0. Let us choose 

( 2 0 ) b' G {an + b} n {qmn}. 

Without loss of generality we can assume that b' G 0\. Then b' / a2. 
From (17) there is an arithmetic progression {sn + 63} G B', such that 

(21) b' G {sn + 63} C U\. 

By (2), the number s is square-free, 63 < s and (5,63) = 1. Moreover, we 
have 

( 2 2 ) (s,qm) = 1. 

Indeed, if d = (s, giri) > 1, then by (20) and (21) we would have d | 63, which 
contradicts the condition («,63) = 1. Now observe that a2,b' G {an + b}. 
Hence 

(23) 02 - 6' = ka for some fceZ\{0}. 
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By (22) and (23), using Euclid's algorithm, we obtain that 

(24) aas — fiaq\r\ = a2 — b' for some a, (3 G N. 

Put £ = b' + aas. Then by (20) we have £ G {an + 6}, and by (21) we obtain 
£ G {sn + 63} C U\. Hence 

£ G {an + 6} r\U\ = 0\. 

Now observe that from (24) we also have 

£ = a2 + (faqm. 

B y (18) and (19) we obtain £ G {rn + 62} C U2, whence 

£ G {an + b} n U2 = 02. 

Finally 0\ fl 02 0, a contradiction. So, the progression {an + 6} is re-
connected. The proof of Theorem 3.5 is complete. • 

5. Prime numbers 
As we mentioned earlier, using Furstenberg's and Golomb's topologies we 

can prove the infinitude of primes. Obviously in Kirch's topology Golomb's 
proof of the infinitude of primes is true, too [5, Theorem 1], Since these proofs 
are very elegant, the following question can rise: Might the same methods be 
used to show the infinitude of some special subset of primes (e.g. twin primes 
or Mersenne primes)? It turns out that this is not possible. Consider, for 
example, Furstenberg's proof. In Furstenberg's topology 7p each arithmetic 
progression is both open and closed. As the result the union of any finite 
number of arithmetic progressions is closed. Note that 

Z \ { - 1 , 1 } = U w > 
peP 

where P denotes the set of all primes. Since 7p is Hausdorff, the set { — 1,1} 
is closed but not open. Hence ( J p e p { p z } is not finite union of closed sets 
which proves that there are an infinity of primes. This proof used the obvious 
fact that the complement of all multiples of all primes is finite. Now let P' 
be some infinite subset of P. Then the complement of all multiples of all 
primes which belongs to P' is infinite, and it is very hard to say whether 
such infinite set is closed (or possible not open) in any one of the three given 
topologies. 

In [5, Theorems 6 and 7] Golomb showed that the set of primes is P-dense 
and its interior is empty (in particular, the set of primes is not D-open). In 
the same way we can prove that the set of primes is P'-dense and its interior 
is empty in V . So, the set of primes is not P'-open. But in Furstenberg's 
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topology Tp on Z the set of primes P is not dense. Indeed, 
C1 T f P = P U { - 1 , 1 } , 

which was proved by Broughan [1, Theorem 4.2]. Now we will show that the 
interior of P in (Z, Tp) is empty. If int P / 0, then there was an arithmetic 
progression {az -f b} C int P. Recall, that the base of the topology Tp is 
the family of all arithmetic progressions {az + b}, where a G N and b G Z 
are fixed. Without loss of generality we can assume that b > a. Then, for 
zo = a + b + 1, we have 

az0 + b = a(a + b + 1) + b = a2 + ab + a + 6 = [a + b)(a + 1), 
whence azQ + b is composite (see also [5, Theorem 7]). Moreover, since the 
space (Z, Tp) is totally disconnected, the set of primes P is totally discon-
nected in (Z,Tp), also. In particular, P is 7p-disconnected in Z. 

Now we will prove another properties of primes. 

T H E O R E M 5 . 1 . The set of all prime numbers is disconnected in Golomb's 
and Kirch's topologies. 

Proof. First we will show that the set of primes P is P'-disconnected. We 
must find two sets A and B which are disjoint, nonempty, D'-open in P, and 
such that P = A U B. Define 

A = f P n A i and B = P n B x , 
where 

Ai = {3n + 2} U {5n + 1} U {5n + 2} U {5n + 3}, 

Bi = {15n + 4}. 
The sets A and B are P'-open in P. Moreover, A and B are nonempty (by 
Dirichlet's theorem) and disjoint. We will show that P = A U B. Observe 
that 

1 5 

P = PnN = Pn[J{15n + fc} = 
k=1 

= P n (Ai U Pi U {15n + 9} U {15n + 10} U {15n}) = 
= A U B u ( P n {15n + 9}) U (P n {15n + 10}) U (P D {15n}). 

Since 
P n {15N + 9} = P n {15n + 10} = P D {15N} = 0, 

then P = A U B. This proves that P is ^'-disconnected. 
Since V C T>, set P is P-disconnected also. • 

T H E O R E M 5 . 2 . The set of all prime numbers is locally connected in Fursten-
berg's topology. 
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Proof. We will show that the set of primes P is locally connected at a point 
p G P. Let G be Tp-open in P and p G G. We must find a Tp-connected in 
P neighborhood H of p which is contained in G. Since G is 7}?-open in P 

and p G G, there is an arithmetic progression {az + 6} such that 

p G {az + b} f l P C G. 

Let H = {p} . Then p G {p } C {az+b}f]P C G. Clearly, {p} is 7>-connected 
in P and {p } = { p z } fl P, whence {p } is 7^-open in P. (Recall that {p z } 
is Tp-open in Z.) So, the set of primes P is locally connected at a point p, 
which proves that P is locally connected in (Z, Tp). • 

THEOREM 5.3. The set of all prime numbers is not locally connected in 

Golomb's and Kirch's topologies. 

Proof. First we will examine the locally connectedness of the set of primes P 
in Kirch's topology. Suppose that P is locally connected in (N, T>'). Since 
{3n + 2} fl P is P'-open in P and 2 e {3ra + 2} PI P, there are X>'-open set 
H0 and ^'-connected set H, such that 

2 e Ho C H C {3n + 2} n P. 

Since Ho is D'-open in P, there is an arithmetic progression {an + 6} G 
such that 

2 € {an + b} n P C H0. 

Recall that (a, b) = 1. By Dirichlet's theorem there is a prime number 
Pi G {an + b} \ {2} . Choose p 6 {3n + 1} n P such that p > p\. Then 
obviously p ^ {3n + 2}. Note that 

p 
P = p n N = P fl ( J {pn + k}, 

k= 1 

whence, since P D {pn} fl {3n + 2} = 0, we obtain 
p-1 

P n {3n + 2} = P n U {pn + k} D {3n + 2}. 
k= 1 

Moreover we have 2,pi G H, 
p—l p—l 

2 € {pn + 2} C ( J {pn + Ä;}, P1 € W + P i } c ( J i m + k), 
k=1 k=1 

and {pn + 2} fl {pn + p i } = 0. Define 

A = PC\ {pn + P i } fl {3n + 2} and B =f P n {3n + 2} \ A. 

Then A D B = 0 and P fl {3n + 2} = A U B. Since the set {pn + kj is 
open in (N,X>') for all k G {1,2,... ,p — 1}, the sets A and B are "D'-open 
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in P. Finally, since pi E A and 2 E B, we obtain that A D H and B D H 
separate H, a contradiction. So, the set of primes P is not locally connected 
in (N ,V) . 

Since V C T>, set P is not locally connected in (N, T>) also. • 
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