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A SURVEY ON POLYGONAL PORTRAITS OF MANIFOLDS

Abstract. Planar portraits are geometric representations of smooth manifolds de-
fined by their generic maps into the plane. A simple subclass called the polygonal portraits
is introduced, their realisations, and relations of their shapes to the topology of source
manifolds are discussed. Generalisations and analogies of the results to other planar por-
traits are also mentioned. A list of manifolds which possibly admit polygonal portraits is
given, up to diffeomorphism and up to homotopy spheres. This article is intended to give
a summary on our research on the topic, and hence precise proofs will be given in other
papers.

1. Introduction

For a smooth manifold M of dimension two or more, its planar portrait
through f : M — R? is the pair P = (f(M), f(Sf)), up to diffeomorphism
of R2, where f is a generic map and S ¢ is the set of singular points. The
second component, referred to as the critical loci of P or f, is a plane curve
possibly disconnected and possibly with a finite number of (ordinary) cusps
and normal crossings. A planar portrait can be regarded a natural, geometric
representation of the manifold, but its relation to the topology of M is not
straight and few is known about it. One can hence pose two basic problems as
below. (A) What topological properties of M are carried to a planar portrait
(and how)? (B) Which compact set, bounded and separated into regions by
a plane curve, can be a planar portrait of a manifold? In this article, we
introduce a special class of planar portraits named the polygonal portraits,
and approach to these problems, especially to (B).

The critical loci of generic maps into the plane have been attractive for
a long time, especially for maps from surfaces, as seen in e.g., [Hae|, [Ka],
[OA] and [Ya]. For these maps from surfaces, important tools have been
developed by S. Blank [B]] (as exposed in [L2]) and Francis-Troyer [FT],
etc. Recently, Hacon-Mendes-Fuster [HMF1, HMF2, HMF3] introduced an
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approach using a graph to represent a stable map of a surface, developed
surgery techniques to calculate invariants, and obtained some classification
results of fold maps. In contrast, our approach here are intended to treat
manifolds which are not necessarily surfaces, and much more stress is placed
on critical loci of uncertain manifolds. Our results are independent to these
earlier works in appearance, but it is an interesting problem to consider the
relevancy to them, especially to the last one.

We have four topics in this paper. First is on the realisation of polygonal
pre-portraits by surfaces. For realisation by higher dimensional manifolds,
we point out a difficulty and give only partial results. The second is on the
shape of a polygonal portrait. In short, a polygonal portrait is formed from
apparent contours of a set of homotopy subspheres in a manifold. The third
is on the construction of generic maps of certain manifolds which produce
polygonal portraits. The final one is the list of the diffeomorphism types of
manifolds which possibly admit polygonal portraits, where homotopy spheres
appear in the list as building blocks without specifying their diffeomorphism
types. Our list is, in this sense, up to homotopy spheres. Into these topics,
a section for toric 4-manifolds is inserted, since they, together with closed
surfaces, are typical examples of manifolds admitting polygonal portraits.
Our research on polygonal portrait is intended to be a step to approach to
planar portrait in general. We pose some problems, from this viewpoint.

As seen, most part of the paper is devoted to the problem (B). On the
problem (A), there is no explicit result, but one can guess what kind of
properties are likely or not likely to be carried on the planar portraits from
the results in the last three sections. We note that many results in this article
are based on our previous observations in [K1]. Throughout, we assume that
manifolds and surfaces are smooth, closed, and connected, unless otherwise
mentioned.

2. Realisation problem of polygonal portraits

Let Ay, k a positive integer, be a polygon, or a 2-disc with k& marked
points on the boundary, placed in the plane. We duplicate each edge without
changing the vertices (replace the edge with two arcs connecting the vertices,
which may have mutual crossings) so that any of the 2* combinations of
k-edges chosen from each pair of duplicated edges bounds a polygon again
(Figure 1, a and b). Then by performing a modification at each vertex as in c
of the figure, we obtain a compact set K and a curve C, possibly disconnected
and possibly with cusps and normal crossings, which bounds and separates
K into regions. The pair (K,C), up to diffeomorphism of R2, is called
a polygonal pre-portrait ([K4]). It can be constructed uniquely from Ay, if
the number of crossings between the duplicated edges is given for each of



A survey on polygonal portraits of manifolds 435

duplicate
(crossings
of any number
are allowded)
a b d

¢ modification w — \\//

Fig. 1. A polygonal pre-portrait (d) obtained by duplications and modifications to a

polygon (a)
k=1 k=1 k=1 k=2
k=3 k=3 k=4

Fig. 2. Examples of polygonal pre-portraits

the k-edges. Some examples are shown in Figure 2, where every polygonal
pre-portrait for a fixed k is not listed.
On their realisation as planar portraits, we can show the following:

THEOREM 2.1. ([K4]) A polygonal pre-portrait is realised as a planar por-
trait of a manifold if and only if the number of cusps k is two or more.

Note. In actual, such a polygonal pre-portrait in the theorem is realised at
least by the closed surface whose total Betti number b; + 2 equals to k, as
seen below.

A polygonal pre-portrait that is realised by a manifold is simply referred
to as a polygonal portrait.

Proof. In-realisation for k = 1. Assume that a polygonal pre-portrait P of
k =1 is realised by a map f of an n-manifold of n > 2. If it has two or more
crossings, it is easy to remove the crossings in pair by a homotopy of f, by
using that fibres near a crossing is disconnected (refer to the overhanging
operation for surfaces, mentioned later). Hence the problem is reduced to
the case where P has at most one crossing, or it is either of the first two in
Figure 2. But in either case, it contains “prohibited subpiece” listed in [K2],
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which means that such a piece is impossible to be contained in any planar
portraits. It is a contradiction. m

Proof. Realisation for k > 2. We show that P is realised by a closed surface.

LEMMA 2.2. The polygonal pre-portraits S, S’ and P in Figure 3 are realised
by S? (for S and S’) and by RP? (for P), respectively.

()

S s P
Fig. 3. The three elementary polygonal portraits

It is not difficult to see this (we mention this again later in this section,
in more general settings; see the references there).

By using S, S" and P, we define three types of modifications (addition of
a cusp, making a crossing, and overhanging) each of which changes a polyg-
onal portrait X into another, as in the pictures below (Figure 4, 5, 6). The
first two are both achieved just by a fibrewise connected sum and elimina-
tion of cusps. To eliminate the cusps, we must prepare the maps realising
S’ and P carefully so that the cusps have cancelable signs ([L1]). The third
one is achieved by a homotopy of a map. The last one is a convertible op-
eration, while the first two are not. It is obvious that, starting from S, one
can achieve any P in the theorem by a sequence of these modifications. =

Addition of a cusp (Figure 4):
X P
Fig. 4. Addition of a cusp by a sum with P
Making a crossing (Figure 5):

- Lo

#

Fig. 5. Making a crossing by a sum with S’
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Overhanging (Figure 6):

N 2 VY

Fig. 6. Making or deleting a pair of crossings by a homotopy

We next consider the realisation of polygonal pre-portraits by manifolds
of a given, higher dimension. A polygonal (pre-) portrait is strict if crossed
duplications do not adjoin for two edges.

LEMMA 2.3. Any polygonal portrait of an n-manifold of n > 3 is strict.

Proof. Assume that a polygonal portrait is realised by an n-manifold. The
indices of folds on the two branches abutting a cusp are 7 for folds on a
branch, and n — 2 — 7 for those on the other, as seen by the normal form of
a cusp, where indices are counted according to the normal direction pointed
inward of the portrait. If crossed duplications occur for adjoining two edges,
then the cusp corresponding to the common vertex of the edges has two
branches which are both made of folds of definite types (u, |z|?). Hence both
7=0and n—2—7 =0 hold, which impliess n=2. »

LEMMA 2.4. A polygonal pre-portrait with odd number of cusps is impossible
to be realised by any odd-dimensional manifolds.

Proof. It is a direct application of the mod 2 congruence of Thom [Th, the-
orem 9] between the Euler characteristic of manifolds x(M) and the number
of cusps. =

These two lemmas give basic restrictions on dimensions of realising man-
ifolds of a polygonal pre-portrait. The following observation suggests a more
complicated aspect of the problem.

FAcT 2.5. ([K4]) There is no 6- and 12-manifolds admitting the polygonal
portrait P in Figure 3. More generally, P can not be realised by any n-
manifolds if either (a) n is odd, or (b) n £27, 7 =1,2,3,....

Proof. If P is realised by an n-manifold of n > 2, then n is even, by
Lemma 2.4. Hence we assume that n = 2m below. Divide P into two half
discs so that one contains a cusp and the other does two cusps. According
to the division, M is also divided into two pieces M, and My with common
boundary OM; = OM,. The piece M; that contains exactly one cusp is dif-
feomorphic to D™ by [K1, Theorem 2.2|, while the other is the two copies of
D™ x D™ pasted along D™ x 8D™ in a way that map-fibres are preserved.
Lemma 3.4 stated later shows it to be a tubular neighbourhood of a homo-
topy subsphere ¥™. Hence the boundary OMj is a sphere $2™~1 and, at the



438 M. Kobayashi

same time, a sphere bundle with fibre S™~1 over ¥™. A homotopy result
by J. Adem ([Ad, Corollary 2.3]) implies that m = 2",7 =0,1,2,---, which
contradicts to our assumption on n. m

Returning to realisation of strict polygonal pre-portraits by higher di-
mensional manifolds, we can see that the elementary three pieces in Figure
3 are realised also by manifolds of dimensions 4, 8 and 16; in strict, S and S’
by spheres of any dimensions ([K1, Example 7.1, K5]), and P by the projec-
tive planes over C,H ([K1, Example 7.2]) and the Keyley numbers. Hence
by following essentially the same argument as before, we obtain:

THEOREM 2.6. ([K4]) A strict polygonal pre-portrait of two or more cusps
can be realised as a planar portrait by a manifold of any of the following
dimensions: 2,4, 8, 16.

The choice of dimensions above is somehow ad hoc, but it is impossible
to drop the restrictions entirely, as seen in the fact above. The key to know
the realisable dimensions is the following problem:

PROBLEM 2.7. Determine the dimensions of manifolds which admit the
piece P in Figure 3 as a planar portrait.

In later sections, we give some partial answers to our realisation problem
of strict polygonal pre-portrait, approached from different viewpoints.

3. Cores of source manifolds

An outline of a polygonal (pre-) portrait is the chain of loops, up to
isotopy, obtained from the duplication of edges of underlying polygon by
replacing each pair of duplicated edges with a slightly bigger loop so that
adjoining loops have small overlaps as in Figure 7.

Fig. 7. Polygonal portrait (left) and its outline (right)

THEOREM 3.1. ([K4]) Let P be a polygonal portrait of a manifold M
through f. There ezists a collection of k embedded homotopy spheres {S;} of
dimS; > 1 in M, called a core, where k is the number of cusps, such that:

1. the restriction f|S; is either a generic map onto an embedded 2-disc only
with definite fold singularities (if dim S; > 2), or an immersion of a loop
(otherwise), and
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2. the collection of apparent contours of the restrictions f|S; is an outline

of P.

An apparent contour of f|S; above stands for the critical loci, or the
boundary curve of f(.S;) in case dim S; > 2, or just the image f(S;) in case
dim S,' =1.

Before giving an outline of the proof, we state a basic property of the
core.

PROPOSITION 3.2. ([K4]) The core {S;} above is accompanied by a Morse
function H : M — R so that:

1. H has the critical points ezactly at the intersections of components,

2. the critical points of H|S; are critical points of H also, and

3. the Morse index of each critical point of H agrees with the sum of dim S;
through S; that contains this point as the mazimum of H|S;.

We define in general a set of homotopy subspheres {S;} of a manifold
M to be a core if there exists a Morse function H : M — R of the three
properties above. Twins, or a pair of transverse equators SP and S? with
p+q = n in the sphere S™, the union of spheres SP x { N, P} and {N’, P’} x §4
in S? x S9, where N',P' € SP and N,P € S? are both pair of distinct
points, and the canonical divisor 3P of the projective plane (over R, C, H)
are typical examples of cores. The core is an essential part for the topology
of M ; in these examples, M can be decomposed into a tubular neighbourhood
of the core and a “standard” piece diffeomorphic to SP~! x §9~1 x D?, where
P, q in the last example are both half of the (real) dimension of M.

o’ ad’
i

G- &

CF’ CF apparent contours of
transverse discs

CF

Fig. 8. Decomposition of a polygonal portrait and the cusped fan projection

Outline of the proof of Theorem 3.1. We can divide P into k pieces of
two kinds; a cusped fan (CF) and a crossed cusped fan (CF') of any number
of crossings, as in Figure 8. According to the subdivision, M can be divided
into k pieces M; of manifolds with corner. Let 7 and n — 2 —~ 7 be the
indices of folds between two cusps counted as before (refer to the proof of
Lemma 2.3). It follows from [K1, Theorem 2.2] that:
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LEMMA 3.3.

1. A subpiece M; over CF is diffeomorphic to DP x D9, wherep =7+ 1 and
p+qg=mn.

2. f restricted to each M; is uniquely determined by 7, up to right-left equiv-
alence. .

3. (Under the identification of M; with DP x D) f restricted to each of the
transverse discs D; = DP x {0} and D} = {0} x D7 is either a generic
map having only definite folds as singular points (if dim D; or dim D, is
two or more), or an immersion (otherwise).

4. The apparent contour of the above restriction is contained in the outline

of P.

We refer to the generic map f|M; over CF as a cusped fan projection. For
M; over CF', we can see the similar things by using that fibres near crossings
are disconnected and hence that one can remove the crossings in CF’ by a
homotopy of f|M; as mentioned in the first part of the proof of Theorem 2.1.
One can thus apply the lemma to M; over CF' after removed the crossings.

The boundaries 9DP x D? and DP x D4 of M; are mapped to the cut
loci of P. With the help of the following lemma, we can paste the transverse
pair D; U D] in each M; all together to obtain the required collection of
homotopy spheres.

LEMMA 3.4. ([K4], a special version in [K3]) By a self-diffeomorphism of
ODP x D (resp. DP x ODY) which preserves f, the boundary 8D; (resp.
OD.) is preserved up to f-preserving isotopy.

In this way we can obtain the theorem. It is not a direct answer to
the problem (A), but one can know what the shape of our planar portrait
reflects, which will be helpful in answering to the problem.

Outline of the proof of Proposition 3.2. We mention briefly the con-
struction of the accompanying Morse function H. Take a submersion r :
R? — R so that it is transverse both to the critical loci of f and to the
chain of apparent contours of f|S;, both off a set of small neighbourhoods
of overlaps of the chain (Figure 9). Outside the inverse image of the neigh-
bourhoods, we take H = r o f. On the other hand, the restriction of P to
each of these neighbourhoods is a CF with its corner smoothed, and hence
we can identify the inverse image with a smoothing of DP x DI. We take
H = |z|?+ |y|?,z € DP,y € DY in the inverse image, if r o f restricted to the
two components S;, S; in intersection take both maximum or both minimum
in this neighbourhood, or H = |z|? — |y|?, otherwise. The two manners of
definition of H above is consistent, as seen by the normal form of the cusped
fan projection in [K1, Theorem 2.2].



A survey on polygonal portraits of manifolds 441

Fig. 9. An accompanying Morse function to a core

We give a picture of another example (Figure 10) that a planar portrait
is produced by apparent contours of a core (refer to [K3] for details).

PROBLEM 3.5. Is any planar portrait of a manifold “produced” by the loops
which are apparent contours of core components ?

For our case of the polygonal portraits, the word “produced” above is,
in rough, modification of chains at each overlaps, from the right picture in
Figure 8 to the middle one. But in other examples, it happens that more
than three components of a core meet at a critical point of the accompanying
Morse function H, and that some components may have no contribution to
the critical loci, as seen in Figure 10. Hence the word “produced” should be
defined to cover these situations.

Fig. 10. A planar portrait and apparent contours of a core

4. Construction of polygonal portraits

A core {S;} of a manifold M is a cyclic core if each component has
intersections with two other components. In the previous section, we have
seen that: If a manifold admits a polygonal portrait, then it has a cyclic core.
One can see the converse:

THEOREM 4.1. (|K5]) If a manifold of dimension two or more admits
a cyclic core, then it has a polygonal portrait whose number of cusps is the
number of components of the core.
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Outline of the proof. Denote by M the manifold, and by N the tubular
neighbourhood of the core. We first use the fact that M is decomposed into
N and SP7! x §97! x D? as mentioned before, where p and q are the two
dimensions of the components of the cyclic core. Note that N is decomposed
into k copies of DP x DY so that the transverse pair DP x {0} U {0} x D?
is identified with a subpiece of core components, where k is the number of
intersection points of the core, which equals to the number of components.
We construct the projection of N into R? by using the cusped fan projections
DP x DI — R? as building blocks so that its image is an annulus and
produces the same critical loci as a polygonal portrait. On the second piece
SP~1 x 8971 x D?, we take the canonical projection onto D?. They are
well-pasted, as can be seen from the restrictions of the accompanying Morse
function H to the core, to the boundary ON.

As mentioned, the theorem, together with Theorem 3.1 gives an answer
to the realisation problem of polygonal portraits:

COROLLARY 4.2. A manifold of dimension two or more admits a polygonal
portrait if and only if it admits a cyclic core.

It is but still unclear that what are the manifolds which admit cyclic
cores, to which we show a little, as seen in Theorem 6.1 stated later. The
theorem claims also that: an outline of a planar portrait is provided by
apparent contours of core components. We note that these loops are in a
special arrangement that is derived from a polygon. One can pose a problem
on a generalisation of this result;

PROBLEM 4.3. Find a condition on the arrangement of apparent contours
of core components so that they give “outlines” of a planar portrait.

An answer in a special case, including what “outlines” stands for, can be
seen in [K3].

5. Toric 4-manifolds

A toric 4-manifold (a quasitoric 4-manifolds, in another terminology;
refer to [BP]) is a 4-manifold with a locally standard 72-action. It has a mo-
mentum map, or the quotient map of the action, onto a polygon Ay of some
k. Divide A into k-rectangles by a barycentric subdivision, and according
to it, divide M into k-pieces M;,i = 1,2,---,k. Each piece is diffeomor-
phic to D? x D? and the momentum map on a piece is given by (|z|?, jw|?),
where z,w are complex numbers in D? identified with the unit disc in C.
We replace the momentum map on M; with the cusped fan projection of
7 = 1. Since the last map is a perturbation of (|z|2,|w|?), one can thus
obtain a global perturbation of the momentum map ([K1, example 7.3]),
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which clearly produces a polygonal portrait. From the previously mentioned
results and argument, we obtain the following:

COROLLARY 5.1. ([K4]) A toric 4-manifold admits a polygonal portrait
such that:

1. the number of cusps k is the total Betti number,

2. the core producing the portrait is the union of 1- and 0-dimensional orbits,

3. the map producing the portrait is a stable perturbation of the momentum
map.

Proof. One can obtain a core of M by pasting the transverse discs D? x
{0} U {0} x D? in each M; identified with D? x D2, as shown in section 3.
It is a k collection of 2-spheres. Proposition 3.2, 3 shows that the Morse
function H : M — R which accompanies to the core has one critical point of
index 0, another one of index 4, and k — 2 points of index 2, which implies 1.
Assertion 2 is clear, since the transverse two discs above is the union of 1 and
0-dimensional orbits of the standard T2 action on D? x D?. Assertion 3 is
just a repetition of what mentioned before. One can also apply Theorem 4.1
and its proof to show this, since the core above is cyclic. »

6. List of manifolds admitting polygonal portraits

Any polygonal pre-portrait can be written in either form D(ar) or Dg(ag)
defined below, where I = (1,2,---,s) is a multi-index of length s > 1,
ar = (a1,a2, - -,as) asequence of non-negative integers with a positive total
(3a; > 0), and ag a positive integer. We denote by D(ay) the polygonal pre-
portrait with s crossings that has aj,as,- - -, as cusps between the adjoining
two crossings, and by Dg(ap) that with two disjoint components of critical
loci, having ag cusps on the inside loci (see Figure 11). We put here a list of
manifolds which possibly admit either type of the polygonal portrait above.

©wDH

Fig. 11. Do(ao), and D(a;) for I = (a1),(a1,a2) and (a1, az,as)

THEOREM 6.1. ([K5])

1. If an orientable n-manifold M (n > 2) admits the polygonal portrait D(ay)
for some I, then k = Xa; > 2 and M is either of the below, up to diffeo-
morphism:
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(a) S (St x Sn71) (n<6) or
(b) S™Hi_ (S'xIFHEEr (n27),

where E?‘l and X" are homotopy spheres.

2. If an orientable n-manifold M of dimension 2,3 or 4 admits the polygonal
portrait Do(ag) for some ag, then ag > 2 and it is either (a) in 1 above
or (c) below, up to diffeomorphism;

(c) 5% x S%,,CP?},CP2.

Note. In case dim M = 4 and the polygonal portrait is Dy(ap), the manifold
M is (a), if folds between some cusps are definite, and is (c), otherwise.

The detection of M for Dy(ap) is much more difficult than for D(aj),
since in the second case, half or more of the arcs between cusps are made
by definite folds, which works effectively to simplify the argument. To cover
the disadvantage, we put a technical assumption that dim M = 2,3,4 in the
second assertion.

Outline of the proof. To show the first assertion, we reduce M together
with the polygonal portrait one after another, to a manifold with D(2) por-
trait. Each step of the reduction is to make a loop by elimination of cusps
([L1]), followed by removing of the loop by a surgery mentioned in [K2].
The source manifolds of D(2) are homotopy spheres as seen easily, and then
we trace the way backward, to the original manifold. The second assertion
is clear for n = 2, and the proof for n = 3 is the same as in the previous
assertion. For n = 4, we see that M is obtained by plumbing over a linear
graph. Then the conclusion follows from Neumann-Weintraub [NW].

It is not confirmed yet but is likely that each manifold listed in the
theorem admits the polygonal portraits of the prescribed type, by using
Theorem 4.1. It gives affirmative answer to our realisation problem of D(ay)
type strict portrait by n-manifolds, if it is the case. But for D(ag) type, the
problem is still widely open, as mentioned for ag = 3.
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