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GEOMETRY OF PRE QUASI HOMOGENEOUS 
POLYNOMIALS OF TYPE (1/2,1/4) 

Abstract . In this article we study the geometry of the orbits of the space V which 
consists of pre quasi homogeneous polynomials of type g(x,y) = aix2 + a2xy2 + a$y4 + 
a4xy 4- asy3 + aex + ajy + agy2 with a, £ R, for all i = 1 , . . . , 8 under the action of 
the group G := {h(x,y) = (ax + /3y2,5y), with a, 6 > 0}. To study these orbits we 
observe first that there are three subspaces of dimension 5, V\ := {g(x, y) = aix2 + 
a2xy2 + a3y4 + a4xy + asy3}, V2 := {g(x,y) = aix2 + a2xy2 + a3y4 + a6x + a8 j /2} and 
V3 := {g(x,y) = a\x2 + a2xy2 + a.3y4 + ajy + asy2} of V which are also invariant under 
the action of this group. Then we describe the orbits which appear in these spaces and 
give the topological characterization of them by showing their stabilizers. We give a 
geometrical description of them inside R5 . Moreover, we construct an appropriate map 
h : R6 —> R5 and prove that the fibers given by the inverse image of the orbits by h are 
two dimensional surfaces diffeomorphic to R 2 - ( 1 X {0} U {0} x R). We show that the 
points of these fibers which minimize the distance to the origin are indeed in the 3-torus 
r = 5J/2 x $ i / 2

 x 

1. Introduction 
The stratification of the real cubics plays an essential role in the theory 

of singularities of functions, as well as in many of its applications. The name 
"umbilic bracelet" given by E. C. Zeeman in its fundamental paper [7] derives 
from the fact that it gives the description of the relation between the umbilic 
catastrophes in a geometric way, ( see [2], [6] and [7]). These are the strata 
consisting of degenerate cubics in the stratification of the space of real cubic 
forms in two variables under the classification by linear equivalence, or in 
other words, Zeeman considered the action of the general linear group of 
invertible matrices GL(2) to obtain these orbits. Zeeman showed that the 
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representatives of the degenerate orbits under this action are x2y, x3 and 
moreover, Zeeman gave the geometric description of these orbits showing 
that they form a rotate hipocycloid, the famous "umbilic bracelet". 

More recently, R. Bulajich, L. Kushner and S. Lopez de Medrano in [3], 
gave a topological characterization of the strata consisting of degenerate 
cubics in both cases, the real and complex. In these works it was studied the 
orbits under the action of the group GL(2) on the sets of real or complex 
cubics because these sets are invariant under this action, i.e., for any cubic 
/ and any h in f this group, the polynomial h.f is also a cubic. 

The study of the orbits given by the action of different subgroups of 
GL(2, R) and GL(2, C) opens a wide variety of problems but, to give a simi-
lar description for any other class of polynomials, one needs to find other 
convenient subgroup of invertible triangular matrices which leaves this fixed 
class invariant. This is done in [4] for the space of quasi homogeneous 
polynomials of type (1/3,1/6) and degree 1, namely polynomials of type 
ax3 + bx2y2 + cxy4 + dy6. In this work the group considered is the subgroup 
of germs of diffeomorphisms G := {h(x, y) = (ax + /3y2, dy), with a, S / 0}, 
which leaves this class of polynomials invariant. They give a topological 
characterization of all strata and it is also described a geometric character-
ization of the orbits inside a torus. It is interesting to remark that in the 
above cases the manifold which is considered to work is a product of spheres. 

Another interesting class of polynomials is formed by the pre quasi ho-
mogeneous polynomials. Defined in [5], they can be written as p(x) = 
q(x) + h(x), where q(x) is a degree 1 quasi homogeneous polynomial of 
type (r, s) and each monomial of h(x) has weighted degree less than 1 and 
greater than zero. For example, the simplest class consists of polynomials of 
type p(x, y) = ax2 + by3 + cxy, here p = q + h, where q(x, y) = ax2 + by3 

is a quasi homogenous polynomial of type (1/2,1/3) and h(x,y) = cxy has 
weighted degree 5/6. The main problem to study this class of polynomials is 
to find a convenient subgroup of invertible triangular matrices which leaves 
this class invariant. 

However, for some types of pre quasi homogeneous germs g = f + h, 
depending on the type of quasi homogeneity of the germ / , it is possible to 
find a subgroup such that this class of polynomials is invariant. For example, 
if we consider the space of pre quasi homogeneous germs of type g = p + h 
where p(x, y) — ax3 + bx2y2 + cxy4 + dy6 is in the class of quasi homogenous 
germs studied in [4], we can consider the same subgroup G which is used 
in [4] for this class since it is also invariant under such action. The main 
problem in this example is that we have a total space of dimension 15 and 
as this dimension increases, the difficulty to find the orbits and to study the 
topology of the orbits also increases a lot. 
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In this article we study the space V which consists of pre quasi homoge-
neous polynomials of type g(x,y) = a\x2 + a,2xy2 + a%yA + a^xy + a^y3 + 

a^x + a j y + a&y2 with di € R, for ali i = 1 , . . . , 8. This space is associate to 
the 3-dimensional space of quasi homogeneous polynomials of type (1/2,1/4) 
and degree 1, formed by the polynomials f ( x , y) = a\x2+a2xy2+a^yi. Here 
again we fix the subgroup G := {h(x, y) = (ax + fiy2,5y), with a , i / 0} 
mentioned above as the subgroup acting on V, since this space is invariant 
under this action. 

We remark here that, in fact we can treat the action of this group on the 
set V of pre quasi homogeneous germs with two variables x, y of type 
including the constant term. The space V can be understood as the space 
with Newton polygon 

A = j ( n , m ) <£ Z2 | n > 0, m > 0 ^m < 1 j . 

The dimension of the space V is 9 and the constant function is G invariant. 
Therefore the study of G-orbit decomposition of V is reduced to that of V, 
which is 8-dimensional. 

To study these orbits we observe first that there are three subspaces of di-
mension 5, V\, V2 and V3 of V which are also invariant under the action of this 
group. V\ consists of the polynomials of type g(x, y) = a\x2 + a2xy2 + a^yA + 
a^xy+a^y3, V2 is formed by the polynomials of type g(x, y) = a\X2 -\-a,2xy2+ 
0-3y4 + aex + a%y2 and V3 is the set of polynomials g(x, y) = a\x2 + a^xy2 + 
0-3y4 + a7y + agy2, then we describe the orbits which appear in these spaces 
and give the topological characterization of them by showing their stabilizers. 

We shall give a geometrical description of them inside R5. Moreover, we 
construct an appropriate map h : R6 —> R5, show that the fibers given by the 
inverse image of the orbits by h are two dimensional surfaces diffeomorphic 
to IR2 — (R x {0} U {0} x R) and we also show that the points of these fibers 
which minimize the distance to the origin and also are in the 5-sphere are 
indeed in the 3-torus T3 = S\j2 x S\j2 x 

2. The pre quasi-homogeneous space, the group action 
and the orbits 
We fix the set of weights (5,5) and the vector space of quasi homoge-

neous polynomials in two variables of degree 1, namely polynomials f(x, y) = 
a\x2 + a,2xy2 + a^y4. 

We shall study the space V of pre quasi homogeneous polynomials of type 
g(x, y) = aix2+a2xy2+a3y4+a4xy+a5y3+a6y2+a7x+asy, which we identify 
with R8 by taking the coefficients as variables. On this space we consider 
the action of the group G = {h(x,y) = (ax + 0y2,5y), with a,5 ^ 0}, 
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acting on V on the right. In fact we see that the group G is invariant on the 
following subspaces of V: W\ = (x2 ,xy2,y4), W2 = (xy,y3), W3 = (x,y2) 
and W4 = (y, y2). To describe the orbits of V we will consider the following 
5-dimensional subspaces: V\ = (x2,xy2,y4,xy,y3), V2 = (x2,xy2,y4,x,y2) 
and V3 = (x2,xy2,y4,y,y2). 

We order our bases as {x2,xy2,y4,xy,y3,x,y,y2} to get V\ = R5 x {0}, 
V2 = R3 x {0} x R x {0} x R and V3 = R3 x {0} x R2. 
T H E O R E M 1 . The orbits in each Vi have measure zero and in fact we 
have a finite number of models, parametrized each of them by at most two 
parameters. 

Proof. Since dim G = 3 and dim V, = 5 the orbits have measure zero, 
then the result will finish from the fact that after classifying the quasi ho-
mogeneous maps of type f(x,y) = a\X2 + a2xy2 + a?,y4, to get the orbits 
in each Vi we only have to add a sum of two terms which are invariant 
under G. m 

P R O P O S I T I O N 1 . Consider the general quasi homogeneous map of type 
f(x, y) = aix2 + a2xy2 + a^y4 and let A = a2 — 4aid3 its discriminant, then 

1. If A > 0, / is G-equivalent to one of the following models: ±y4, xy2, 
±x(x + y2), ±x2. 

2. If A < 0, / is G-equivalent to: ±(x2 + y4). 

Proof. Consider the equalities f(x, y) = (ax + by2)(cx + dy2) for A > 0 and 
for A < 0, let 

t ( \ ( , a 2 2 V , / 4 a i f l 3 - o % \ 4 f(x,y) = ai(x + —y J + { 4af )V • 

Then, to show the item 1, we analyze the constants a, b, c, d. 

1. If a = c = 0, then f(x, y) = ±y4 . 
2. If a = 0 and c ^ 0, f(x, y) = xy2. 
3. If a ^ 0, c ^ 0 and ad-be± 0, f(x, y) = ±x(x + y2). 
4. If a 0, c ^ 0 and ad-bc = 0, f(x, y) = ±x2. 

We only have to prove the cases 3 and 4, then let x' = ax + by2 and 
y' = y, hence 

and the result follows easily. • 

We describe now the orbits in the subspaces Vi, V2 and V3. 
We show the representative, the stabilizer and the dimension of the orbit. 
First we show the orbits of V\. 
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Representative Stabilizer Orbit dimension 
±y4 R* x R x Z4 1 

±{y4 + ey3), e / 0 I ' x R 1 
±{y4 + xy + ey3) Z4 3 

xy2 R* 2 
xy2 + y3 Z3 3 

xy2+xy + dy3 {Id,} 3 
x2 + xy2 Z2 x Z4 3 

x2 + xy2 + dxy {Id} 3 
x2 + xy2 + dxy + ey3 (d # 2e) { / d } 3 

±x2 Z2 x R* 2 
± ( x 2 + y3) Z2 x Z3 3 

± ( x 2 + x y + e?/3) {Jd} 3 
xt/ R* 2 
?/3 R* x R x Z3 1 

±(x2+y4) Z 2 x Z 4 3 
± ( x 2 + y* + ey3) Z2 3 
± ( z 2 + y* + dxy) Z2 3 

± ( x 2 + y4 + dxy + ey3) { /d} 3 

Next we give the table II, with the orbits of the space V2. 
Representative Stabilizer Orbit dimension 

±y4 R* x R x Z4 1 
±y4 + x Z4 3 

±(y4 + ey2), e # 0 R* x R x Z2 1 
xy2 R* 2 

xy2 ±y2 Z2 3 
xy2 + x Z2 3 

xy2 + x + ey2 Z2 3 
xy2 +x2 Z2 x Z4 3 

xy2 + x2 + ey2 Z2 x Z4 3 
xy2 + x2 + dx Z2 3 

xy2 + x 2 + dx + ey2 Z2 or Z4 if d = 2e 3 
±y2 R* x R x Z2 1 

x R 2 
± ( x + y2) R 2 

x 2 + y4 Z2 x Z4 3 
x 2 + y4 + dx Z4 3 
x 2 + j/4 + ey2 Z2 x Z2 3 

x2 + y4+dx + ey2 Z2 3 
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The table III gives the orbits of the subspace V3. 

Representative Stabilizer Orbit dimension 

±y4 r x i x z 4 1 
±(y4 + dy), e # 0 I ' x l 1 

±(yi+ey2) R ' x l x Z 2 1 
±{y4+dy + ey2) R* x M 1 

xy2 R* 2 
xy2 +y {Id} 3 

2 1 2 xy +y z 2 3 
xy2 + y + ey2 {Id} 3 

x2 + xy2 Z2 x Z4 3 
x2 + xy2 + dy Z2 3 
2 1 2 , 2 x +xy +ey Z2 x Z4 3 

x2 + xy2 + dy + ey2 {Id} 3 
x2 + y4 Z2 x Z4 3 

x2 + y4 + dy Z2 3 
x2 + yA + ey2 Z2 x Z2 3 

x2 + y4 + dxy + y3 Z2 3 

3. The geometry of the orbits 
As in [3] we have to choose a quartic that will parametrize our vector 

space in pieces which are the three vector spaces Vi, V2 and V3. Our quartic 
should be of six coefficients and easy to handle. For this, first we consider 
the quartic in two variables given by 

f(x, y) = (ax + by)(cx + dy)(ex + fy)2 

which in coordinates (x4,x3y,x2y2,xy3,y4) induces a map h : M6 —> R5, 
given by 

h(a, b, c, d, e, /) = 

(ace2,2acef+(ad+bc)e2,acf2+2(ad+bc)ef+bde2,(ad+bc)f2+2bdef, bdf). 

Now we understand the images in M5 whose coordinates are in the ordered 
basis of the spaces Vi, V2 and V3. Our purpose is 

1. Calculate the fibers of h and the nearest points of them to the origin. 
2. Prove that the intersection of these points with the 5-sphere is contained 

in the 3-torus T3 = S\j2 x Sj/2 x . 

3. Give the canonical identification in M (taking out some set) such that 
the induced map h : M —> M5 is injective and calculate its singularities. 
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First Step: 

We have the following system of equations in the variables (a, b, c, d, e, /): 

(1) ace2 = a^cp2 

( 2 ) 2 (acef) + (ad + bc)e2 = + (ad + /?7 )ip2 

( 3 ) acf2 + 2 (ad + bc)ef + bde2 = a^r)2 + 2 (a6 + Pi)<pr] + (35<p2 

( 4 ) 2 (bdef) + (ad + bc)f2 = 2(/%>t?) + (aS + /3j)r}2) 

( 5 ) bdf2 = (38r)2 

otyip2 fifty? (I) The case cdef ^ 0. From (1) and (5) we obtain: a = — b = ,.» . 
cez dfz 

We also have the solutions d = (5/~t)c and / = (rj/(p)e, therefore our 
fiber is the surface given by: 

(asy^2 a6(f)2 (3 rj \ 
(c, e) - » t ' — T ' c ' - c > e ' - e • 

\ ceJ a ip J 

If we substitute u = e/f and v = c/d, in (3), (4) and (5) we have the 
solutions; d = (8/j)c and / = (r]/ip)e, our fiber is the surface given by: 

(Q7y2 /?7<j>2 8 T? \ 
(c, e) - » — — J " , c, - c , e, - e 

\ cez cez 7 / 

with domain R2 - (R x {0 } U {0 } x R), (7.tp ^ 0). 

i) In the case 7 = 0, the parametrization of the surface is given as 

(c, e) (0, c, - c , e, —e^. 
\ cez a <p J 

ii) In the case (p = 0, we have 

(d, e) - (0, 0, d, e, c ) , with aS = /37-

Next we give a complete list for all cases, including the above three, all 
of them with domain R2 - (R x {0 } U {0 } x R). 

Denoting by: I) cdef + 0, I I ) c = 0, I I I ) / = 0, IV ) d = 0 and V ) e = o. 

Parametrization of the fibers 

b: ( c , e ) - ( a n d 

c: ( d , e ) - ( 0 , ^ , 0 , d , e , ^ 2 e ) , with a5 = (3y. 

II) a: 

c: (d, /) (0, 0, d, S g p / , /), 
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d: ( d , / ) - ( ^ , f £ , 0 , d , 0 , / ) a n d 

e: ( d , / ) - ( f f . f f , ( ) , ( * , 0 , / ) . 

Ill) a: 

b: (d, e) —> Jd, d, e, 0), 
c: 0 ,e ,0 , ) , 
d: ( c , e ) ^ ( ^ , ^ ! , c , f C , e , 0 , ) a n d 

e: ( c . e J - ^ ^ c f c . e . O , ) . 
To obtain IV) {or V } we exchange in II) {or in III)} respectively: a by 

P, 7 by 6, a by b, c by d and e by / . 
Now we show in each orbit the nearest points of the origin. 
We shall describe here the case I) a. We get a map 

© : R2 - (R x {0} U {0} x R) -» R6 

given by 
/ ajip2 /37V?2 ^ V 

9(c, e) = — o > —2~» c> ~c> e> ~ e 
\ cez ce* 7 tp 

When we minimize the distance to the origin we obtain 

_ ± 7 ( y 2 + r?2)1/4(a2 + /32)1/8 _ ± 2 1 / V ( a 2 + / 3 2 ) 1 / 8 ( 7
2 + ^2)1 /8 

C ~ 2!/4(72 + ¿2)3/8 a n d e - (^2+^2)1/4 

Intersecting with Sb we obtain (a2+/?Y / 4(72+<*2)1 /4(¥>2+»72)1 /2 = 
therefore the points in the image of Q can be seen in T3 = x x 

We summarize our results in the following 

THEOREM 2. Let h : R6 —> R5 given as before, then: 
1) The fibers are two dimensional surfaces diffeomorphic to 

R2 — (R x {0} U {0} x R ) . 
2) The points of these fibers which minimize the distance to the origin and 

also are in the 5-sphere are indeed in the 3-torus T3 = S\/2 x S\/2 x S j 

3) The map h induces a map h by restriction h : 

LEMMA 3. For an h as above, its fibers h(h~1(9o, fo, ^o)) consist of at most 
eight points: 

1. {do,(po,1po), {00 + IT, (fo -f- IT, 1po)> + (90 + TT, (fi0 + 7T, 7p0 + n), 
2. {(fio,9o,^o), + + + (<PO + TT,9Q + IT, XPQ + TT). 

Proof. From the equations given by h in coordinates ( 6 , ip, i p ) we get the 
coordinates in R5 . 

1. cos $cos v?cos2 ifi, 
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2. 2 cos 0 cos <p sin ip cos ip + sin 0 cos <p cos2 ip + cos 0 sin <p cos2 ip, 
3. cos 6 cos ip sin2 ip + 2 sin 6 cos p cos ip sin ip+ 2 cos 0 sin ip cos ip sin ip+ 

sin 0 sin </;cos2ip, 
4. 2 sin 0 sin ip sin ip cos ip + sin 6 cos ip sin2 ip + cos 0 sin p> sin2 ip, 
5. sin # sin sin2 ip. 

It is clear that the eight points are in a fiber (it might be repetitions), 
moreover if we set 
. ^ cos 0O cos ip0 cos2 ipo . ^ sin 0q sin po sin2 ipo 
(*) cos0 = x— and sinw = 5 

cos <p cos2 ip sin <p sin ip 

when we exchange in the equations 2, 3 and 4 and set U = f j ^ , V = 
we get the solutions U = tan V — tan^o and U = tan 9Q, V = tan ipQ. 
Now we finish using the equalities given in the equations (*). 

P R O P O S I T I O N 2 . The rank of Dh is: 
a) if0 = <p = ip, 
b) ifd = ip and 0 ^ ip; or 0 ^ p and 0 = ip; or ip = p and 9 ^ <p, 
c) in all other cases. 

We remark that we understand the equalities module the points in the 
fibers. We shall denote the curves of the first case by {cj} and the tori in 
the second case by {Sj}. 

In the next proposition we show that the kernel of the map Dh is transver-
sal to the tangent spaces of these curves and tori in the torus T3. 
P R O P O S I T I O N 3 . For the map Dh we get the following equalities: 

ker Dh 0 TCi = T(T3) and ker Dh © TSj = T(T3). 
The proof of these results are done by some simple calculation. 
Next we show how the torus T3 remains when we use the identification 

given by the Lemma 3. 
P R O P O S I T I O N 4 . Consider the torus T 3 and the identification given in the 
Lemma 3, i.e., the identification ~ which collapses each fiber in one point, 
then the quotient space remains as the following figure times S1. 

Proof. The map a : S1 x S1 —> Sl x S1 given by a(z, w) = (—z, —w) is 
an involution with no fixed points and in fact preserves orientation and the 
quotient s l * s l is MP1 x R P1, hence we obtain that the identification of type 
(i) in the Lemma 3 is diffeomorphic to S1 x S1 x S1. 

For the case (ii), we can see for (0, tp) ~ (<p, 0), as the identification of the 
square [—ir, 7r] x [—7T, 7T] to the torus restricted to the triangle T = {y > x} 
with diagonal 0 = ¡p. Therefore the identification of the vertices gives our 
figure. • 
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We remark that our "bad" points are (ir,ir,ip), with ip e S1 and their 
image under h is, in our coordinates, given by the equation 

(cos2 ip)x2 + (2 sin ip cos ip)xy2 + (sin2 ip)y4 = ((cos ip)x + ( s i n ip)y 2 ) 2 , 

or (ax + fly2)2 with a2 + f32 = 1. 
Now we show the images of h. 

i) h(-K, ir, ip) = (cos2 ip, 2 cos ip sin ip, sin2 ip, 0,0) in the case ip = ir, the image 
is x2 and in the case ip = ±7r/2, the image is y4. 

The image is in the set x2 + x^/l + x2 = 1. 
ii) h(9,9,9) = (cos4 0,4 cos3 0 sin 6,6 cos2 6 sin2 0,4 cos 6 sin3 6, sin4 9) which 
satisfy the equation x2 + x 2 /4 + x§/6 + x 2 /4 + x2 = 1. 
iii) h(6,6,ip) = h(cos6,sm0,cosd,sm9,cos%p,smij}) — 

(cos2 9 cos2 ip, 2 (cos2 9 sin ip cos 4> + cos 9 sin 9 cos ip), cos2 9 sin2 ip 
+ 4 cos 9 sin 9 cos ip sin ip + sin2 9 cos2 ip, 2(cos 9 sin 9 sin2 ip 
+ sin2 9 cos ip sin ip, sin2 9 sin2 ip). 

These points satisfy 
0 0 0 0 0 

X\ + X2 + Xg + X4 + £5 — 2x1x3 — 2x3x5 — 2x2x4 + 2x1x5 = 1. 

iv) h(9,ip,9) = h(cos9,sm9, co sy? , s i ncos# , sin0) = 
(cos3 9 cos ip, 2 cos2 9 sin 9 cos tp + cos2 0(cos ^ sin y + sin 9 cos tp), 
cos 9 cos tp sin2 0+2(cos 9 sin y>+sin 9 cos tp) sin 9 cos 0+sin 9 sin tp cos2 9, 
(cos 9 sin tp + sin 9 cos tp) sin2 9 + 2 sin2 6 cos 9 sin tp, sin3 9 sin tp). 

For this case the associate quadric in 5 variables is 

x\ + X2 + £3/3 + X2 + x\ - X1X3 — %X\X5 — X3X5 = 1. 

v) h(9, tp, tp) — h(cos 9, sin 9, cos tp, sin tp, cos tp, sin tp) = 
(cos 9 cos3 tp, 2 cos 9 cos2 tp sin tp + (cos 0 sin tp + sin 0 cos tp) cos2 tp, 
cos 9 cos tpsin2tp + 2(cos 9 sin tp + sin 9 cos tp) sin tp cos ip, 
+ sin 9 sin tp cos2 </?(cos 9 sin tp + sin 9 cos tp) sin2 ¡p, 
+ 2 sin 6 sin2 <p cos tp, sin 9 sin3 tp). 
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Here, the associate quadric in 5 variables is similar to the one of the 
case iv). 

As an immediate consequence of the proposition given above we obtain 
the following 
PROPOSITION 5 . The map h : R6 —> R5 induces an injective map h : X —» 
R5 and we have a circle S1 such that X — S1 is a 3-manifold diffeomorphic 
to S x S1, where S is diffeomorphic to a smooth triangle without a vertex 
embedded in a torus T2. 
Proof. From the figure in the previous proposition, the result is clear. • 
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