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Abstract . The present paper deals with the study of superior variation m + , inferior 
variation m~ and total variation |m| of an extended real-valued function m defined on 
an effect algebra L; having obtained a Jordan type decomposition theorem for a locally 
bounded real-valued measure m defined on L, we have observed that the range of a 
non-atomic function m defined on a D-lattice L is an interval (—m_( 1), m + (1)). Finally, 
after introducing the notion of a relatively non-atomic measure on an effect algebra L, we 
have proved an analogue of Lyapunov convexity theorem for this measure. 

1. Introduction 
Let 7i be a Hilbert space and let S(7i) be a partially ordered group 

of all bounded self-adjoint operators on 7i. Put E(H) = {A e S(7i) : 
0 < A < I}. If a quantum mechanical system T is represented in the 
usual way by a Hilbert space H, then the elements of E(7i) correspond 
to effects for T [29, 30]. Effects are of significance in representing un-
sharp measurements or observations on the system T [10], and effect val-
ued measures play an important role in stochastic quantum mechanics [1, 
36], As a consequence, there have been a number of recent efforts to es-
tablish appropriate axioms for logics, algebras, or posets based on effects 
[13, 19]. In 1992, Kopka defined D-posets of fuzzy sets in [18], which is 
closed under the formations of differences of fuzzy sets, while studying the 
axiomatical systems of fuzzy sets. A generalization of such structures to 
an abstract partially ordered set, where the basic operation is the differ-
ence, yields a very general and, at the same time, a very simple struc-
ture called a D-poset. A common generalization of orthomodular lattices 
and MV-algebras is termed as effect algebras introduced by Bennett and 
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Foulis [5] in 1994, while working on quantum mechanical systems. Such 
structures are being frequently used because of their wide range of appli-
cations in quantum physics [6], mathematical economics [16], fuzzy theory 
[31] and functional analysis [37]. The equivalence of D-posets and effect 
algebras is proved by Foulis and Bennett [5] and independently by Pulman-
nová [32], 

The decomposability of a vector measure was first studied by Rickart in 
1943 [33], where he established a Lebesgue decomposition theorem for the 
class of "strongly bounded" additive measures. Several Jordan type decom-
position theorems are exhibited by Diestel and Faires in [12]. Afterwards, 
Faires and Morrison [15] exposed conditions on a vector valued measures 
that ensure vector valued Jordan type decomposition theorem to hold. A 
Jordan type decomposition theorem for vector measures, defined on an al-
gebra of sets, with values in an order complete Banach lattice is proved by 
Schmidt [34]. Up to slight modification, the result of [35] extends to the case 
where domain of the vector measure is a ring of sets. It is also possible to 
give a common approach to vector measures on a Boolean ring and linear 
operators on a vector lattice. A first step in this direction was done in [34], 
where real-valued case was studied. The method presented there is based on 
a common abstraction of Boolean rings and lattice ordered groups. This ap-
proach can be refined and fitted to the vector valued case, and it then yields 
results of [12, 15, 35] on Jordan decomposition without appeal to regularity 
of representing linear operators. Recently, a Jordan type decomposition for 
a weakly tight real-valued function defined on a sublattice of I x has been 
studied in [22]. 

Suzuki in [38], for the first time introduced and investigated the concepts 
of atoms of fuzzy measures. Pap in [31], further introduced and studied 
atoms of null-additive set functions and proved a Saks type decomposition 
theorem. Also an illustrative study using the concepts of the atoms is done 
in [20, 21, 23-26]. An important problem in measure theory is to describe 
the properties of the range of the measures [9, 17]. One of the most famous 
theorem of measure theory is Lyapunov's convexity theorem, which states 
that the range of a non-atomic cr-additive measure on a cr-algebra with values 
in a finite dimensional vector space is convex. Blackwell [7] proved extensions 
of results of Lyapunov [27]. A simplified proof of Lyapunov's result has been 
given by Halmos [17]; it was shown that if each component of a completely 
additive set function is non-atomic, the range of this function is a convex 
set. Several authors [8, 11, 14, 28], devoted their study to range of certain 
measures. A generalization of Lyapunov's convexity thoerem for measures 
on effect algebras and for measures defined on a weaker algebraic structure 
than effect algebras has been proved by Barbieri [4]. 
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The paper is organized as follows: Section 2 contains prerequisites and 
basic results on an effect algebra L. The notions of superior variation m + , 
inferior variation m~ and total variation |m| of an extended real-valued func-
tion m defined on L are studied elaborately in Section 3. In this section, 
we have given a Jordan type decomposition theorem for a locally bounded 
real-valued measure m defined on L, followed by various properties in the 
context of functions m + , m~~ and |m| (cf. [3]). In Section 4, using the notion 
of an atom of a real-valued measure m [24, 25], we have showed that the 
range of a locally bounded real-valued cr-additive, non-atomic function m 
on a D-lattice L is an interval (—m~(l), m + ( l ) ) ; characterizations of non-
atomicity of m are established and used in obtaining this result (cf. [4]). In 
Section 5, we have proved an analogue of the Lyapunov convexity theorem 
for a relatively non-atomic measure defined on a cr-complete effect algebra L. 

2. Preliminaries and basic results 
First of all, we shall give some preliminaries and basic results from effect 

algebras, which can be found in [13] and the references therein. 
An effect algebra (L;©,0,1) is a structure consisting of a set L, two 

special elements 0 and 1, and a partially defined binary operation © on 
L x L satisfying the following conditions for a, b, c G L: 

(1) a © b = b © a, if a © b is defined; 
(2) a © (b © c) = (a © b) © c, if one side is defined; 
(3) for every a £ L, there exists a unique b G L such that a © b = 1 (we put 

a± = by, 
(4) if a © 1 is defined, then a = 0. 

For brevity, we denote an effect algebra (L; ©, 0,1) by L. In an effect 
algebra L, a dual operation © to © can be defined as follows: a © c exists 
and equals b if and only if £>©c exists and equals a. We say that two elements 
a,b G L are orthogonal, and we write a J_ b, if a © b exists. If a © b = 1, 
then b is called orthocomplement of a and write b = a-1. It is obvious that 
I-1 = 0, (a^)"1 = a, a J_ 0 and a © 0 = a, for all a G L. Also, for a,b G L, we 
define a < b if there exists c G L such that d i e and a © c = b. It may be 
proved that < is a partial ordering on L and 0 < a < l ; a < f e < = > 6 - L < a J - ; 
and a < b1- a _L b for a, b G L. If a < 6, then the element c G L such that 
c i a and a © c = b is unique, and satisfies the condition c = (a © b-L)-L (we 
put c = bQ a). 

In a natural way, the sum of more than two elements is obtained: If 
ai, ci2, . . . , an G L, we inductively define ai©a2®.. .©an = (aiffi.. .©an_i)ffi 
a n , provided that the right hand side exists. The definition is independent 
on permutations of the elements. We say that a finite subset {ai, a ^ , . . . , a n } 
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of L is orthogonal if ai © <22 © . . . © an exists. For a sequence {an}, we say 
that it is orthogonal if, for every n, 0 i < n ai exists. If moreover, sup„ 0 i < n aj 
exists, then the sum an of an orthogonal sequence {a n } in L is defined 
as sup we denote by N the set of all natural numbers and by R™ the 
n-dimensional Euclidian space. An effect algebra L is called a a-complete 
effect algebra, if every orthogonal sequence in L has its sum. If (L, <) is a 
lattice, then we say that effect algebra is a lattice ordered effect algebra (or a 
D-lattice). The notion of u-continuity of a D-lattice is, as usual, expressed 
in terms of monotone sequences: we write an | a (respectively, an j a) 
whenever {a n } is an increasing sequence in L and a = supn an (respectively, 
{ a n } is a decreasing sequence and a = infnan). The lattice (L, <) is said 
to be a-continuous if an ] a implies an Ab 1 a Ab (or equivalently, an j a 
implies an V b J. a V b) for all b G L. A function m defined on a D-lattice L 
with values in Rn is called modular, if m(a V b) + m(a Ab) = m(a) + m(b) 
for a, b G L. A function m defined on an effect algebra L with values in R, 
is called locally bounded if, for any a G L, sup{m(6) : b ^ a,b G L} exists. 
A function m defined on an effect algebra L with values in Rn is called a 
measure on L, if a, b G L, a _L b implies m(a © b) = m(a) + m(b). It is clear 
that m is a measure if and only if b < a implies m(a) = m(b) + m(aQb). We 
say that m is a-additive, if for every orthogonal sequence {an} in L such that 
®n an exists, m ( 0 n an) = X ^ i m(an)- The function m is called continuous 
from below (respectively, continuous from above), if an € L, an ^ an+\, n G 
N m (V^Li an) — limn_,oo m,(an), provided an exists (respectively, if 
an G L,an^ a n + i , n G N and m(ai) < 00 => m (A^Li an) = limn^oo m(an), 
provided /\^=1an exists) (cf. [25]). 

Let us recall the following results, which we shall use in subsequent sec-
tions: 

2.1. Assume that a, b, c are elements of an effect algebra L. 

(i) If a ^ b, then b = a © (b © a). 
(ii) If a -L b, then a < a © b and (a © b) Q a = b. 

(iii) If a ^ b ^ c, then (b © a) < (c O a). 
(iv) If a ^ b and c <bQ a, then a _L c and a © c < b. 

2.2. [2] Let L be a a-complete effect algebra. If {an} is an increasing (re-
spectively, decreasing) sequence, then supn an (respectively, infn an) exists. 

2.3. [2] Let ao,a\,... ,an be in L with ao < a\ < ... < an and let bi = 
ai © a^ 1, for every i G { 1 , 2 , . . . , n}. Then {61,62, • • •, bn} is orthogonal and 
61 © b2 © • • • © bn = an © a0. 

2.4. [2] Let m : L —> Kn be a measure. Then the following assertions are 
equivalent: 
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(i) m is (7-additive. 
(ii) m is continuous from below. 

(iii) m is continuous from above. 
(iv) an | 0 implies lim n—• oo m(an) = 0. 

3. A Jordan type decomposition theorem 

DEFINITION 3.1. (cf. [24]) Let M be an extended real-valued function 
defined on an effect algebra L, that is, m : L —> [—00,00], with m(0) = 0. 
Then for a 6 L, 

(i) superior variation of m is defined by 

m+(a) = sup{m(6) : b ^ o, b 6 L} ; 

(ii) inferior variation of m is defined by 

m~(a) — — inf{m(6) : b ^ a, b € L} 
= sup{—m(b) : b ^ a,b G L}; 

(iii) total variation of m is defined by 

|m| = m + + m~~. 

R E M A R K 3 . 1 . (i) 0 < m+(a) < 00, 0 < m~(a) < 00, 0 < |m|(a) < 00, 
a E L; 

(ii) m+(0) = 0 = m~(0), |m|(0) = 0; 
(iii) m~ = (—m)+, m+ = (—m)~\ 
(iv) —rn~(a) ^ m(a) ^ m+(a), |m(a)| < |m|(a), a € L. 
(v) m + (a ) < m+(b), m~(a) < m~(b), |m|(a) < |m|(6), whenever a,b € L, 

a < b. 

T H E O R E M 3 . 1 (Jordan type decomposition theorem). If m is a locally 
bounded real-valued measure defined on an effect algebra L, then m can be 
written as 

m - m + — m~. 

If m is a real-valued modular measure defined on a lattice ordered effect 
algebra L, then the decomposed parts m+ and m~ are measures on L (and 
hence |m| is also a measure on L). Furthermore, if m is a locally bounded 
real-valued a-additive function defined on a a-continuous D-lattice L, then 
the decomposed parts m+, m~, and \m\ are also a-additive. 

Proof. Let e > 0, and let a G L. Then there exists b € L such that b ^ a 
and m+(a) — e< m(b). Since aQ b < a, we have —m(aQb) < m~(a). Thus, 
we get 

m + (a ) — e — rn~{a) < m(b) + m(a © fc), 
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which yields that 

m+(a) — m~(a) — e < m(a). 

Letting £ —• 0, we obtain 

(1) m+(a) — m~ (a) < m(a). 

Further, since (1) is true for any m, with the aid of Remark 3.1(iii), we have 

m+(a) — m~(a) > m(a). 
Thus, m(a) = m+ (a) — m~(a), that is, m = m+ — m~. Next, we will prove 
that m+ is a measure. We have proved in [24], that for a, b G L with a _L b, 

(2) m + ( a © 6 ) < m+(a) + m+(b). 

(For completeness, we give the proof of (2): let a, b G L such that a _L b, and 
let c G L such that c < a © 6. Set d = cAa and e = (c V a) © a. The relation 
e < a i < a 1 V c i = (aA c)-1, yields that d .Le. Using modularity of m, we 
have m(d © e) = m(d) + m(e) = m(c A o) + m((c V a) Q a) = m(c). Since 
d < a and e < ((a©6) Va)©a = (a©6)©a = b, then from m(c) = m(d©e), 
the assertion follows.) 

By Definition 3.1 (i), (ii), there are sequences {a n } and {6n} of ele-
ments from L such that an < a, bn < b with limn_,oo m(an) = m+(a), 
l im^oo m(bn) = m+{b). Obviously, an _L bn for each n. Therefore, from 
m(an®bn) = m(an) + m(6n), we have limn_>00m(an©6n) = m+(a) + m+(b). 
Further, an © bn < a © b yields that 

(3) m + (a © 6) > m + (a) + m+(b). 

From (2) and (3), we get m + (a © b) = m+(a) + m+(b), that is, m+ is a 
measure. By similar argument, we can show that m~~ is a measure, and so 
also |m|. 

Now, we will prove cr-additivity of m + . Let an ] a, a,an G L. Then 
m+(an) < m+(a), for every n. Thus the increasing sequence {m+(an)} 
converges to a limit I, say, where I < m+(a). For any element ò G L, 
b < a, we have m(b A an) < m+(b A an) < m+(an). Further, since L is 
cr-continuous, we get b A an | b, and therefore cr-additivity of m yields that 
limn-joo m(b A an) = m(6). Hence, m(b) < I. As ò G L is arbitrary, we get 
m+(a) < I. It follows that m+(a) = I, that is, lim^oo m+(an) = m+(a). 
Further, since m+ is a measure, in view of 2.4, m+ is a-additive. The 
cr-additivity of m~ and |m| are obvious. • 

From now onwards, we shall study various properties in the context of 
functions m + , m~ and |m|, which are consequences of their respective defini-
tions. For this, let m be a real-valued function defined on an effect algebra L. 
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DEFINITION 3.2. m is called monotone increasing (monotone decreasing) 

in L, if for every a,b G L with b < a, we have m(b) < m(a) (m(b) > m(a)). 

REMARK 3.2. (i) If m is a measure on L, then m is monotone increasing 
(monotone decreasing) in L if and only if m(a) > 0 ( m ( a ) < 0) for 
every a G L. 

(ii) m + , m~ and |m| are monotone increasing. 
(iii) The representation m = m + — m~ is distinguished by the following 

property: if m is a locally bounded measure on L and m = m\ — m2, 
where m\ and m2 are measures and monotone increasing, then for every 
a £ L, we have: 

m+(a) < m i (a ) , m~(a) < 7712(a). 

PROPOSITION 3.1. ( i ) If m is a measure and monotone increasing (mono-

tone decreasing) in L, then m+ = |m| = m, m~ = 0 ( m ~ — |m| = — m, 

m + = 0). 

(ii) Let m be a measure. If m~ = 0 ( m + = 0), then m is monotone increas-

ing (monotone decreasing). 

(iii) If m = m\ + m2, then m+ < m+ + m j , m~ < m^ + m2 and |m| < 

+ \ m 2 \ . 

( iv) If m = mi — m2, then m + < m^ + m^, rn~~ < m^ + m j and |m| < 

|mi| + |m2|. 
(v ) If m\ < m2, then mf < m2 and m~[ > rn^. 

DEFINITION 3.3. Let m be a real-valued function defined on an effect 
algebra L with m(0 ) = 0. An element a G L is called a null element for m 
(symbolically written as: a —m 0), if for all b < a, b G L, we have m{b) = 0. 

Note that 0 = m 0. 

PROPOSITION 3 .2. ( i ) a =m 0 if and only if \m\(a) = 0, a G L. 

(ii) a = m 0 if and only if m+ (a) = m~(a) = 0, a G L. 

(iii) a =m 0 if and only if a =|m| 0, a G L. 

( iv) a =m 0 if and only if a =m+ 0 and a =m- 0, a G L. 

(v ) If m is monotone increasing and monotone decreasing both, then a =m 

0 if and only if m(a) = 0, a E L. 

(vi ) If m — m\ + m,2 (or m — rn2), then a = m i 0 and a = m 2 0 imply 

that a =m 0, a G L. 

(vii) If a —m 0 and b < a, a,b G L, then b = m 0. 

4. Non-atomic measures 
Let m be a real-valued function defined on an effect algebra L. Firstly, 

we shall recall the notion of an atom of a measure m defined on an effect 
algebra L, which has been studied in [24, 25]. 
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D E F I N I T I O N 4 . 1 . An element a G L with m(a) ^ 0 is called an atom of 
m (or an m-atom), if 

(i) m(b) = 0 for all b < a, b G L (that is, a =m 0) or 
(ii) m(a) = m(b) for all b < a, b G L. 
In case there are no atoms of m in L, m is called non-atomic on L. 
T H E O R E M 4 . 1 . Let m be a locally bounded real-valued measure defined on 
an effect algebra L. Then the following conditions are equivalent: 

(i) m+ and m~ are non-atomic. 
(ii) \m\ is non-atomic. 

(iii) m is non-atomic. 
Proof. (i) => (ii): Let a G L be a |m|-atom. Let b < a, b G L with 
m+(b) ^ 0. Obviously, |m|(6) ^ 0 and hence |m|(a) = |m|(6), which yields 
that a G L is an m+-atom. 

(ii) (iii): See proof of Theorem 5.5 of [24]. 
(iii) (i): Let a € L be an m+-atom, and let b < a, b G L with m(b) ^ 0. 

Obviously, m+(b) / 0 and hence m+(a) = m+(b), which yields that 
(4) m(a) < m(b). 
From (4) and Theorem 3.1, we have 

(5) m+(a) — m~(a) < m(b). 
Replacing m by —m in (5), we get 
(6) m(a) > m(b). 
From (4) and (6), a G L is an m-atom. • 
T H E O R E M 4 . 2 . Let m be a [0, OO)-valued a-additive function defined on a 
a-complete effect algebra L. Then m is non-atomic on L if and only if for 
a given element a G L with m(a) > 0 and e > 0, there exists b G L, b < a, 
such that 0 < m(b) < e. 

Proof. The if part: Obvious. 
The only if part: Suppose the contrary and choose an element a G L 

with m(a) > 0 and io > 0, for which m(b) ^ to holds if b ^ a, b G L and 
m(b) > 0. Define 

¿1 = inf{ra(6) : b G L,b < a, m(b) > 0}. 
Then obviously 0 < io ^ h. Take ai ^ a, a\ G L with t\ ^ m(ai) < t\ + 1 
and setting 

t2 - ini{m(b) :be L,b^ ai,m(b) > 0}. 
Choose <Z2 ^ a\ with ¿2 ^ m(a2) < ¿2 + 5- Continuing the process in the 
same manner, we obtain sequences {tn} and {an} such that to ^ t\ ^ ^ 
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... ^ m(a) and a ^ ^ a? ^ . . . with 
/ X 1 

tn ^ m(an) < tn + —, 

for all n. Using 2.2, put ao = A%Li an• Clearly, in view of 2.4, we have 
m(ao) = limn^oo m(an) = limn-»,» tn > 0. Let b ^ ao with m(b) > 0. Then 
n(ao) ^ /j,(b) ^ tn, for any n and hence /j,(b) = fi(ao). This gives that ao G L 
is an atom of m, a contradiction. • 
T H E O R E M 4 . 3 . Let m be a locally bounded real-valued a-additive function 
defined on a a-continuous, a-complete D-lattice L. If m is non-atomic on L, 
then m takes every value between — m ~ ( l ) andm+{ 1) . 

Proof. Firstly, we will prove that if m is a [0, oo)-valued cr-additive, 
non-atomic function defined on a a-complete effect algebra L, then m takes 
every value between 0 and m( 1). For this, let 0 < t < m(l). According to 
Theorem 4.2, there are elements c € L such that 0 < m(c) < t. Let 

si = sup{m(c) : c G L,m(c) ^ t}. 
(Obviously 0 < si ^ i). Then there exists an element c\ G L such that 
f < m(ci) ^ si. Let 

S2 = sup{m(c) : c € L, c\ ^ c, m(c) ^ t}. 
Then there exists an element C2 G L such that c2 ^ c\ and S2 — < m{c2) ^ 
S2 • Continue this construction inductively to obtain 

sn = sup{m(c) : c G L, c„_i ^ c, m(c) ^ t}, 
and then there exists Cn ^ Cn-\, Cn £ L such that 

si . . 
sn - T^r < m\Cn) ^ sn-271 

It is clear that {sn} is a decreasing sequence and {cn} is an increasing se-
quence of elements in L such that d = Vni i °n € L (using 2.2) and there-
fore, in view of 2.4, we get limn_»oo sn — limn_>oo ji(cn) = [¿(d). Therefore 
fi(d) — limn_xxi sn = s (let). Clearly s ^ t. Now we claim that s = t. For, 
otherwise, let us suppose that s < t. Since 0 < t < /i(l), we get fi(lQd) > 0, 
d G L and therefore, by Theorem 4.2, we obtain an element b of L such that 
b < ( l e d ) and s < /x(d©6) < t. But then d®b ^ Cn-i, for all n > 1, which 
yields that /j,(d®b) < sn, for all n. This will further imply that /i(d©6) ^ s, 
a contradiction. Thus /i(d) = t as required. Finally, the conclusion follows 
from Theorem 3.1 and Theorem 4.1. • 

5. Relatively non-atomic measures 
Let T be the class of Borel subsets of the real line R and m = (mi, 7712), 

where mi is the Lebesgue measure and 1712(A) counts the number of integers 
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in the set A^T. Then the range TZ of m is not convex but one may observ 
that if a point (a, b) in TZ lies on the line segment connecting the zero vector 
and m(A), then there exists A' C A, A' G JF, such that m(A') = (a,b). In 
this section, we have introduced the notion of relative non-atomicity in an 
effect algebra which covers the situation of this kind and proved analogue of 
Lyapunov convexity theorem. For this let us assume that m is a <7-additive 
function defined on an effect algebra L, whose range 7Z is a subset on n-
dimensional Euclidian space Mn and each component of m is non-negative. 

D E F I N I T I O N 5 . 1 . The function m is said to be non-atomic relative to TZ 
if for every element a G L and every number a with 0 < a < 1 such that 
am(a) G 7Z, there exists a' < a, a' G L and a number a' with 0 < a' < 1 
such that m(a') = a'm(a). 

D E F I N I T I O N 5 . 2 . Let a G L. Let us define 71(a) = {r e 71 : r = am(a) 
with 0 < a < 1}. Let ao = inf{a : a > 0, am(a) € Tt). Then we define 
ro (a) = aom(a). 

L E M M A 5 . 1 . In Definition 5 .1, we may choose a' G L and a' such that 
a! < a. 

Proof. Let us suppose that the conclusion of the lemma is false. Let 
a' < a, a', a G L, such that m(a') = a'm(a) with 0 < a' < 1. Since 
m is a measure, m(a © a') = (1 — a') m(a) and a! > a , 1 — a' > a. 
Hence a < Now, r = am(a) = (^¡)o!m(a) = (jp)m(a'). Similarly, 

r = m(a © a')- Hence using the definition and the above procedure 
separately to the elements a' and a Q a', we obtain that a < The ap-
plication of the same procedure indefinitely yields that a = 0, which is a 
contradiction. • 

L E M M A 5 . 2 . Let m. be non-atomic relative to TZ defined on a a-complete 
effect algebra L. Then for every a G L, there exists b < a, b G L such that 
m(b) = ro(a) = am(a) for some a, with 0 < a < 1. 

Proof. Let a G L. If ro(a) is a null vector, then we can choose b = 0 G L 
and a = 0, and if ro(a) = am(a), then we can choose b = a and a = 1. If 
ro(a) G 7Z(a), then the conclusion is obvious from Lemma 5.1. Otherwise, we 
can obtain a strictly decreasing sequence of numbers {an} with 0 < a n < 1 
such that ro(a) = l im^oo anm(a), and such that anm(a) G 7Z(a). But again 
the usage of Lemma 5.1, yields a sequence of numbers {c>4} and a sequence 
of elements {&„} from L, which may be chosen as • • • bn < bn_i < • • • < 62 < 
b\ < a and such that l im^oo m(bn) = lim„^oo a'nm(a) = ro(o). Using 2.2, 
put b = A^L i bn. In view of 2.4, clearly b G L satisfies the conclusion of the 
lemma. • 
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L E M M A 5 . 3 . Let m be non-atomic relative to H defined on a a-complete 
effect algebra L. Let a G L and suppose b < a, b € L satisfies the conclusion 
of Lemma 5.2, that is, m(b) = ro(a). Then either m(b) is a null vector or 
m(a) is an integral multiple ofm(b). 

Proof. Let m(b) be not a null vector, that is, m(b) = am(a) for some a with 
0 < a < 1. If a = 1, then there is nothing to do. Now, let us suppose that 
0 < a < 1. To satisfy the conclusion of Lemma 5.2, there exists b' < aQb, 
b' G L such that m(b') = ro(a © b) = a'm(a Qb) = a ' ( l — a)m(a) for some 
a' with 0 < a' < 1. From the definition of ro, it follows that a'(\ — a) > a. 
If a < a ' ( l — a), then m(b) — j m(b'). Now, since m is non-atomic 
relative to TZ, there exists b" < b', b" G L and a" with 0 < a" < 1 such 
that m(b") = a"m(b'). But this is a contradiction to the fact that b' 6 L is 
minimal for aQb, that is, m(b') = ro(a Q b). Hence m(b') — m(b). Further, 
if m(a © b © b') is a null vector, then there is nothing to do. Otherwise, 
we repeat this process. Clearly this process must stop in a finite number of 
steps, and the lemma is proved. • 

L E M M A 5 . 4 . Let m be non-atomic relative to H defined on a a-complete 
effect algebra L. Let a G L and suppose ro(a) is not a null vector. Then 
a E L can be written as the sum of finitely many orthogonal elements, each 
having measure ro(a). 

Proof. Follows by the usage of the same technique as in the proof of the 
Lemma 5.3. • 

L E M M A 5 . 5 . Let m be non-atomic relative to 1Z defined on a a-complete 
effect algebra L. Let a E L and suppose ro(a) is not a null vector. Then 
every r G 71(a) is a positive integral multiple ofro(a). 

Proof. Let r G V,(a), that is, r = am(a) with 0 < a < 1. From Lemma 5.3, 
there exists b < a, b £ L such that m(a) = nm(b) = nro(a) for some positive 
integer n. If a — 1, then there is nothing to prove. Now let us suppose that 
0 < a < 1 and that a = { J ; where k is an integer with 1 < k < n and I is 
a number with 0 < I < 1. The case k = 0 is impossible for in that case a < ^. 
Now r £ 7Z implies that there exists c € L such that r = m(c). Now consider 
ro(c) = a'm(c) = a'am(a) for some a with 0 < a' < 1. If a' = 0, then ro(a) 
is a null vector, contradicting to the hypothesis. Consequently, from Lemma 
5.3, a' > 0 and m(c) = im(c\) for some c\ < c, c\ e L and some positive 
integer i. Now m(b) = m(a) = and hence (j) < ( ^ j ) - Since 
k + I is not an integer, we have k + I < i. But then m(ci) = m(a) 
and < which is a contradiction to the fact that is minimal. 
Hence k + 1 must be an integer and the lemma is proved. • 
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THEOREM 5.1 (Lyapounov's convexity type theorem). Let m be a non-
atomic function relative to TZ defined on a a-complete effect algebra L. Let 
a E L and r E 71(a). Then there exists b < a, b E L with r = rn(b). 

Proof. Let a E L. If ro(a) is not a null vector, then conclusion of the 
theorem follows from Lemma 5.4 and Lemma 5.5. Now let us suppose that 
ro(o) is a null vector. Since r E 7Z(a), we have r = am(a) for some a with 
0 < a < 1. If a = 0 or a = 1, then the conclusion is obvious. Let us 
assume now that 0 < a < 1. Consider the family T = {b E L : b < a 
and m(b) = /3m(a) with 0 < (3 < a}. Let us define a partial order < on T 
by bi < &2, bi, 62 £ T and corresponding [3\ and 02 satisfy (3\ < (3%. Let 
us define a¿ = 6¿ © 6¿_i; bo = 0. In view of 2.3 and by Zorn's lemma, T 
has a maximal element, say b, and we may suppose m(b) = (3m(a). Now 
we shall show that ¡3 = a. If possible, let us suppose that ¡3 < a. Since 
ro(o) is a null vector, it follows easily that ro(a © b) is also a null vector. 
Hence we can find an arbitrary small positive number 7 and a corresponding 
element b' < aQb, b' E L such that m(b') = 7 m(a Qb) = 7(1 — (3)m(a). Let 
b" = b © b'. Then m(b") = [¡3 + 7 ( 1 - /3)] m(a) and the choice of sufficiently 
small 7 contradicts to maximality of b. Thus (3 = a and the theorem is 
proved. • 
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