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ON FUNCTIONS CONVEX IN THE DIRECTION OF THE 
IMAGINARY AXIS W I T H REAL COEFFICIENTS 

Abstract. Let y be a subclass of the class of all analytic functions in the unit disk 
A having the normalization /(0) = /'(0) — 1 = 0 . If there exists an analytic, univalent 
function m satisfying the following conditions: m'(0) > 0, A/gy m -< f and for every 

analytic function k, fc(0) = 0, there is ^A/gy & ̂  / ) => A; X m, then this function is 
called the minorant of y. Similarly, if there exists an analytic, univalent function M 
such that M' (0 ) > 0, A/g y / ^ M and for every analytic function fc, k(0) = 0, there is 

(A/gy f ^ kj => M < k, then this function is called the majorant of It is possible 
to give a number of examples of classes of analytic functions for which the majorant or 
minorant does not exist. However, if these functions exist then m (A ) and M ( A ) coincide 
with the Koebe domain and the covering domain for y, respectively. 

In this paper we determine the Koebe domain and the covering domain as well as the 
minorant and the majorant for the class consisting of functions convex in the direction of 
the imaginary axis with real coefficients. 

Introduction 
In our research we use the concept of subordination. We say that an 

analytic function / is subordinated to an analytic and univalent function F 
in A = { ( 6 C : |C| < 1} if and only if there exists an analytic function 
u> such that w(0) = 0, c j ( A ) C A and f ( z ) = F(u(z)) for z £ A. Then we 
write / -< F. 

Let A denote the set of all functions / analytic in A and normalized by 
/(0) = /'(0) — 1 = 0, and let denote an arbitrary subclass of A. 

For a given y , if there exists an analytic and univalent function m satis-
fying the following conditions: m'(0) > 0, 

( 1 ) 
fey 
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and for every analytic function k, fc(0) = 0, there is 

(2) 
fey 

then this function is called the minorant of 3̂ - The set Pl/ey i s s a id 
to be the Koebe domain for y and is denoted by Ky. Clearly, if the Koebe 
domain is a simply connected set, then the minorant exists and Ky = m(A). 

If there exists an analytic and univalent function M such that M'(0) > 0, 

(3) A 
fey 

and for every analytic function k, k(0) = 0, there is 

(4) ( / \ f ^ k ) ^ M ^ k , 
fey 

then this function is called the majorant of 3̂ - The set (J/e;y /(A) is said 
to be the covering domain for 3̂  and is denoted by Ly. Notice that if the 
covering domain is a simply connected set then the majorant exists. In this 
case Ly = M(A). 

Let Y denote the known class consisting of all functions which are uni-
valent and convex in the direction of the imaginary axis and having real 
coefficients. 

E X A M P L E S . 
1. y — S, where S C A is the class of all univalent functions in A. Then 
m(z) — \z, z € A. Hence Kg = A ^ and the majorant does not exist 
(•LS = C). 
2. y = Y. Then m(z) = z € A, (McGregor, [4]) and the majorant does 
not exist (Ly = C). 
3. y = CVBP\ where CVR& is the class of univalent, convex and odd 
functions in A with real coefficients. The set KC V R (2) was determined by 
Krzyz and Reade (see [1]). Then m maps A onto the set K C V R (2) and 
m'(0) > 0. The majorant is given by M{z) = ^ di (see [3]). 

Let n > 2 be a fixed integer. The aim of this paper is to determine the 
Koebe domain and the covering domain as well as the minorant and the 
majorant for r H The class Y(n) is the set of n-fold symmetric functions 
from Y, i.e. 

y ( n ) = {/ € Y : f(ez) = ef(z),ze A } , where e = e 3 ^ . 

We say that a set D is n-fold symmetric if for e defined above we have 
eD = D. The symbol AD is understood as {Az : z £ D}. 

The very important property of the class Y ^ is given in 
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L E M M A 1 . If f G Y^ then the straight line k : £ = e™t, t G R is the 
symmetry axis of the set / (A) . 

7TI 
Proof . The symmetry with respect to the line £ = en t, t £ R means that 
for arbitrary z, £ G A if 

7T1 TTT 

(5) ze n = Qe n 

then (6) f{z)e~$ = / ( C ) e " » . 
Assume that the condition (5) is satisfied. We can write it equivalently in 
the form 
/ . 2-irt 
(7) ( = ze - = ze. 
From properties of / G it follows that 

J(z)e = /(z)e = /(ze). 
Applying (7) we obtain f(z)e = /(C)- This condition is equivalent to (6). • 
R E M A R K 1 . The real axis is another symmetry axis of / (A) because of real 
coefficients of / G 

Moreover, from n-fold symmetry each straight line 
£ = e^kt, t € R, k = 0 ,1 , . . . , 2n — 1 is also the symmetric axis of / (A) . 

The next lemma follows from Lemma 1 and from properties of the class 
y(«). 
L E M M A 2 . The Koebe domain and the covering domain for Y^ are n-fold 
symmetric and symmetric with respect to the lines ( = e~^kt, t E R, k = 
0 ,1 , . . . , 2 n - 1. 

For a fixed n we use the notation: Aj = {( € C : 2 ( j — l)ir/n < Arg £ < 
2jir/n}, j = 1,2, ...,n and A = {£ € C : 0 < Arg£ < 7r/n}. Furthermore, 
we will write dD to denote the boundary of a set D. 

From Lemma 2 it follows that we need to determine the boundaries of 
the Koebe domain and the covering domain only in the set A. 

Koebe domain for odd n 
L E M M A 3 . If f € Y^n\ n > 3 is odd and w E df(A), where Arg w e [0, 
then the rays l\ : £ = w + it, t > 0, I2 : C = w + t > 0 are disjoint 
from / (A) . 
Proof. Let / G y<n) and w G df{A), Argw G [0, From convexity of / 
in the direction of the imaginary axis we have l\ D / (A) = 0. From n-fold 
symmetry we get that the point wek = we 1 ' " - " ' , where n = 2fc +1, does not 
belong to / (A) . Hence the ray £ = u;efc + i£, t > 0 is disjoint from /(A). 
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Fig. 1. Polygons: a) n = 5, Argv = b) n = 7, Argv = f . 

Therefore, the ray l2 = e k {wek + it, t > 0} = {w + ite k, t > 0} is disjoint 
from / ( A ) , too. • 

Prom Lemma 3 it follows that the sector, which has vertex in the point 
w and radii l\ and I2, is disjoint from / (A) . Hence we have 

COROLLARY 1. If f € n > 3 is odd then f is a starlike function. 

Let n > 3 be a fixed odd integer. 
We consider a family of open and n-fold symmetric polygons which are sym-
metric with respect to the real axis and are such that their successive vertices 
u, v, w belong to A and Argu = 0, Argu € (0, Argu; = The polygons' 
interior angles are of the measure 7r(l — 7r(l + ^) alternately. We start 
from the vertex on the real positive axis. From above it follows that these 
polygons have 4n sides. 

This set of polygons is extended on limiting cases. If v = u (Arg v = 0) 
or v — w (Arg v = then we obtain regular polygons having n sides and 
all angles measuring 7r(l — In case v — u, one of vertices belongs to the 
real positive semi-axis, and if v — w, then one of vertices belongs to the real 
negative semi-axis. 

We denote this family of polygons by V. 
The Schwarz-Christoffel formulae confirm the existence of exactly one 

analytic function which maps A univalently onto a fixed polygon of the 
family V and has positive derivative in 0. This function is of the form 

for suitable ip G 0, — and A > 0. 
L nJ 

Prom now on we choose the principal branch of the n-th root. 

7T 
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Taking A = 1 in (8) we get the function with classical normalization. 
We denote this function by F^ and the polygon A) by A^. With this 
notation all polygons of the family V can be written as \AV , A > 0. 

Moreover, let 

(9) v M = F v { e ^ ) . 

For a fixed ip, the point vi (ip) coincides with the vertex of the polygon Av 

such that its argument is from the range [0, Hence v\ is given by formula 

(10) „ : fo, 3 f j 

K ' I ' ni J Y (1 - tne t nv)2(l + tneinv)2 

and it is an injective function on [0, 
THEOREM 1. Let n > 3 be odd. The Koebe domain for Y^ is bounded, 
n-fold symmetric and symmetric with respect to the real axis. Its boundary 
in the set A is i>i([0, where v\ is given by (10). 

Proof. Let / G y(n>, n > 3 be odd. 
Assume that Aui(</?) G df(A), A > 0 , ip G [0, 
Lemma 3, Lemma 1 and n-fold symmetry of / give us 

/ ( A ) c XAV = AF¥,(A). 

This and univalence of F v lead to 

/ AFv . 

Hence 1 = / ' (0 ) < AF^(0) = A, so A > 1. Therefore, if 0 < A < 1 then 
[0, Avi(<p)] C / ( A ) . Moreover, vi{<p) G dFv{A), so vi(<p) G dKYin). 

From the facts given above we conclude that ui([0, is the Koebe do-
main's boundary of Y^ in A. Using Lemma 2 completes the proof. • 

The condition 

f l / ( A ) = f | Fv( A) 

results from Theorem 1. Since all functions belonging to the class Y^ are 
convex in the direction of the imaginary axis and starlike (by Corollary 1), 
we have 

COROLLARY 2. The Koebe domain for Y^ and odd n > 3 is convex in the 
direction of the imaginary axis and starlike. 
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T H E O R E M 2 . The function 

F(,\ - "/ q-*w)(i-*w*2n) ,, 
l y ( l - tnzn)2(i + tnzn)2 

is the minorant of the class Y(n) for odd n > 3. 

Proof. For a fixed ip G [0, we have 

5 V (1 - i"emv)2( l + Pe m v) 2 

Values F(eltp) coincide with the values of the function v\ (ip). Moreover, F 
is an n-fold symmetric and injective function on <9A, so it is univalent in A. 
Hence F is the minorant of • 

C O R O L L A R Y 3 . The minorant F of the class Y^ for odd re > 3 is convex 
in the direction of the imaginary axis (F/F'{0) G Y<")) and starlike. 

Koebe domain for even n 
L E M M A 4 . If f e y W , re is even and w G df(A), where Argw G [0, 
then the rays l\ : £ = w + it, t > 0, I2 : ( = w + e 4 ^ - 2 h , t> 0 are disjoint 
from / (A) . 

Proof. Let / G Y(n) and w G df(A), Argiu G [0, By Lemma 1 points 
and = u ; e ~ do not belong to / (A) . The function / is convex in the 

direction of the imaginary axis so Zin/(A) = 0 and {we+it, t > 0}n / (A) = 
0. Since / (A) is symmetric with respect to the line £ = e^t, t G R, we have 
Z2 n / (A ) = 0. . 

From Lemma 4 we conclude that for re > 4 the sector, which has vertex 
in the point w and radii l\ and I2, is disjoint from /(A). Observe that if 
n = 2 then the line li coincides with I2. We have 

C O R O L L A R Y 4. If f G Y r e > 4 is even, then f is starlike. 
Let re be a fixed positive even integer. 

For re > 4 we consider a family of open and re-fold symmetric polygons, which 
are symmetric with respect to the real axis and such that their successive 
vertices u, v, w belong to A and Argu = 0, Argv G (0,^), Argw = 
The polygons' interior angles at these vertices are of the measure 7r(l — 
tt(1 + tt(1 - j[), respectively. From above it follows that these polygons 
have 4n sides. 

We extend this set of polygons on limiting cases. If v = u (Argw = 0) 
then we obtain a regular polygon having n sides and all angles measuring 
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7r(l — The arguments of the polygon's vertices are equal to ^(2 j + 1), 
j = 0 , 1 . . . , n — 1. In case v = w (Arg v — the polygon has 2n sides and 
its angles are 7r(l — - ) , 7r(l + alternately. Moreover, the argument of the 
polygon's vertices are equal to ^j, j = 0 , 1 , . . . , 2n — 1. 

We denote this family of polygons by W. 
For n = 4 the sets of the family W are unbounded. Every fourth vertex of 

such a polygon is extended to infinity. For this reason both sides adjacent to 
every such vertex are parallel. In this way we obtain a star-shaped set with 
four unbounded strips. The thickness of strips is growing as Argv tends 
to j . In cases Argv = 0 and Arg v = j these sets become four-pointed 
unbounded stars. 

By the Schwarz-Christoffel formulae there exists exactly one analytic 
function which maps A univalently onto a fixed polygon of the family W 
and which has positive derivative in 0. This function is of the form 

(11) A 3 Z ^ B \ dC, 
i) 4(C" + 1 ) 2 

for suitable ip € o , -n 
and B > 0. 

Taking B = 1 in (11) we get the function with classical normalization. 
This function is denoted by and the polygon A) by B^. With this 
notation all polygons of the family W can be written as A B<p , A > 0 . 

Moreover, let us denote 

(12) v2(lp) = Gyie*). 

This means that f2 (<£>), when tp varies in [0, coincide with the vertices 
of polygons B v for which arguments are from the range [0, . Hence V2 is 

- 0 , 6 - 0 , 4 - 0 , 2 0 , 2 0 , 4 0 

Fig. 2. Polygons: a ) n = 6, Arg v = b) n = 8, Arg v = 0. 
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given by the formula 

v ' L nJ r n V ~ inem^)4( l + tneinf)2 

and it is an injective function on [0, 
We consider the function G^ in case n = 2. We have 

= J ( 1 - ( . ) » ( ! + <.) = + i1 - I Z f a . 

where a = sin2<^ G [0,1]. This function belongs to Moreover, for a 
fixed if G [0, §) 

(14) G„(A) = C\i±?-cos2 <p±ib,b>-(2siny - cos2 tp In 1 ~~ S m V 
^ 4 4 \ l + sin^J 

Furthermore, 

(15) GJj*) = cos2 tp + - (2siny? - c o s ^ l n i z ^ ^ ) . 
v ' ' 4 ^ 4 V l + sin(^/ 

In case <p = | we have 

G f ( A ) = C \ | ± z 6 , 6 > ^ } and G f ( i ) = 

T H E O R E M 3 . Lei n 6e even. XTie Koebe domain for Y^ is bounded, n-fold 
symmetric and symmetric with respect to the real axis. Its boundary in A is 
t>2([0, where V2 is given by (13). 

Proof. Let / € Y{n\ n be even. 
I. n = 2. Assume that / G Y^ and w G df(A), where Rew > 0, lmw > 0. 
Hence the points — w, w, —w do not belong to /(A). From properties of Y ^ 
it follows that four rays ki = {w+it, t > 0}, fo = {—w+it, t > 0}, £3 = —k\, 
/C4 = —/c2 are disjoint from /(A). Consequently, / is subordinated to Gv for 
a suitable tp G [0, §]. Therefore, 1 = /'(0) < G^(0) = 1 and / = G^. 

From the above we conclude that 

f | /(A) = p| G„(A). 
/ey(2) v>G[o,f] 

The assertion follows immediately from (14) and (15). 
II. For n > 4 the proof is similar to the proof of Theorem 1. • 
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C O R O L L A R Y 5 . The boundary of the Koebe domain for Y^ in A consists 
of the curve given by the parametric equation 

( x(a) = (1 - a)f 
j / \ 1 r r - \ i 1-V«1 > a G t 0 ' 1 ) 

and the point (0, 
The condition 

D / (A) = f | F„( A) 
/ e r w ve[o,=] 

for even n results from Theorem 3. Since all functions of the class Y ^ are 
convex in the direction of the imaginary axis and starlike (by Corollary 4) 
we have 
C O R O L L A R Y 6 . The Koebe domain for and even n is convex in the 
direction of the imaginary axis and starlike. 
Proof. We shall prove this fact only for n = 2. Otherwise, this corollary is 
the simple consequence of the definition of Y ^ and Corollary 4. 

Assume that the Koebe domain for is not starlike. It means that 
there are two points w\, W2 belonging to the boundary of this set such that 
Argiui = Arg u>2 € (0, IT) and |u;i| < |u;2|. Hence, there exist two functions 
GVl, GV2 € Y<® such that 

GVl (<9A) n Ai = {wi + it, t > 0} 
and 

Therefore, 

and 

A) n Ax = {w2 + it, t > 0}. 

r - I W 2 -

K l 
Combining it with the normalization of Glfil, G^ we obtain |u;i| = |ii>2|, a 
contradiction. • 
T H E O R E M 4 . The function 

_ \ J (1 - t«n 1 - t-z^)2 
K ~ I V - P 2 n ) 4 ( 1 + 

is the minorant of the class for even n. 
The proof of this theorem is similar to the proof of Theorem 2. 



554 L. Koczan, M. Sobczak-Knec, P. Zaprawa 

In case n = 2 the function G can be written in the form 
, (1 + z2)2 1-z2 2 2 3 

G ( z ) = a 9 arctan2 = -z + —zJ + ... 
4 z1 4 z 3 15 

C O R O L L A R Y 7. The minorant G of the class Y^ for even n is convex in 
the direction of the imaginary axis (G/G'{0) e F(n)) and starlike. 

Covering domain for odd n 

L E M M A 5. If f e n>3 is odd and w € / (A) , where Argu; € [0, 
then the segments 

{C = w-it, ¿ > 0 } n A 

{C = w + t > o } n A 
are contained in / (A) . 

Proof. Let / e Y(n) and w G / (A). From n-fold symmetry of / the point 
wek = where n = 2k + 1, belongs to / (A) . Since the function 
/ is convex in the direction of the imaginary axis and has real coefficients, 
the segments [u;,w\ and [wek,w£k] are contained in / (A) . Using n-fold 
symmetry of / once again the segment [we2k,w} = [we, w] is included in 
/ (A) , too. . 

Let n > 3 be a fixed odd integer. 
We consider a family of open and n-fold symmetric polygons, which are 

symmetric with respect to the real axis. For each polygon both sides diverg-
ing from the only vertex u in A are orthogonal to the radii of A in such a 
way that we obtain the polygon with 2n sides. The polygon's all interior 
angles are of the measure 7r(l — 

We extend the polygons' family as follows. If Arg u = 0 or Arg u = 
^ then we obtain a regular polygon having n sides and all angles of the 
measure 7r(l — The arguments of the polygon's vertices are equal to 
j = 0 , 1 . . . , n — 1 or j = 0 , 1 . . . , n — 1, respectively. Hence in all 
cases the polygons are convex. 

It means that the covering domain for Y^ is the same as the covering 
domain for CVR^n\ which was determined in [3]. 

T H E O R E M 5 . Let n > 3 be odd. The covering domain for Y^> is bounded, 
n-fold symmetric and symmetric with respect to the real axis. Its boundary 
in A is ui([0, where 

• J 1 w t dt 
j n/(! _$n)( l _tne2in^ (16) «1 : o , -n. 
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Fig. 3. Polygons: a) n = 5, Arg u = ^ b) n = 7, Arg u = 0. 

The covering domain possesses a similar property to the property of the 
Koebe domain (compare to Corollary 2). 

C O R O L L A R Y 8 . The covering domain for and odd n > 3 is convex in 
the direction of the imaginary axis and starlike. 

The next corollary results from Theorem 5 

C O R O L L A R Y 9 . The function 
i I 

J(z) = z \ dt 

is the majorant of the class for odd n > 3. 
Proof. Let n > 3 be a fixed odd integer. For an arbitrary fixed <p € [0, 
we have i i 

J{eitp) = ei{p \ dt. 
5 \ / ( l — — tne2inv) 

Hence the values of J(et<p) coincide with ui(ip) for all ip G [0, From 
univalence and n-fold symmetry it follows that J is the majorant of the 
class y W . • 

C O R O L L A R Y 1 0 . The majorant J of the class for odd N > 3 is convex 
in the direction of the imaginary axis (J/J'{0) E Y^ J and starlike. 

Applying the hypergeometric function one can write J in the form 

n n sin(7r/n) 

Since for all * e A there is \J(z)\ < |J(1)| - ^ ( I 1 1;1) • ^ f a = 
1 - where B means the beta Euler function, so we have n v n' n /' ' 
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COROLLARY 11. For oddn> 3 we have sup{|/(z)| : / e Y^n\z £ A} = 

Covering domain for even n 

LEMMA 6. If f £ n is even and w £ / (A) , where kvgw £ [0, then 
the segments 

{C = w-it, t > 0 } n A 

|C = to + t > 0 j n A 
are contained in /(A). 

Proof. Let / £ YW and w £ / (A) , where Argw € [0, By Lemma 1 the 
point we — we~ belongs to / (A) . From convexity of / (A) in the direction 
of the imaginary axis and symmetry with respect to the real axis we obtain 
the segments [uJ, w\ and [we, we] are contained in / (A) . Moreover, using 
n-fold symmetry of / once again we get [w, we'2] C / (A) . • 

Let n be a fixed positive even integer. 
For n > 4 we consider a family of open and n-fold symmetric polygons, 

which are symmetric with respect to the real axis and such that two succes-
sive vertices u, v belong to A and Argu £ (0, Arg v = Moreover, for 
each polygon one of its sides diverging from the vertex u is orthogonal to 
the real axis. The polygon's interior angles adjacent to these vertices are of 
the measure 7r(l — 7r(l + yj . Hence these polygons have 3n sides. 

For n > 6 we extend the family of polygons on limiting cases. If Arg u = 0 
then we obtain a regular polygon having 2n sides and angles 7r(l — 
alternately, counting from the vertex on the real positive semi-axis. In case 
u = v the polygon is regular and has n sides and angles of the measure 
7r(l — The arguments of the vertices of such a polygon are equal to 

+1), j = 0 , 1 . . . , n — 1. This family of polygons will be denoted by U. 
From the Schwarz-Christoffel formulae there exists exactly one analytic 

function, such that its derivative in 0 is positive and it maps A univalently 
onto a fixed polygon of the family U. This function is of the form 

2 / (Cn 4- I")2 

(17) A B Z ^ D \ ? - . ^ J " ; =— 

T 71 
for suitable o? £ 0, — L n 

and D > 0. 

Taking D = 1 in (17) we get the function with classical normalization. 
We denote this function by Hv and the polygon Hv(A) by D^. With this 
notation all polygons of the family U can be written as ADv , A > 0. 
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Moreover, let us denote 

(18) M<P) = 
With this notation u2(<p) is the vertex of polygon D^, whose argument is in 
[0,*]. Hence 

(19) u2 : [O, - 1 3 ip ^ eilfi \ ? + v ' L nJ ^ J y (1 - f n ) 2 ( l - tne2%nv)2 

Obviously, 112 is an injective function on [0, 

T H E O R E M 6 . Let n > 6 be even. The covering domain for the class Y^ is 
bounded, n-fold symmetric and symmetric with respect to the real axis. Its 
boundary in A is U2QO, where «2 is given by (19). 

P roo f . Let / e r ( n ) , n > 6 be even. 
Assume that Au2(ip) 6 df(A), A > 0, <p € [0, By Lemma 6 

/ ( A ) d ADv = XH^A). 

Combining it with univalence of H v it follows that 

A Hv < f . 
Hence A = Atf^(0) < / ' (0) = 1. Therefore, if A > 1 then Au2(<p) £ / ( A ) 
and if 0 < A < 1 then [0, Au2(</?)] C / (A) . Moreover, u2{tp) € A), 
which means that U2{<p) S dLY(n). Hence M2QO, is the boundary of the 
covering domain for Y ^ in A. From Lemma 2 we get the conclusion of this 
theorem. • 

T H E O R E M 7 . The covering domain for Y^ is unbounded, 4-symmetric 
and symmetric with respect to the real axis. Its boundary in A is «2((0, \]), 
where u2 is given by (19). 

The proof of Theorem 7 is similar to the proof of Theorem 6. 
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T H E O R E M 8 . The covering domain for Y^ is the whole plane C. 

Proof. Let n — 2. For the function which was defined above, we have 
= a n d H \ = 

Hence 
C = Hq(A) U i î | ( A ) c ( J / ( A ) . . 

/ e r ( 2 ) 

For even n > 4 by Theorem 6 and Theorem 7 

(J / ( A ) = (J Hv( A ) . 

All functions belonging to the class Y ^ are convex in the direction of the 
imaginary axis and starlike (by Corollary 4) so we have 

C O R O L L A R Y 1 2 . The covering domain for Y^> and even n > 4 is convex 
in the direction of the imaginary axis and starlike. 

The proof of the following corollary is similar to the proof of Corollary 9. 
C O R O L L A R Y 1 3 . The function 

l 
m a - A n/ (i + t-zny 

is the majorant of the class for even n> 4. 

C O R O L L A R Y 1 4 . The majorant H of the class Y^ for even n > 4 is convex 
in the direction of the imaginary axis 

(H/H'(0) € yW) and starlike. 

Since \H(z)\ < \H(1)\ = § we have 

CO R O L L A R Y 1 5 . For even n we have 
B(l 

n V I / o r n > 6 

oo for n = 2 or n = 4. 

2 

sup{|/(z)| : f e Y M , z e A } -
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