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SINGULARITIES OF PEDAL CURVES PRODUCED 
B Y SINGULAR DUAL CURVE GERMS IN Sn 

Abstract . For an n-dimensional spherical unit speed curve r and a given point P, 
we can define naturally the pedal curve of r relative to the pedal point P. When the dual 
curve germs are singular, singularity types of pedal curves depend on singularity types of 
the n-th curvature function germs and the locations of pedal points. In this paper, we 
investigate sigularity types of pedal curves in such cases. 

1. Introduction 
Let I be an open interval such that 0 El and Sn be the n-dimensional 

unit sphere in R n + 1 (n > 2). A C°° non-singular map r : I —> Sn is said 
to be a spherical unit speed curve if each of the following u t(s) (1 < i < 
n— 1) is inductively well-defined for any s € I, where initial information are 
u_i(s) = 0, u0(s) = r(s), ||uq(s)|| = 1 and n0{s) = 0. 

U¿(s) = 7:—; r-r r-r 7-̂ 77 (1 < I < Tl — 1), 

Ki(s) = l K - i ( s ) + Ki-i(a)ui-2(a)|| (1 < i < n - 1). 
The function Ki : I —> R is called the i-th curvature function of r. For a 
spherical unit speed curve two vectors u¿(s) and Uj(s) (0 < i,j < n — 1, 
i j) are perpendicular ([17]). Thus we can define one more vector un(s) 
uniquely so that (uo(s), Ui(s) , . . . , un(s)} is an orthogonal moving frame 
and det(uo(s),.. . , un(s)) = 1 for any s € I. The map un : I —> Sn, which 
is called the dual curve of r ([1], [21]), defines the n-th curvature function in 
the following way, where the dot in the center is the scalar product. 

We see that the dual curve un is non-singular at s if and only if Kn(s) ^ 0 
(see §2). 
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For any i (—1 < i < n), we put 

Sl i ( s ) = (SU ~ { ± U n ( s ) } ) n <!!_!(*), . . . , Ui(s))R , 

where ( u _ I ( s ) , . . . , u^(s))R means the vector subspace spanned by the vec-
tors u _ I ( s ) , . . . , Uj(s). Given a spherical unit speed curve r : I —• Sn, 
choosing a point P of Sn — { ± u n ( s ) | s € 1} gives the map which maps s € I 
to the unique nearest point in from P. Such a map, which is called 
the pedal curve relative to the pedal point P for an n-dimensional unit speed 
curve r, is denoted by pedr>p. Note that since all points in S1™-^^) are the 
nearest points from ± u n ( s ) the pedal point P for the map-germ pedTtp at s 
must be outside { ± u n ( s ) } . 

In [17] we have shown the following. 

THEOREM 1. ([17]) Let r : I —> Sn be an n-dimensional spherical unit 
speed curve. Suppose that K„(0) 0. Then the following hold. 

1. The pedal point P is inside S™ ^ — <Su~22(0) tf and onfy lf the map-germ 
pedTtp : (1,0) —> Sn is C°° left equivalent to the map-germ given by 
S H ( S , 0 , . . . , 0 ) . 

2. For any i (2 < i < n), the pedal point P is inside — 
if and only if the map-germ pedTjp : (1,0) —> Sn is C°° left equivalent to 
the map-germ given by the following: 

i elements (n—i) elements 

Here, two map-germs /, g : (R, 0) —• ( R n , 0 ) are said to be C 0 0 left 
equivalent if there exists a germ of C°° diffeomorphism ht : ( R " , 0) —> ( R n , 0) 
such that the identity g = ht o f is satisfied. 

The purpose of this paper is to investigate singularities of pedal curves 
when /in(0) = 0. We say that the n-th curvature function Kn has an A^-type 
singularity at 0 (0 < k < 00) if /cn(0) = «4(0) = • • • = = 0 and 

THEOREM 2. Let r : I —> Sn be an n-dimensional spherical unit speed 
curve. Suppose that P € Sun(0) — ^u ^o)' Then the following holds. 

1. If Kn has an Ak-type singularity at 0 (0 < k < n — 2), then the map-germ 
pedTtp : (1,0) —> Sn is C°° left equivalent to the map-germ given by 

s (sk+2,sk+3y..,s2h+3, ). 

(fc+2) elements (n—k—2) elements 



Singularities of pedal curves produced by singular dual curve germs in Sn 449 

2. If Kn has an An-\-type singularity at 0, then the map-germ pedr p : 

(/, 0) —> Sn is C°° right-left equivalent to the map-germ given by 

s^(sn+1,sn+2,...,s2n). 

Here, two map-germs /, g : (R , 0) —> (R n , 0 ) are said to be C°° right-left 

equivalent if there exist germs of C°° diffeomorphisms hs : (R, 0) —> (R, 0) 
and ht : (R n , 0 ) —> (R n , 0 ) such that the identity g = htofoh~l is satisfied. 
In the case that n = 2 Theorem 2 has been announced in [20]. In the 
case that re > 3 it seems to be almost impossible to obtain similar results 
when Kyi has an An-type singularity at 0. We may observe its reason in the 
following way. It is possible to show that pedr,p is C°° right-left equivalent 
to <p(s) = (sn + 2 , sn+3 + tfi2(s),s2n+l + ifin(s)) where ipj(s) = o(s2n+1). 

However, ip is not ^4-simple since in the case that n = 3 fencing curves due 
to Arnol'd ([2]) have the form of ip and for n > 3 the local multiplicity of 

2 

(p is more than ^ r j j which is an upper bound for the local multiplicity of 
an ^-simple map-germ; and the codimension of TA(<p) in TK{(p) is positive 
(for the restriction on the local multiplicity of an ^-simple map-germ, see 
[18], [19]). Thus, there must exist strong restrictions on higher terms ipj 
which can be truncated. 

Next, we investigate singularity types of pedal curves when P € S 1 ^ " 1 ^ . 
We concentrate on the case that Kn has an ^o-type singularity at 0. Note 
that Kn has an Ao-type singularity at 0 if and only if the function-germ 
Kn : (1,0) —> (R, 0) is non-singular, and the dual curve germ is an ordinary 
cusp in this case. 

THEOREM 3. Let r : I —• Sn be an n-dimensional spherical unit speed 

curve. Suppose that nn has an Ao-type singularity at 0. Then the following 

hold. 

1. The pedal point P is inside — Sy ^o) if and onfy tf the map-germ, 

pedr<p : (1,0) —> Sn is C°° left equivalent to the map-germ given by 

s^(s2,s3,0,...,0). 

2. For any i (1 < i < n—1), the pedal point P is inside 5 n _ t — 5 n _ l _ 1 if 

and only if the map-germ pedTtp : (/, 0) —> Sn is C°° right-left equivalent 

to the map-germ given by 

s ~ (,si+\si+3,si+i:...,s2i+\s2i+3, ). 

(¿—1) elements (n—i—1) elements 

3. The pedal point P is inside — if and only if the map-germ 
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pedr>p : (1,0) —» Sn is C°° right-left equivalent to the map-germ given by 

N V ' 
(n—1) elements 

In the case that n = 2 the "only if" parts of Theorem 3 has been an-
nounced in [20]. Note that the first assertion of Theorem 2 yields only the 
"only if" part of the first assertion of Theorem 3. By obtaining a complete 
list of locations of pedal points inside S ^ - 1 ^ and singularity types of pedal 
curves (assertions 2 and 3 of Theorem 3) we can obtain "if" part of the first 
assertion of Theorem 3. 

In §2 we give several preparations to prove Theorems 2 and 3. Theorems 
2 and 3 are proved in §3 and §4 respectively. 

The author would like to express his sincere gratitude to the referee for 
making valuable suggestions. He also wishes to thank S. Izumiya for sending 
a useful hand-written note [10]. 

2. Preliminaries 
We put 

U(s) = (u0(s)t,u1(s)t,...,un(s)t), 

where u ^ s ) 4 means the transposed vector of Uj (s ) . We further put 

K(s) = 

( 0 /ci(a) 0 

—Kl(s) 0 «2(s) 

V 

0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
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0 
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0 

0 

0 

0 

0 

0 

0 

\ 

« n - l ( s ) 0 

0 K n(s) 
-Kn{s) 0 

Then, the following Serret Frenet type formula holds. 
L E M M A 2 . 1 . ([17]) 

±U{af = K(s)U(s)t. 

By Lemma 2.1 we see that the dual curve u„ is non-singular at 0 if and 
only if Kn(0) ^ 0. By using Lemma 2.1 again and again we obtain the 
following: 

LEMMA 2.2. Suppose that Kn has an A& type singularity at0(k<n — l). 
Then, for any i (0 < i < n—1) properties u , (0) -u^(0) = 0 (0 < t < n-i+k) 
and ui(0) • u i n _ i + f e + 1 ) ( 0 ) ^ 0 hold. 
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L E M M A 2 . 3 . ([17]) The pedal curve of r relative to the pedal point P is 
given by the following expression: 

PedrAs) = ,, ,1 , P - (P • Un(s))un(s)). 
y/1 - (P • Un(s))2 

Let be the C°° map from Sn - { ± P } to Sn given by 

We see that the image — { ± P } ) is inside the open hemisphere centered 
at P. Let this open hemisphere be denoted by Xp and set Bp = ir(Sn — 
{ ± P } ) , where 7r : Sn —> P n ( R ) is the canonical projection. Since \Pp(x) = 
i'p(—x), the map ^p canonically induces the map \I!p : Bp —> Xp. Then, 
Lemma 2.3 shows that pedTtp is factored into three maps in the following 
way: 

pedT,P(s) = tfp o 7T o un(s). 

Let p : B R n be the blow up centered at the origin. 

L E M M A 2 . 4 . ( [17]) Let P be a point of Sn. Then, there exist C°° dif-
feomorphisms hi : Bp —> B and /12 : Xp —> R n such that the equality 
h2 o ^p = p o hi holds and the set {[x] € Bp \ x • P = 0, x 6 5 " } is mapped 
to the exceptional set of p by hi. 

Next, we prepare several notions and notations of Mather theory ([11], 
[12], [13], [14], [15], [16]) which are already common in singularity theory of 
differentiable mappings. An excellent survey article on Mather theory is [23] 
which we recommend to the readers. 

For any positive integer r let £ r be the R-algebra of all C°° function-
germs at the origin of R r with usual operations, and let mT be the unique 
maximal ideal of £ r . 

For any positive integers p, q given a C°° map-germ / : (Rp, 0) —> (R9 ,0) , 
we let 6(f) be the £p-module of vector fields along / . We may identify 6(f) 
with £p. For any positive integer r we put 6(r) = 6(id.rt-), where id.Rr is 
the identity map-germ of R r at the origin. An element of m,p6(f) is a vector 
field along / such that the Taylor polynomial up to (t — l)-th degree of it 
at the origin is zero. The map / * : £ , — > £p is defined by f*(u) = u o / . 
Two homomorphisms tf (tf is an £p-homomorphism) and u)f (u>f is an 
£q-homomorphism via f*) are defined in the following way: 

tf : 6(p) - 6(f), tf(a) = dfoa, 
uf:6(q)^6(f), uf(b) = b o f , 
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where df is the differential of /. We put 

TC(f) = uf(mqd(q)), TC(f) = f*mqe(f), 

T A ( f ) = tf(mpd(p)) + uf(mq6(q)), TK{f) = tf(mp0(p)) + fmqe(f). 

The Taylor polynomial up to r-th degree at the origin of / is called r jet of 

f at the origin and is denoted by jrf(0). 

Two map-germs /, g : ( R p , 0) —> ( R 9 ,0) are said to be A-equivalent (resp. 
^-equivalent) if there exist germs of C°° diffeomorphisms hs : ( R p , 0) —* 
( R p , 0) and ht : (R 9 ,0 ) (R 9 ,0 ) (resp. a germ of C°° diifeomorphism 
ht : ( R 9 ,0 ) - » (R9,0) ) such that g = htofohj1 (resp. g = h t o f ) . A C°° 

map-germ / : ( R p , 0) —> (R 9 ,0 ) is said to be r-A-determined (resp. r-C-

determined) if / is ^-equivalent (resp. ^-equivalent) to any C°° map-germ 
g with jrf(0) = jrg(0), and is said to be finitely A-determined (resp. finitely 

C-determined) if / is r-A-determined (resp. r-£-determined) by a certain r. 

3. Proof of Theorem 2 
By composing suitable rotations of Sn to r if necessary, from the first 

we may assume that uo(0) = (0, . . . ,0 ,1) , ui(0) = (0 , . . . , 0,1,0), . . . , 
u„_ i (0 ) = (0,1,0, . . . , 0 ) and un (0) = ( ( - l ) a , 0 , . . . , 0) where a = 
Suppose that Kn has an A^-type singularity at 0 (0 < k < n — 1). Then, by 
Lemma 2.2, we see that the lowest degree of non-zero terms of txjn (1 < i < n) 

is i + A; + 1 for the component function germ uin of the dual curve germ 
un = («On, • • • , Unn) • (I, 0) Sn. 

The assumption that P is a point of — implies that the 

scalar product un (0) • P is not zero. Therefore, by Lemma 2.4 the germ of 
^ P : ( P " ( R ) , t t o u (0 ) ) —> 5 n is a germ of C°° diifeomorphism. It is clear 
that the canonical projection ir : Sn —> Pn(R) is a local C°° diifeomorphism. 
Thus, in the case of Theorem 2, the map-germ pedTtp : (1,0) —> Sn is C°° 
left equivalent to the map-germ (tiin, • • •, unn) : (1,0) —> R n given by 

s (sfc+2 + ^ ( s ) , afc+3 + . . . , + 

where <pj(s) = o (s f c + n + 1 ) (1 < j < n). 

Proof of the assertion 1 of Theorem 2. From the arguments above, 
the map-germ pedr,p is C°° left equivalent to rp(s) = (sk+2 + ipi(s), sk+s + 

ip2{s),sk+n+l + rpn(s)) where V j ( s ) = o(s f c + n + 1 ) . 
Put f(s) = sk+2 and apply the Malgrange preparation theorem (for 

instance, see [6], [7], [9], [23]) to mk+2£\ and /. Then we see that for any 
function-germ g € there exists a certain C°° function-germ ip such 
that 
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Note that 2k+ 3<k + n + lm the case of the assertion 1 of Theorem 2. 
Thus, for our map-germ pedTtp : (I, 0) —> (Sn,pedr}p(0)) there exists a germ 
of C 0 0 diffeomorphism ht : (Sn,pedT!p(0)) (Rn ,0) such that 

ht o pedr,P(s) = (^+V+3,...,s2fc+3, O^^O ). . 
(fc+2) elements (n—k—2) elements 

Note that in the case of the assertion 1 of Theorem 2 the following equal-
ities hold: 

T)C{pedr,p) = TC(pedriP) = TA{pedr,P) = TC{pedT,P). 

Proof of the assertion 2 of Theorem 2. It sufficies to show that 
f(s) = (sn+\...,s2n) 

is 2n-.4-determined. 
Since n + 1 and n + 2 are relatively prime, we see that gcd(n + 1 , . . . , 2n) 

— 1, where gcd means the greatest common divisor. Thus, the map fc(z) — 
( z n + 1 , . . . , z2n) (z € C), which is the complexification of / , is injective. 
From this and the fact that fc has an isolated singularity at the origin, 
by the geometric characterization of finite determinacy due to Mather and 
Gaffney (see §2 of [23]) we see that / is finitely ^-determined. Hence, in 
order to show that / is 2n-*4-determined it is sufficient to show that 

mjn+10(f + h)C TA(f + h) 

for any C°° map-germ h : (1,0) R n such that j2nh(0) = 0 by Mather's 
lemma (Corollary 3.2 of [14], see also §4 of [23]). 

Let h : (/, 0) R n be a C°° map-germ such that j2n/i(0) = 0. Then, 
we see easily that the following holds. 

fmnSx = {f + /i)*mnfi + 

Thus, by Nakayama's lemma (for instance, see [6], [7], [9], [23]) we see that 
f*mn£i = (/ + h)*mn£i, 

and therefore both sets are equal to m" + 1 £i . Consider generators of the 
following quotient vector space: 

(/ + h)*mn9(f + h) 

(f + h)*ml0(f + hy 

Since we see easily that 

fi2n+1 g T A { f + + h ) (i — ^ — n ) 

where (X\,..., Xn) £ R n , we have that 

(/ + h)*mn6{f + h) C TA(f + h) + (f + h)*m2n6(f + h). 
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Apply the Malgrange preparation theorem to (/ + h)*mn9(f + h) and f + h. 
Then, we have the following desired inclusion: 

mln+19{f + h)c m?+ 10(/ + h) = {f + h)*mn9(f + h) C TA(f + h). -

Note that in the case of the assertion 2 of Theorem 2 the following equal-
ities hold but the equality for TC(pedTfp) does not hold: 

TJC(pedr>p) = TC{pedr,P) = TA(pedr>P). 

4. Proof of Theorem 3 
Since {S„n ( 0 ) - - 5un_22(0)>''' ' 5u0(o) ~ Su\(o)} S l v e s 

a stratification of Sn — {±u„(0)} , the "if" parts of the assertions 1-3 of 
Theorem 3 follow from the corresponding "only if" parts. Moreover, since 
the "only if" part of the first assertion of Theorem 3 is contained in the 
assertion 1 of Theorem 2, we just need to show the "only if" parts of the 
assertions 2 and 3 of Theorem 3. 

By composing suitable rotations of Sn to r if necessary, we may as-
sume that uo(0) = ( 0 , . . . , 0 , 1 ) , ui(0) = ( 0 , . . . , 0,1,0), . . . , un_i (0) = 
( 0 , 1 , 0 , . . . , 0 ) and u„(0) = ( ( -1) Q , 0 , . . . , 0), where a = Since Kn 

has an j4o-type singularity at 0, by Lemma 2.2 we see that the lowest degree 
of non-zero terms of Uin (1 < i < n) is i +1 for the component function-germ 
Uin (1 < i < n) of the map-germ u„ = (u0n, u\n,..., unn) : (7,0) -> Sn. 
Thus, the map-germ (u\n, U2n, • • •, unn) : (1,0) —> ( R n , 0) has the following 
form: 

8 ^ (s2 + ip!(s), s3 + (P2(s), . . . , Sn + 1 + ^n(s)), 

where ifj(s) = o(s-?+1) (1 < j < n). 

Proof of the "only i f ' part of the assertion 2 in Theorem 3. In the 
case of the assertion 2 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ 
pedr>P : (/, 0) Sn is C°° left equivalent to 

(ax(s ) , . . . , a„(s)), 

where the function-germ a j can be written as 

( si+j+2 + ( l < j < i - l ) , 

aj{s)= I + (j = i), 
[ si+i+2 + xfij (s) (t + 1 < j < n), 

where ipj(s) = o(st+:>+2) (1 < j < n, j ± i) and ipi(s) — o(s l + 1). 

L E M M A 4 . 1 . (Theorem 3 . 3 of [ 8 ] ) Let f : ( R , 0 ) - » R be a C°° function-
germ. Suppose that /(0) = / ' ( 0 ) = ••• = / W ( 0 ) = 0 and f(i+1\0) + 0. 
Then there exists a germ of C°° diffeomorphism h : ( R , 0) —> ( R , 0) such 
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that f(h(s)) = ±sl+1, where we have + or — according as 0) is > 0 
or < 0. 

Note that we can truncate the term of degree 2i + 2 in ipj by subtracting 
af since 2i + 2 = 2(i + 1). Thus, by using Lemma 4.1 and coordinate 
transformations of R n , we see that the map-germ pedTyp : (1,0) —» Sn is 
C°° right-left equivalent to the map-germ s h (PI(S), • • •, Pn(s)), where the 
function-germ (3j can be written as 

si+1 {j = i), ^ = 1 Qi+1 

where tpj(s) is o(si+n+2). Note that 2% + 3 < i + n + 2 since i < n - 1. 
Thus, in order to finish the proof of the "only i f ' part of the assertion 2 in 
Theorem 3, it is enough to show that 

( i - l ) elements (n-i—1) elements 

is (2i + 3)-£-determined. 
Since i + 1 and 2i + 3 are relatively prime, we have that 

gcd(z + 3, i + 4 , . . . , 2i + 1, i + 1,2i + 3) = 1. 
V V ' 

(i—1) elements 

Thus, / is finitely ^-determined by the geometric characterization of finite 
determinacy due to Mather and Gaffney. Therefore, in order to show that / 
is (2i + 3)-£-determined it is sufficient to show that 

mf+40(f + h) c TC(f + h) 

for any C°° map-germ h : (J, 0) R " such that j2i+3h(0) = 0 by Mather's 
lemma. 

Let a\,... ,ap be positive integers such that g c d ( a i , . . . , a p ) = 1. Then, 
it is well-known that there exists the smallest integer K(a\,... ,ap) such 
that the linear equation ajxj = b has a non-negative integer solution 
(xi,... ,xp) G T?+ for any integer b > K(a\,... ,op) (see, for instance, the 
comment of the problem 1999-8 in [5], For more details on the number 
K(a\,..., ap), see [2], [3], [4], [5]). From the view point of singularity theory 
of differentiate mappings the integer K(a\,..., ap) is the smallest integer d 
such that the inclusion mf9(g) C TC(g) is satisfied for g(s) = ( s a i , . . . , s ° p ) . 

Suppose that K(i + 3, i + 4 , . . . , 2i + 1, i + 1,2i + 3) = i + 3. Then, since 
(¿—1) elements 

2i + 4 > i + 3, by this supposition we have that 

mji+4e(f + h) C TC{f + h) + m ? 2 i + 4 ) 0 ( / + h). 
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Thus, by the Malgrange preparation theorem we have the following desired 
inclusion: 

m?+4e(f + h) cTC(f + h). 

Therefore, in order to finish the proof of the "only if" part of the assertion 2 
in Theorem 3, it is enough to show the following lemma: 

L e m m a 4.2. K(i + 3, i + 4 , . . . , 2i + 1, i + 1,2i + 3) = i + 3. 
S V / 

(¿—1) elements 

Proof of Lemma 4.2. In the case that i — 1 Lemma 4.2 holds by the 
Sylvester duality ([22], see also the comment of the problem 1999-8 in [5]). 
Thus, in the following we assume that i > 2. 

It is clear that there does not exist non-negative integers k i , . . . , k t + i such 
that i + 2 = ki(i + 3) + k2{i + 4) + • • • + fci_i(2t + 1) + h(i + 1) + fci+i(2t + 
3). Thus, it sufficies to show that mj + 3 0( / ) C TC(f), which is equivalent 
to m\+z9{f) C TC(f) + mi ( i + 3 ) 0( / ) by an application of the Malgrange 
preparation theorem similar as in the proof of the assertion 1 of Theorem 2. 

We have that 2i + 2 = 2(i + 1), 2i + 4 = (i + 3) + {i + 1) and 2i + 5 
is 3(i + 1) if i — 2 and (i + 4) + (i + 1) if i > 3. Therefore, the inclusion 
m\+30(f) C TC(f) + ml{i+3)e(f) holds. • 

Proof of the "only if" part of the assertion 3 in Theorem 3. In the 
case of the assertion 3 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ 
pedr,p : (1,0) —* S2 is C°° left equivalent to the following: 

s (s«+3 + sn+4 + _ _ 5 s2n+l + ^ n _ l ( s ) ) + 
> v ' 

(n—1) elements 

where ipj(s) = o(sn+:i+2) (1 < j < n - 1) and ipn(s) = o(sn + 1) . By using 
Lemma 4.1 and coordinate transformations of R n , we see that the map-germ 
pedrtp : (1,0) —> Sn is C°° right-left equivalent to the following: 

s ^ (sn+3 + fin+4 + _ ; s2n+ l + ^ ^ gn+1)> 
v ' 

(n—1) elements 

where 4>j(s) = o(s2 n + 1) (1 < j < n — 1). Thus, in order to finish the proof 
of the "only if" part of the assertion 3 in Theorem 3, it sufficies to show that 

v V ' 
(n—1) elements 

is (2n + l)-^4-determined. 
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Since n + 1 and 2n + 1 are relatively prime, we have that 
gcd(rc + 3,n + 4 , . . . , 2ra + 1, n + 1) = 1. N v ' 

(n—1) elements 

Thus, / is finitely /^-determined by the geometric characterization of finite 
determinacy due to Mather and Gaffney. Therefore, in order to show that / 
is (2n + l)-.4-determined it is sufficient to show that 

m2n+20 ( / + q c T A y + h ) 

for any C°° map-germ h : (J, 0) ->• R n such that j2n+1h(0) = 0 by Mather's 
lemma. 

For any C°° map-germ h : (1,0) R n such that j2n+1/i(0) = 0, the 
following holds clearly. 

f*mn£ i = ( / + h)*mn£\ + f*m2
n£ 

Thus, by Nakayama's lemma we see that 
f*mn£ i = ( / + h)*mn£\ 

and therefore both sets are equal to m™+1£i. 
Suppose that K(n + 3, n + 4 , . . . , 2n + 1, n + 1) = In + 4. Then, by this s -J- ' 

(n—l) elements 
supposition and the fact that 2ra + 2 = 2(n + 1) we have that 

A 

€ TC{f+h) + (f+h)*m3
n8(f+h) (2n+2 < j , j ^ 2n+3,1 < £ < n ) . 

dXe 

Furthermore, for s 2 n + 3 we have that 

^ ^ 6 T A U + k ) + ( / + W171*0^ + V ^ ~ £ ~ ^ 

Thus, we have that 
( / + h)*m2

n0{f + h) C TA(f + h) + ( f + h)*ml9{f + h). 

Hence, by the Malgrange preparation theorem we have the following desired 
inclusion: 

m2n+20(f + h) = ( f + h)*m2
ne(f + h ) c TA{f + h). 

Therefore, in order to finish the proof of the "only if" part of the assertion 3 
in Theorem 3, it is enough to show the following lemma: 
L E M M A 4 . 3 . K(n + 3 , n + 4 , . . . , 2ra + 1, n + 1) = 2 n + 4 . 

(n—1) elements 

Proof of Lemma 4.3. It is easy to see that there does not exist non-
negative integers k \ , . . . , kn such that 2n + 3 = k\ (n + 3) + ^ ( n + 4) -I 1-
fc„_i(2n + l ) + A : n ( n + l ) . T h u s> sufficies to show that m^n + 40(/) C T C ( f ) , 
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which is equivalent to m? n + 40(/) C T C ( f ) + m*n+8d(f) by the Malgrange 
preparation theorem. 

We have that 2 n + j = (n+j- l) + (n + l) (4 < j < n + 2), 2n + (n + 3) = 
3(n+l) , 2 n + j = ( j - l ) + (2n+l) (n+4 < j < 2n+2), 2ra+(2ra+3) = (2n+ 
l )+2(n+ l ) , 2n+(2n+4) = 4(n+l) , 2n+(2n+5) = (ra+3)+(2n+l) + (n+l) , 
2n + (2ra + 6) = (n + 3) + 3(n + 1) and 2n + (2n + 7) = 2(n + 3) + (2n + 1). 
Therefore, the inclusion m? n + 40(/) C T £ ( / ) + m\n'¥%0(f) holds. -
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