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SINGULARITIES OF PEDAL CURVES PRODUCED
BY SINGULAR DUAL CURVE GERMS IN $*

Abstract. For an n-dimensional spherical unit speed curve r and a given point P,
we can define naturally the pedal curve of r relative to the pedal point P. When the dual
curve germs are singular, singularity types of pedal curves depend on singularity types of
the n-th curvature function germs and the locations of pedal points. In this paper, we
investigate sigularity types of pedal curves in such cases.

1. Introduction
Let I be an open interval such that 0 € I and S™ be the n-dimensional

unit sphere in R™*! (n > 2). A C* non-singular map r : I — S” is said
to be a spherical unit speed curve if each of the following u;(s) (1 < i <
n — 1) is inductively well-defined for any s € I, where initial information are
u_;1(s) =0, ug(s) = r(s),||ug(s)]] =1 and xo(s) = 0.

u;(s) = i1 (8) F iz ()uizals) (1<i<n-1),

l[ui_1(s) + ki1 (s)ui-a(s)|

ki(s) = [0i_1(s) + mica(S)uia(s)]|  (1<i<n-—1).
The function &; : I — R is called the i-th curvature function of r. For a
spherical unit speed curve two vectors u;(s) and u;(s) (0 < ¢,j < n—1,
i # j) are perpendicular ([17]). Thus we can define one more vector u,(s)
uniquely so that {ug(s),ui(s),...,un(s)} is an orthogonal moving frame
and det(ug(s),...,un(s)) =1 for any s € I. The map u, : I — S™, which
is called the dual curve of r ([1], [21]), defines the n-th curvature function in
the following way, where the dot in the center is the scalar product.

kn(s) = U,y (s) - un(s).
We see that the dual curve u, is non-singular at s if and only if k,(s) # 0
(see §2).
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For any 7 (-1 <1 <mn), we put

Sfli(s) = (8" — {fun(s)}) N (u_i(s),..., ui(s))g,
where (u_1(s),...,u;(s))g means the vector subspace spanned by the vec-
tors u_i(s),...,u;(s). Given a spherical unit speed curve r : I — S"

choosing a point P of S™ — {£u,(s)|s € I} gives the map which maps s € I
to the unique nearest point in SZ,.—_ll ) from P. Such a map, which is called
the pedal curve relative to the pedal point P for an n-dimensional unit speed
curve r, is denoted by ped, p. Note that since all points in Sﬁ;_ll (s) 2re the
nearest points from Fu,(s) the pedal point P for the map-germ pedy p at s
must be outside {£u,(s)}.

In {17] we have shown the following.

THEOREM 1. ([17]) Let r : I — S™ be an n-dimensional spherical unit
speed curve. Suppose that £,(0) # 0. Then the following hold.

1. The pedal point P is inside Sﬁn(o) S” 2(0) if and only if the map-germ
pedep : (1,0) — S™ is C™ left equwalent to the map-germ given by
s+— (s,0,...,0).

2. For any i (2 < i < n), the pedal point P is inside S|, ’z(o) — Sznzl 11(0)

if and only if the map-germ pedy p : (I,0) — S™ is C°° left equivalent to
the map-germ given by the following:

i i+l 2i—1
Sl—->(§,s o877, 0,...,0 ).
i elements (n—1) elements

Here, two map-germs f,g : (R,0) — (R",0) are said to be C™ left
equivalent if there exists a germ of C* diffeomorphism A, : (R",0) — (R",0)
such that the identity g = h; o f is satisfied.

The purpose of this paper is to investigate singularities of pedal curves
when k,(0) = 0. We say that the n-th curvature function x, has an Ag-type
singularity at 0 (0 < k < 00) if kp(0) = K,(0) = --- = nﬁ,’“)( 0) = 0 and
mi D (0) # 0.

THEOREM 2. Letr : I — S™ be an n-dimensional spherical unit speed
curve. Suppose that P € S (0) S ( X Then the following holds.

1. If kn has an Ag-type singularity at 0 (0 < k < n —2), then the map-germ
pedy p : (I1,0) = S™ is C* left equivalent to the map-germ given by

k+2 _k+3 2k+3
s (s, 87, 80,0 )

(k+2) elements (n—k—2) elements



Singularities of pedal curves produced by singular dual curve germs in S™ 449

2. If kp has an An_i-type singularity at O, then the map-germ pedy p :

(1,0) — S™ is C*° right-left equivalent to the map-germ given by

s ("L 52 %),

Here, two map-germs f, ¢ : (R,0) — (R",0) are said to be C™ right-left
equivalent if there exist germs of C* diffeomorphisms hs : (R,0) — (R, 0)
and hg : (R™,0) — (R™,0) such that the identity g = hyo foh;! is satisfied.
In the case that n = 2 Theorem 2 has been announced in [20]. In the
case that n > 3 it seems to be almost impossible to obtain similar results
when K, has an A,-type singularity at 0. We may observe its reason in the
following way. It is possible to show that ped, p is C™ right-left equivalent
to @(s) = (s"*2,8"3 + po(s), ..., 82" + p,(s)) where p;(s) = o(s?™F1).
However, ¢ is not .A-simple since in the case that n = 3 fencing curves due
to Arnol’d ([2]) have the form of ¢ and for n > 3 the local multiplicity of
@ is more than (n"—‘zl; which is an upper bound for the local multiplicity of
an A-simple map-germ; and the codimension of T'A(y) in TK () is positive
(for the restriction on the local multiplicity of an .A-simple map-germ, see
(18], [19]). Thus, there must exist strong restrictions on higher terms ¢;
which can be truncated.

Next, we investigate singularity types of pedal curves when P € Sﬁ;_ll )"
We concentrate on the case that x, has an Ag-type singularity at 0. Note
that k, has an Ap-type singularity at O if and only if the function-germ
kn : (I,0) — (R,0) is non-singular, and the dual curve germ is an ordinary
cusp in this case.

THEOREM 3. Letr : I — S™ be an n-dimensional spherical unit speed
curve. Suppose that kn has an Ag-type singularity at 0. Then the following
hold.

1. The pedal point P is inside SZ,,(O) S" 1(0) if and only if the map-germ
pedr.p : (I,0) = S™ is C™ left equwalent to the map-germ given by
s (s2,53,0,...,0).
B i—1

2. Foranyi (1 < i< n-1), the pedal point P is inside S" : 0" St (0) if
and only if the map-germ ped, p : (I,0) — S™ is C°° nght left equzvalent
to the map-germ given by

z+1 z+3 1+4 2i+1 _2i+3
s+ (s p ST ST LT s, 0,..,00 ).
- — N ot
(i—1) elements (n—i—1) elements

3. The pedal point P is inside Sﬁo(o) - 51:_11(0) if and only if the map-germ
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pedy.p : (1,0) — S™ is C™ right-left equivalent to the map-germ given by

Sn+l, Sn+3 n+4 82n+1).

s+ L8 L

(n—1) e‘l'ements

In the case that n = 2 the “only if" parts of Theorem 3 has been an-
nounced in [20]. Note that the first assertion of Theorem 2 yields only the
“only if" part of the first assertion of Theorem 3. By obtaining a complete
list of locations of pedal points inside S";:l(o) and singularity types of pedal
curves (assertions 2 and 3 of Theorem 3) we can obtain “if" part of the first
assertion of Theorem 3.

In §2 we give several preparations to prove Theorems 2 and 3. Theorems
2 and 3 are proved in §3 and §4 respectively.

The author would like to express his sincere gratitude to the referee for
making valuable suggestions. He also wishes to thank S. Izumiya for sending
a useful hand-written note [10].

2. Preliminaries
We put
U(s) = (uo(s), ur(s)’, . .., un(s)"),

where u;(s)* means the transposed vector of u;(s). We further put

0 ki(s) O 0 0 0\
—-k1(8) 0  ka(s) 0 0 0
0 —ka(s) O 0 0 0
K(s) =
0 0o 0 0 Kn-i(s) O
0 0 0 v —kp-1(s) 0 Ka(s)
0 0 0 0 —kn(s) O

Then, the following Serret Frenet type formula holds.

LEMMA 2.1. ([17])

a;U(s)t = K(s)U(s)".

By Lemma 2.1 we see that the dual curve u, is non-singular at 0 if and
only if k,(0) # 0. By using Lemma 2.1 again and again we obtain the
following:

LEMMA 2.2. Suppose that K, has an Ay type singularity at 0 (k <n —1).
Then, for anyi (0 < ¢ < n—1) properties ui(O)-ug)(O) =0(0<?¢< n—i+k)
and u;(0) - ul ™D (0) £ 0 hold.
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LEMMA 2.3. ([17]) The pedal curve of r relative to the pedal point P is
gwen by the following expression:

1
VI (P un(s))?
Let ¥p be the C* map from S™ — {£P} to S™ given by
1

\IlP (x) m
We see that the image W p(S™—{+£P}) is inside the open hemisphere centered
at P. Let this open hemisphere be denoted by Xp and set Bp = n(S" —
{£P}), where 7 : S — P™(R) is the canonical projection. Since ¥p(x) =
¥ p(—x), the map ¥p canonically induces the map Up: Bp — Xp. Then,
Lemma 2.3 shows that ped; p is factored into three maps in the following
way:

(P — (P - un(s))un(s))-

pedr,P(s)

(P — (P x)x).

pedr p(s) = Upomouy(s).
Let p: B — R" be the blow up centered at the origin.

LEMMA 2.4. ([17]) Let P be a point of S®. Then, there exist C™ dif-
feomorphisms hy : Bp — B and hy : Xp — R"™ such that the equality
hooWp = pohy holds and the set {[x] € Bp | x- P =0, x € S*} is mapped
to the exceptional set of p by h;.

Next, we prepare several notions and notations of Mather theory ([11},
[12], [13], [14], [15], [16]) which are already common in singularity theory of
differentiable mappings. An excellent survey article on Mather theory is [23]
which we recommend to the readers.

For any positive integer r let £ be the R-algebra of all C*° function-
germs at the origin of R™ with usual operations, and let m, be the unique
maximal ideal of &,.

For any positive integers p, g given a C* map-germ f : (R?,0) — (RY,0),
we let §(f) be the £,-module of vector fields along f. We may identify 6(f)
with &J. For any positive integer r we put 6(r) = 0(id.rr), where id.g- is
the identity map-germ of R” at the origin. An element of mf,()( f) is a vector
field along f such that the Taylor polynomial up to (£ — 1)-th degree of it
at the origin is zero. The map f* : & — &, is defined by f*(u) = uo f.
Two homomorphisms ¢f (tf is an €,-homomorphism) and wf (wf is an
&q-homomorphism via f*) are defined in the following way:

tf:6(p) = 0(f), tf(a)=dfoa,
wf:0(qg) = 0(f), wf(b)=bof,
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where df is the differential of f. We put

TL(f) = wf(mgf(q)), TC(f)= frmed(f),
TA(f) = tf(mpb(p)) + wf(meb(q)), TK(f)=tf(mpb(p)) + f*meb(f).
The Taylor polynomial up to r-th degree at the origin of f is called r jet of
f at the origin and is denoted by ;" f(0).

Two map-germs f, g : (RP,0) — (RY,0) are said to be A-equivalent (resp.
L-equivalent) if there exist germs of C* diffeomorphisms hs : (RP,0) —
(RP,0) and A : (R%,0) — (RY,0) (resp. a germ of C*° diffeomorphism
ht : (R9,0) — (R9,0)) such that g = hyo fo h ! (resp. g = hyo f). A C®
map-germ f : (R?,0) — (RY,0) is said to be r-A-determined (resp. r-L-
determined) if f is A-equivalent (resp. L-equivalent) to any C°° map-germ
g with j7 f(0) = j"¢(0), and is said to be finitely A-determined (resp. finitely
L-determined) if f is r-A-determined (resp. r-L-determined) by a certain r.

3. Proof of Theorem 2

By composing suitable rotations of S™ to r if necessary, from the first
we may assume that up(0) = (0,...,0,1), wy(0) = (0,...,0,1,0), ...,
u,_1(0) = (0,1,0,...,0) and u,(0) = ((~1)%,0,...,0) where a = 2501,
Suppose that x, has an Ag-type singularity at 0 (0 < k <n —1). Then, by
Lemma 2.2, we see that the lowest degree of non-zero terms of u;, (1 < i < n)
is 2+ k + 1 for the component function germ wu;, of the dual curve germ
Un = (Yo, -« -, Unp) : (£,0) — S™.

The assumption that P is a point of S:l‘n(o) — SZ:I ) implies that the
scalar product u,(0) - P is not zero. Therefore, by Lemma 2.4 the germ of
Up : (P*(R), 7o u(0)) — S™ is a germ of C* diffeomorphism. It is clear
that the canonical projection 7 : S® — P™(R) is a local C*° diffeomorphism.
Thus, in the case of Theorem 2, the map-germ ped, p : (I,0) — S™ is C*°
left equivalent to the map-germ (uin,...,unn) : (I,0) — R™ given by

s (3k+2 + ¢1(s), sE13 4 ©2(8); - -, shtntl 4 ®n(s)),
where ;(s) = o(s**"*1) (1 < j <n).
Proof of the assertion 1 of Theorem 2. From the arguments above,
the map-germ pedy p is C* left equivalent to ¥(s) = (s¥2 + 41 (s), s¥73 +
Yo(s), ..., 8t 4 ah,(s)) where 9;(s) = o(s*T™H).

Put f(s) = s**2 and apply the Malgrange preparation theorem (for
instance, see [6], [7], [9], [23]) to m¥*2€; and f. Then we see that for any
function-germ g € m’f+281 there exists a certain C* function-germ 1 such
that

g(s) — ¢(Sk+2, o ,82k+3).
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Note that 2k +3 < k + n + 1 in the case of the assertion 1 of Theorem 2.
Thus, for our map-germ ped, p : (I,0) — (S™, ped,, p(0)) there exists a germ
of C* diffeomorphism h; : (S™, ped; p(0)) — (R",0) such that

k+2 _k+3 2k+3
htoped,,p(s)=(5+,s+,...,s H0,...,0 )om
- -~ —_— e —
(k+2) elements (n—k—2) elements

Note that in the case of the assertion 1 of Theorem 2 the following equal-
ities hold:

TK(pedr,p) = TC(pedr p) = T A(pedy p) = TL(ped; p).

Proof of the assertion 2 of Theorem 2. It sufficies to show that

f(s) = (s"1,..., 8™
is 2n- A-determined.

Since n+ 1 and n + 2 are relatively prime, we see that ged(n+1,...,2n)
= 1, where gcd means the greatest common divisor. Thus, the map fc(z) =
(z"*1,...,2%") (2 € C), which is the complexification of f, is injective.
From this and the fact that fc has an isolated singularity at the origin,
by the geometric characterization of finite determinacy due to Mather and
Gafney (see §2 of [23]) we see that f is finitely £-determined. Hence, in
order to show that f is 2n-.A4-determined it is sufficient to show that

m2"t19(f + h) C TA(f + h)
for any C* map-germ h : (I,0) — R™ such that j2"h(0) = 0 by Mather’s
lemma (Corollary 3.2 of [14], see also §4 of [23]).
Let h: (I,0) — R™ be a C*® map-germ such that j2*h(0) = 0. Then,
we see easily that the following holds.
Frmn& = (f + h)*mn& + f*m2éy.
Thus, by Nakayama’s lemma (for instance, see [6], [7], [9], [23]) we see that
frmn& = (f + h)*my,é&1,

and therefore both sets are equal to m’f‘“gl. Consider generators of the
following quotient vector space:

(f +h)*ma8(f + h)

(f +h)*m20(f + k)’

Since we see easily that

s2n+16—% €TA(f+h)+ (f+h)m20(f+h) (1<t<n)

where (X1,...,Xn) € R", we have that
(f + h)*'mnf(f + k) C TA(f + k) + (f + R)*m26(f + h).
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Apply the Malgrange preparation theorem to (f +h)*m,0(f +h) and f+h.
Then, we have the following desired inclusion:

m%n+10(f +h)C m111+10(f +h)=(f+h)'m0(f +h) CTA(f+h). =

Note that in the case of the assertion 2 of Theorem 2 the following equal-
ities hold but the equality for TL(ped, p) does not hold:

TK(pedr,p) = TC(pedy,p) = T A(pedy,p).

4. Proof of Theorem 3

Since {Sﬁn(o) - Sﬁn_ll(o), Sﬁn_l1<0) - Szni(o), cee Sgo(o) - Su_ll(o)} gives
a stratification of S™ — {£u,(0)}, the “if" parts of the assertions 1-3 of
Theorem 3 follow from the corresponding “only if" parts. Moreover, since
the “only if” part of the first assertion of Theorem 3 is contained in the
assertion 1 of Theorem 2, we just need to show the “only if” parts of the
assertions 2 and 3 of Theorem 3.

By composing suitable rotations of S™ to r if necessary, we may as-
sume that up(0) = (0,...,0,1), u1(0) = (0,...,0,1,0), ..., u,—1(0) =
(0,1,0,...,0) and u,(0) = ((-1)*,0,...,0), where o = (l—ilm Since K,
has an Ag-type singularity at 0, by Lemma 2.2 we see that the lowest degree
of non-zero terms of u;, (1 <7 < n)isi+1 for the component function-germ
uin (1 < i < n) of the map-germ u, = (ugp, Yin,---,Unn) : (I,0) — S™.
Thus, the map-germ (uin, Uon, - - -, Unn) : (I,0) — (R™,0) has the following
form:

s (82 + p1(8), 82+ pa(s), ..., 5" + pn(s),
where ;(s) = o(s’*1) (1 < j < n).
Proof of the “only if” part of the assertion 2 in Theorem 3. In the
case of the assertion 2 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ
pedy p : (I,0) = S™ is C™ left equivalent to

s (ai(s),...,an(s)),
where the function-germ «; can be written as
ST L yi(s) (1< <i—1),
aj(s) = § s +(s) (G =1),
sHH2 4 hi(s) (1 +1<j < n),
where ;(s) = o(s942) (1 < j < n, j # i) and 4i(s) = o(s"*Y).

LEMMA 4.1. (Theorem 3.3 of [8]) Let f : (R,0) — R be a C* function-
germ. Suppose that f(0) = f(0) = --- = fD(0) = 0 and f(+1(0) # 0.
Then there exists a germ of C* diffeomorphism h : (R,0) — (R,0) such
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that f(h(s)) = £s*t1, where we have + or — according as fE*t1(0) is > 0
or < 0.

Note that we can truncate the term of degree 2i 42 in 1; by subtracting
a? since 2i + 2 = 2(i + 1). Thus, by using Lemma 4.1 and coordinate
transformations of R", we see that the map-germ ped, p : (I,0) — S" is
C right-left equivalent to the map-germ s — (51(s),. .., On(s)), where the

function-germ B; can be written as
g(s)= LS G,
’ st (=1,
where t;(s) is o(s"t"*2). Note that 2i +3 < ¢+ n + 2 since i < n — 1.

Thus, in order to finish the proof of the “only if” part of the assertion 2 in
Theorem 3, it is enough to show that

_ i+3 _i+4 2i+1 i+l 2143
f(s)=((s"2,8™% ..., 877,87, 0,...,0 )
~ ~" - Y
(i—1) elements (n—i—1) elements

is (2¢ + 3)-L-determined.
Since i + 1 and 2i + 3 are relatively prime, we have that

ged(i+3,i+4,...,20+ Li+1,2i+3) = 1.

(i—1) elements

Thus, f is finitely £-determined by the geometric characterization of finite
determinacy due to Mather and Gaffney. Therefore, in order to show that f
is (21 4+ 3)-L-determined it is sufficient to show that

m2H49(f +h) C TL(f + h)

for any C* map-germ h : (I,0) — R”™ such that j%+3h(0) = 0 by Mather’s
lemma.

Let aj,...,ap be positive integers such that ged(a1,...,ap) = 1. Then,
it is well-known that there exists the smallest integer K(a1,...,ap) such
that the linear equation Z?:l a;z; = b has a non-negative integer solution
(z1,...,2p) € ZE for any integer b > K(ai,...,ap) (see, for instance, the
comment of the problem 1999-8 in [5]. For more details on the number
K(ai,...,ap), see (2], [3], [4], [5]). From the view point of singularity theory
of differentiable mappings the integer K(a1,...,ap) is the smallest integer d
such that the inclusion m%6(g) C TL(g) is satisfied for g(s) = (s*, ..., s%).

Suppose that K(i +3,i+4,...,20+1,i+1,2{+3) = ¢ + 3. Then, since

p—

(i—1) elements

2i + 4 > i+ 3, by this supposition we have that
mZH0(f + h) € TL(f + h) + m>Fo(f + h).
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Thus, by the Malgrange preparation theorem we have the following desired
inclusion:

m2t49(f + h) C TL(f + h).

Therefore, in order to finish the proof of the “only if" part of the assertion 2
in Theorem 3, it is enough to show the following lemma:

LEMMA 4.2. K(i+3,i+4,...,20+ 1,1+ 1,20+ 3) =i+ 3.

(i—1) elements

Proof of Lemma 4.2. In the case that ¢ = 1 Lemma 4.2 holds by the
Sylvester duality ([22], see also the comment of the problem 1999-8 in [5]).
Thus, in the following we assume that ¢ > 2.

It is clear that there does not exist non-negative integers k1, .. ., k41 such
that i +2=ki(i +3)+ kot +4)+ -+ ki1(20+ 1) + ki (6 + 1) + ki1 (26 +
3). Thus, it sufficies to show that m{*38(f) c TL(f), which is equivalent
to mit30(f) < TL(f) + mf(z+3)0( f) by an application of the Malgrange
preparation theorem similar as in the proof of the assertion 1 of Theorem 2.

We have that 20 +2 =2(i+1),2i +4=(i+3)+({+1)and 20+ 5
is3(t+1)if¢ =2and (i+4)+ (i +1)if ¢ > 3. Therefore, the inclusion
mit30(f) € TL(F) + m2+3g(#) holds.

Proof of the “only if”’ part of the assertion 3 in Theorem 3. In the
case of the assertion 3 of Theorem 3, by Lemmas 2.3 and 2.4 the map-germ
pedy p : (I,0) — S? is C*™ left equivalent to the following:

S (§n+3 + 1/)1 (S), sn+4 + ’l,bz(S), s ,32n+1 + d)n—l(s)) sn+1 + ’(/)n(S)),

—
(n—1) elements

where 1;(s) = o(s"t912) (1 < j < n—1) and Yn(s) = o(s"*!). By using
Lemma 4.1 and coordinate transformations of R™, we see that the map-germ
pedy p : (1,0) — S™ is C™ right-left equivalent to the following:

S (sn+3 + ,{Z)'l(s),sn+4 + ,12;2(5), . ’82n+1 + Jn_l(s), sn—+—l),

s

~

(n—1) elements

where Jj(s) = o(s®*1) (1 < j <n—1). Thus, in order to finish the proof
of the “only if" part of the assertion 3 in Theorem 3, it sufficies to show that

f(S) — (in+3’ 8n+4’ e S2n+1,sn+1)

"

(n—1) elements

is (2n + 1)-A-determined.
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Since n + 1 and 2n + 1 are relatively prime, we have that
ged(n+3,n+4,...,2n+1,n+1)=1.

R
(n—1) elements

Thus, f is finitely £-determined by the geometric characterization of finite
determinacy due to Mather and Gaffney. Therefore, in order to show that f
is (2n + 1)-A-determined it is sufficient to show that

m3"t20(f + h) C TA(f +h)

for any C*™ map-germ h : (I,0) — R™ such that j2"*1h(0) = 0 by Mather’s
lemma.

For any C® map-germ h : (I,0) — R™ such that j2**1h(0) = 0, the
following holds clearly.

Frma€r = (f + B)'mnp&y + f*m&r.
Thus, by Nakayama’s lemma we see that
f*mngl = (f + h)*mngl

and therefore both sets are equal to m}1&;.
Suppose that K(n+3,n+4,...,2n+ 1,n+ 1) = 2n + 4. Then, by this

(n—1) elements

supposition and the fact that 2n + 2 = 2(n + 1) we have that
.o,
315)? € TL(f+h)+(f+h)y*m30(f+h) (2n+2<j,j#2n+3,1<L<n).
£
Furthermore, for s

s2n+38_§(2 ETA(f+h)+(f+h)*m30(f +h) (1<L€<n).
Thus, we have that
(f +h)*m20(f + h) C TA(f + h) + (f + h)*m30(f + h).

Hence, by the Malgrange preparation theorem we have the following desired
inclusion:

2n+3 we have that

mi"t20(f + k) = (f + h)*m20(f + k) C TA(f + h).
Therefore, in order to finish the proof of the “only if" part of the assertion 3
in Theorem 3, it is enough to show the following lemma:

LEMMA 4.3. K(g+3,n+4,...,2n+1,n+1) =2n+4.

—

(n—1) elements
Proof of Lemma 4.3. It is easy to see that there does not exist non-
negative integers k, ...,k such that 2n+3 = ki(n+3) + ke(n+4)+--- +
kn—1(2n+1)+kn(n+1). Thus, it sufficies to show that m2"*40(f) C TL(f),
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which is equivalent to m"™6(f) C TL(f) + m‘f“+80( f) by the Malgrange
preparation theorem.

We have that 2n+j = (n+j—-1)+(n+1) (4 <j<n+2),2n+(n+3) =
3(n+1),2n+j=(-1)+(2n+1) (n+4 < j < 2n+2), 2n+(2n+3) = (2n+
1)+2(n+1), 2n+(2n+4) = 4(n+1), 2n+(2n+5) = (n+3)+(2n+1)+(n+1),
2n+(2n+6)=(n+3)+3(n+1)and 2n+ (2n+7) = 2(n+ 3) + (2n + 1).
Therefore, the inclusion m2"*9(f) C TL(f) + mi"*84(f) holds. m
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