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GEOMETRY OF PRE QUASI HOMOGENEOUS
POLYNOMIALS OF TYPE (1/2,1/4)

Abstract. In this article we study the geometry of the orbits of the space V which
consists of pre quasi homogeneous polynomials of type g(z,y) = a1z + azzy? + asy® +
aszy + asy® + asx + a7y + asy® with a; € R, for all i = 1,...,8 under the action of
the group G := {h(z,y) = (ax + By? 8y), with a,§ > 0}. To study these orbits we
observe first that there are three subspaces of dimension 5, Vi := {g(x,y) = a1z® +
a2zy® + asy? + aszy + asy®}, Vo := {g(z,9) = a12® + a229° + asy* + asz + asy®} and
Vs = {g(z,y) = a12® + a2xy? + asy® + ary + asy®} of V which are also invariant under
the action of this group. Then we describe the orbits which appear in these spaces and
give the topological characterization of them by showing their stabilizers. We give a
geometrical description of them inside R®. Moreover, we construct an appropriate map
h : R® — R5 and prove that the fibers given by the inverse image of the orbits by h are
two dimensional surfaces diffecomorphic to R?* — (R x {0} U {0} x R). We show that the
points of these fibers which minimize the distance to the origin are indeed in the 3-torus
I =812 % 812 X S}, 5

1. Introduction

The stratification of the real cubics plays an essential role in the theory
of singularities of functions, as well as in many of its applications. The name
“umbilic bracelet” given by E. C. Zeeman in its fundamental paper [7] derives
from the fact that it gives the description of the relation between the umbilic
catastrophes in a geometric way, ( see [2], [6] and [7]). These are the strata
consisting of degenerate cubics in the stratification of the space of real cubic
forms in two variables under the classification by linear equivalence, or in
other words, Zeeman considered the action of the general linear group of
invertible matrices GL(2) to obtain these orbits. Zeeman showed that the
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representatives of the degenerate orbits under this action are z?y, 2% and
moreover, Zeeman gave the geometric description of these orbits showing
that they form a rotate hipocycloid, the famous “umbilic bracelet”.

More recently, R. Bulajich, L. Kushner and S. Lépez de Medrano in [3],
gave a topological characterization of the strata consisting of degenerate
cubics in both cases, the real and complex. In these works it was studied the
orbits under the action of the group GL(2) on the sets of real or complex
cubics because these sets are invariant under this action, i.e., for any cubic
f and any h in f this group, the polynomial h.f is also a cubic.

The study of the orbits given by the action of different subgroups of
GL(2,R) and GL(2,C) opens a wide variety of problems but, to give a simi-
lar description for any other class of polynomials, one needs to find other
convenient subgroup of invertible triangular matrices which leaves this fixed
class invariant. This is done in [4] for the space of quasi homogeneous
polynomials of type (1/3,1/6) and degree 1, namely polynomials of type
azx3 + bx?y? + cxy* + dy®. In this work the group considered is the subgroup
of germs of diffeomorphisms G := {h(z,y) = (az + By?, §y), with o, § # 0},
which leaves this class of polynomials invariant. They give a topological
characterization of all strata and it is also described a geometric character-
ization of the orbits inside a torus. It is interesting to remark that in the
above cases the manifold which is considered to work is a product of spheres.

Another interesting class of polynomials is formed by the pre quasi ho-
mogeneous polynomials. Defined in [5], they can be written as p(z) =
q(z) + h(z), where ¢(z) is a degree 1 quasi homogeneous polynomial of
type (r,s) and each monomial of h(z) has weighted degree less than 1 and
greater than zero. For example, the simplest class consists of polynomials of
type p(z,y) = azx® + by® + cry, here p = q + h, where ¢(z,y) = az? + by®
is a quasi homogenous polynomial of type (1/2,1/3) and h(z,y) = czy has
weighted degree 5/6. The main problem to study this class of polynomials is
to find a convenient subgroup of invertible triangular matrices which leaves
this class invariant.

However, for some types of pre quasi homogeneous germs g = f + h,
depending on the type of quasi homogeneity of the germ f, it is possible to
find a subgroup such that this class of polynomials is invariant. For example,
if we consider the space of pre quasi homogeneous germs of type g =p+ h
where p(z,y) = az® + bx?y? + cxy? + dy® is in the class of quasi homogenous
germs studied in [4], we can consider the same subgroup G which is used
in [4] for this class since it is also invariant under such action. The main
problem in this example is that we have a total space of dimension 15 and
as this dimension increases, the difficulty to find the orbits and to study the
topology of the orbits also increases a lot.
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In this article we study the space V which consists of pre quasi homoge-
neous polynomials of type g(z,y) = a1z? + a2xy? + asy* + aazy + asy® +
aex + a7y + agy® with a; € R, for all i = 1,...,8. This space is associate to
the 3-dimensional space of quasi homogeneous polynomials of type (1/2,1/4)
and degree 1, formed by the polynomials f(z,y) = a1z?+aszy®+asy®. Here
again we fix the subgroup G := {h(z,y) = (az + By?,dy), with a,d # 0}
mentioned above as the subgroup acting on V, since this space is invariant
under this action.

We remark here that, in fact we can treat the action of this group on the
set V of pre quasi homogeneous germs with two variables x,y of type (%, %

including the constant term. The space V can be understood as the space
with Newton polygon

1 1
A:{(n,m)eZ2|n20,m20§n+zm§1}.

The dimension of the space V is 9 and the constant function is G invariant.
Therefore the study of G-orbit decomposition of V is reduced to that of V,
which is 8-dimensional.

To study these orbits we observe first that there are three subspaces of di-
mension 5, V;, Vo and V3 of V which are also invariant under the action of this
group. Vi consists of the polynomials of type g(z,y) = a12?+a2zy® +asy* +
agry+asy®, Vo is formed by the polynomials of type g(z,y) = a1z?+aozy®+
asy® + agx + agy® and Vj is the set of polynomials g(x,y) = a12? + axzy? +
asy® + a7y + agy?, then we describe the orbits which appear in these spaces
and give the topological characterization of them by showing their stabilizers.

We shall give a geometrical description of them inside R%. Moreover, we
construct an appropriate map h : R® — RS, show that the fibers given by the
inverse image of the orbits by h are two dimensional surfaces diffeomorphic
to R? — (R x {0} U {0} x R) and we also show that the points of these fibers
which minimize the distance to the origin and also are in the 5-sphere are
indeed in the 3-torus I' = S%/z X S%/z X Si/\/ﬁ'

2. The pre quasi-homogeneous space, the group action

and the orbits

We fix the set of weights (%, %) and the vector space of quasi homoge-
neous polynomials in two variables of degree 1, namely polynomials f(z,y) =
a1z’ + azzy2 + a3y4-

We shall study the space V' of pre quasi homogeneous polynomials of type
a(z,y) = ayx?+asry? +asy’ +aszy+-asy>+asy’+arx+agy, which we identify
with R® by taking the coefficients as variables. On this space we consider
the action of the group G = {h(z,y) = (az + By? 8y), with a,§ # 0},
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acting on V on the right. In fact we see that the group G is invariant on the
following subspaces of V: W = (22, zy?,y*%), Wo = (zy,33), W3 = (z,y?)
and Wy = (y,%?). To describe the orbits of V we will consider the following
5-dimensional subspaces: Vi = (z?, xy?,v*, zy,v®), Vo = (2%, zy?,v%, z, %)
and V3 = <x2, $y2, y47 Y, y2>

We order our bases as {z2, zy?, y*, zy, 43, z,y, 4%} to get V1 = R® x {0},
Vo =R3x {0} xR x {0} xR and V5 = R3 x {0} x R2.
THEOREM 1. The orbits in each V; have measure zero and in fact we
have a finite number of models, parametrized each of them by at most two
parameters.

Proof. Since dimG = 3 and dimV, = 5 the orbits have measure zero,
then the result will finish from the fact that after classifying the quasi ho-
mogeneous maps of type f(z,y) = a12® + aszy? + asy?, to get the orbits
in each V; we only have to add a sum of two terms which are invariant
under G. =u

PROPOSITION 1. Consider the general quasi homogeneous map of type
f(z,y) = a17? + agzy? + agy? and let A = a} —4aja3 its discriminant, then

1. If A >0, f is G-equivalent to one of the following models: +y*, xy?,
+z(x + y?), £22.
2. If A <0, f is G-equivalent to: +(z? + y*).

Proof. Consider the equalities f(z,y) = (ax + by?)(cz + dy?) for A > 0 and
for A <0, let

2 2
_ az o 4(11(13 — a5 4
f(m,y) a1($+2a1y> +( 4a% )y .
Then, to show the item 1, we analyze the constants a, b, c, d.

1. Ifa=c=0, then f(z,y) = +y*.

2. Ifa=0and c#0, f(z,y) = 3%
3.Ifa#0,c#0and ad — bc #0, f(z,y) = z(z + y?).
4. Ifa#0,c#0and ad — bc =0, f(z,y) = £z%.

We only have to prove the cases 3 and 4, then let 2’ = ax + by? and

v = vy, hence
—b
f(a:',y') B (gml + (ada C)ylZ)

and the result follows easily. m

We describe now the orbits in the subspaces Vi, V2 and V3.

We show the representative, the stabilizer and the dimension of the orbit.
First we show the orbits of 1.
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Representative Stabilizer Orbit dimension
+y? R* xR x Z4 1
+(y? +ey’), e £0 R* xR 1
+(y* +zy +e®) Zy 3
zy? R* 2
zy2 + y3 Zs 3
zy? +zy + dy? {1d} 3
z? + zy? Za xZs 3
z? + zy? + dzy {Id} 3
z? + xy? + doy + ey (d # 2e) {Id} 3
+2? Zy xR* 2
:i:(:r2 + y3) Zo X Z3 3
+(2? + zy + ey?) {Id 3
Ty R* 2
v R* xR X Z3 1
+(z? + ¢4 Zy x 7y 3
+(z% + v +ey®) Zs 3
+(z? + y* + dzy) Z: 3
+(z? + y* + dzy + ey®) {1d} 3

Next we give the table II, with the orbits of the space V5.

Representative Stabilizer Orbit dimension
+yt R* xR x Z4 1
:ty4 +x Z4 3
+(y* +ey?), e £0 R* xR x Z3 1
zy? R* 2
zy® + 97 Z, 3
oyl +z Zy 3
zy® + z + ey? Z, 3
zy? + 22 Za X 74 3
zy® + 2% + ey? Za x Ly 3
zyt + 2% + dx Zy 3
zy’+ 22 +dr+ey? ZyorZiifd=2e 3
+y? R* xR x Z; 1
T R 2
+(z + y?) R 2
z2 49t Zo X Zy 3
z? +y 4 dx Z4 3
22 4yt +ey? Zy X Z2 3
22 +y' +dz ey’ 2 3
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The table III gives the orbits of the subspace V3.

Representative Stabilizer =~ Orbit dimension
+yt R* X R x Z4 1
+(y* +dy), e #£0 R* x R 1
+(y* + ey?) R* xR x Z2 1
+(y* +dy +ey?) R* xR 1
zy? R* 2
¥ +y {1d} 3
zy? + 42 Zs 3
zy? +y +ey® {Id} 3
z® + oy Za x Ly 3
z2 +zy? + dy Zy 3
z2 4+ 2y + ey? Zo X Zy 3
72+ zy® + dy + ey? {Id} 3
z? 4yt Zy X Z4 3
24+ y* + dy Z, 3
% + 4yt + e Zy X Zg 3
2 +y* +doy + 2 Zs 3

3. The geometry of the orbits

As in [3] we have to choose a quartic that will parametrize our vector
space in pieces which are the three vector spaces V;, V2 and V5. Our quartic
should be of six coefficients and easy to handle. For this, first we consider
the quartic in two variables given by

f(z,y) = (az + by)(cz + dy)(ez + fy)*
which in coordinates (z*, 23y, z%y?, 33, y*) induces a map h : R — RS,
given by

h(a7 b7 c7 d’ e7 f) =
(ace?, 2acef+(ad+bc)e?, acf?+2(ad+bc)ef+bde?, (ad+be) f24-2bdef, bdf?).

Now we understand the images in R® whose coordinates are in the ordered
basis of the spaces V7, V2 and V3. Our purpose is

1. Calculate the fibers of A and the nearest points of them to the origin.

2. Prove that the intersection of these points with the 5-sphere is contained
; 3_ ql 1 1
in the 3-torus I'’ = 51/2 X 51/2 X Sl/\/§ .

3. Give the canonical identification in M (taking out some set) such that

the induced map h:M >R is injective and calculate its singularities.
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First Step:

We have the following system of equations in the variables (a, b, ¢, d, e, f):
(1) ace? = ayyp?
(2) 2(acef) + (ad + be)e? = 2avpn + (ad + By)¢?
(3) acf? + 2(ad + be)ef + bde? = ayn? + 2(ad + By)en + Bép?
(@ 2(bdef) + (ad + be) f* = 2(Bo¢n) + (ad + fy)n’)
(5) bdf* = Bén”

2 2

(I) The case cdef # 0. From (1) and (5) we obtain: a = aZef , b= %Z—

We also have the solutions d = (§/v)c and f = (n/p)e, therefore our
fiber is the surface given by:

(ce)— (0L 208 B, 1)
? Ce2 2 ce2 Py a Y (p
If we substitute u = e¢/f and v = ¢/d, in (3), (4) and (5) we have the
solutions; d = (8/7)c and f = (n/y)e, our fiber is the surface given by:

2 2
(c,e) > <a7<p Bré” c éc,e, ge)

ce?2 ' ce? 'y

with domain R2 — (R x {0} U {0} x R), (y.¢ # 0).
i) In the case v = 0, the parametrization of the surface is given as
2
(c’ e) - (0’ -aé—ﬁ’ c’ éC’ e’ Qe) *
ce o %
ii) In the case ¢ = 0, we have
ann? ad + By .
(d,e) — < ' o2 ———,0,d,e ( 2oy )e), with ad = 3.
Next we give a complete list for all cases, including the above three, all
of them with domain R? — (R x {0} U {0} x R).
Denoting by: I) cdef #0,1I) ¢=0,1III) f=0,IV)d=0and V) e = 0.
Parametrization of the fibers
Ia(ce (—;ﬁf—,ﬁ—cﬁ—c—ceﬂ),
(c,e) — (O%C,aceﬂ)and
c: (d e (0,7}8%—,0 d,e, "“ST'Ze) with ad = 3.
S 2
(%e%_’ dez’o d e’cp )
" <de (%5, 857 0,40, ),
&
- (0,%%,0,4, —‘1“27;? £, 1),
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[~

d: df) (%%, %55 ,0,d,0, f) and
e — (2%, 2% 0,d,0,f).
1) a: (ce ("‘ce2 —'ﬁgﬂc,q’ce)
b: (d,e) — (%ﬁio%ddeO)
c: (c,e) — (%ﬁi,ggﬁ—cOeO)
d: (c,e) — (—c'zeﬁﬁ—, e ,,yceO)and
e: (c,e) — (—ggﬁg—, =~ ceO)
To obtain IV) {or V } we excha.nge in II) {or in III)} respectively: a by

B,~vbyd,abybd, cbydandeby f.
Now we show in each orbit the nearest points of the origin.
We shall describe here the case I) a. We get a map

©:R?— (R x {0} U {0} xR) — R®
given by
2 2
o(c, ) = (a_vsf_ bre® éc,e,ge),

ce? ' ce? 'y
When we minimize the distance to the origin we obtain
:t’7(<p2 ‘*‘772)1/4(0‘2 +52)1/8 :i:21/4cp(a2 +ﬂ2)1/8(72 +52)1/8
= 21/4(72  §2)3/8 and e = (o + 12)1/4 :
Intersecting with S® we obtain (a?+8%)/4(y24+6%)V/4(p? +0?)1/2 = 75
therefore the points in the image of © can be seen in I'® = S1 /2% S1 /2% Si I

We summarize our results in the following
THEOREM 2. Let h: R® — RS given as before, then:

1) The fibers are two dimensional surfaces diffeomorphic to
— (R x {0} U {0} x R).
2) The points of these fibers which minimize the distance to the origin and
also are in the 5-sphere are fndeed in the 3-t?rus = S 1/2 % 81/2 X S;/\/—
3) The map h induces a map h by restriction h : T3 — R3.

LEMMA 3. For an h as above, its fibers h(h=(6o, wo, o)) consist of at most
eight points:

1. (00,30071/)0)) (00-'-71’,(,00"*'71',’([)0), (90’(P0,¢0+7T)7 (00+7T)()00+7T’¢0+7T)7
2. (¢01007¢0)7 (¢0+7r,00+7",'¢)0); ((,00,90,1!}0+7T), (800+7T,60+7T,1/)0+7T)-

Proof. From the equations given by h in coordinates (0, 0,v) we get the
coordinates in RS.

1. cos fcos pcos? 1,
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2. 2cosf cos psiny cost) + sinf cos pcos? 1 + cos b sin pcos? 1,
3. cosf cos psin? 9 + 2sin @ cos ¢ cos 1 sin Y+ 2 cos @ sin @ cos ¥ sin Y+
sin 6 sin @cos? ¥,
4. 2sin@sin@sini) costy + sinf cos psin® 1 + cosfsin psin? y,
5. sin @ sin @ sin? 1.
It is clear that the eight points are in a fiber (it might be repetitions),
moreover if we set

cos B cos g cos? 1y sin fg sin g sin? 1

5 and sinf = - —
COSs p cos? Y sin @ sin” ¥

(¥) cosf =

when we exchange in the equations 2, 3 and 4 and set U = ziT’;Q, V = %’;:%,

we get the solutions U = tanyp, V = tanp and U = tanfy, V = tanp.
Now we finish using the equalities given in the equations (x).

PROPOSITION 2. The rank of Dh is:

a) if0=p=1,
b) f 0=p and 0 £ Y; or 8 #£ ¢ and 0 =; or Y = @ and 6 # o,

c) in all other cases.

We remark that we understand the equalities module the points in the
fibers. We shall denote the curves of the first case by {¢;} and the tori in
the second case by {5;}.

In the next proposition we show that the kernel of the map Dh is transver-
sal to the tangent spaces of these curves and tori in the torus I'3.

PROPOSITION 3. For the map Dh we get the following equalities:
ker Dh@TC; = T(I®) and ker Dh®TS; = T(T®).

The proof of these results are done by some simple calculation.
Next we show how the torus I' remains when we use the identification
given by the Lemma 3.

PROPOSITION 4. Consider the torus I and the identification given in the
Lemma 3, i.e., the identification ~ which collapses each fiber in one point,
then the quotient space % remains as the following figure times S*.

Proof. The map o : ! x §! — S! x S given by o(z,w) = (—z, —w) is
an involution with no fixed points and in fact preserves orientation and the
quotient 2 - ;S " is RP! x RP!, hence we obtain that the identification of type
(i) in the Lemma 3 is diffeomorphic to S x S! x S1.

For the case (ii), we can see for (6, ) ~ (¢, 8), as the identification of the
square [—m,m] X [—m, 7] to the torus restricted to the triangle T = {y > z}
with diagonal 8 = ¢. Therefore the identification of the vertices gives our
figure. m
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Fig. 1.

We remark that our "bad" points are (7, 7,), with ¢ € S' and their
image under A is, in our coordinates, given by the equation

(cos? ¢p)z? + (2sin1p cos ) zy? + (sin? ¥)y* = ((cosy)z + (sine)y?)?,
or (ax + By?)? with o? + 82 = 1.
Now we show the images of h.

i) iL(’/T, m,1) = (cos? 4,2 costsin 1, sin? 4, 0,0) in the case ¢ = m, the image
is £2 and in the case ¥ = £7/2, the image is y*.
The image is in the set 2 + z2/2 + 72 = 1.
ii) iL(O, 6,0) = (cos* 8,4 cos®fsinb, 6 cos? §sin? 6,4 cos fsin3 4, sin* ) which
satisfy the equation z? + z2/4 + 23/6 + z5/4 + =% = 1.
iii) h(9, 9, ¥) = h(cos §,sin b, cos b, sinf, cos ¥, sin ) =
(cos? 0 cos? 1, 2(cos? fsin 1 cos ¢ + cos O sin § cos 1)), cos? O sin? ¢
+ 4 cosfsinf costsiny + sin? § cos? 1, 2(cos 6 sin § sin? o)
+ sin? f cos 1 sin 1, sin® @ sin® v).
These points satisfy

w% + m% + x% + :vi + m% — 22123 — 21325 — 22974 + 22125 = 1.

iv) h(6, o, 6) = h(cos8,sin 8, cos ¢, sin ¢, cos §,sin §) =
(cos® 6 cos ¢, 2 cos? O sin 8 cos ¢ + cos? O(cos #sin ¢ + sin 6 cos ),
cos 6 cos ¢ sin? §+2(cos  sin +sin @ cos ) sin § cos 6+sin § sin ¢ cos? 6,
(cos @sin ¢ + sin O cos @) sin? 6 + 2 sin?  cos §sin , sin® Hsin ).
For this case the associate quadric in 5 variables is

€3 4+ 22 + 23/3 + 23 + 2% — 2123 — 3z125 — 1325 = 1.

v) h(8, ¢, p) = h(cos b, sinb, cos @, sin @, cos , sin @) =
(cos 8 cos® p, 2 cos § cos? sin @ + (cos @ sin ¢ + sin § cos ) cos? ¢,
cos 8 cos psin?p + 2(cos fsin o + sin @ cos @) sin p cos @,
+ sin 0 sin ¢ cos? @(cos O sin @ + sin § cos ) sin? ¢,
+ 2sin #sin? ¢ cos ¢, sin § sin? ).
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Here, the associate quadric in 5 variables is similar to the one of the
case iv).

As an immediate consequence of the proposition given above we obtain
the following

PROPOSITION 5. The map h : R® — R5 induces an injective map h: X —
R® and we have a circle S' such that X — S! is a 3-manifold diffeomorphic
to S x S, where S is diffeomorphic to a smooth triangle without a vertez
embedded in a torus T2.

Proof. From the figure in the previous proposition, the result is clear. m
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