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ON HOMOTOPY CLASSIFICATION OF PHRASES 
AND ITS APPLICATION 

Abstract . This paper is a survey on the recent study of homotopy theory of gen-
eralized phrases in Turaev's theory of words and phrases. In this paper, we introduce 
the homotopy classification of generalized phrases with some conditions on numbers of 
letters. The theory of topology of words and phrases are closely related to the theory of 
surface-curves. We also introduce applications of topology of words to the topology of 
surface-curves. 

1. Introduction 
The theory of topology of words and phrases was introduced by V. Turaev 

in the papers [15] and [16]. In this paper, we introduce results on homotopy 
classification of nanophrases and étale phrases in the theory of topology of 
words and phrases which was given in [15], [2], [3] and [4]. 

The homotopy theory of words and phrases is related to the theory of 
virtual links and multi-strings (see [7] and [16]), free knot and links (see [9] 
and [13]). Moreover, Turaev's theory of words and phrases is also used in 
the studies of Arnold basic invariants and finite type invariants of curves and 
fronts (see [1], [10] and [11]), and categorification of the Jones polynomial 
(see [5]). 

An alphabet is a finite set and a letter is an element of an alphabet. 
A word on an alphabet A is finite sequence of letters in A and a phrase on 
A is a finite sequence of words on A. 

Turaev introduced generalized words and phrases (which is called étale 
words and étale phrases) as follows. Let a be an alphabet endowed with an 
involution T. Then an A-alphabet is a pair of an alphabet A and a map | • | 
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from A to a (we call this map | • | projection). Then an étale words is a pair 
of an a-alphabet A and a word on A. Similarly, an étale phrases is a pair 
of an a-alphabet A and a phrase on A. Especially, if a word (respectively 
phrase) is a Gauss word (respectively a Gauss phrases), in other words, each 
letter appear exactly twice, then we call an étale word (respectively an étale 
phrase) a nanoword (respectively a nanophrase). 

Moreover Turaev defined an equivalence relation which is called homo-
topy on nanophrases and étale phrases (see Section 2 for more details). Fur-
ther, Turaev showed homotopy of nanowords and nanophrases are closed 
related to the topology of curves on surfaces. Indeed, Turaev showed that 
for an alphabet cco given by {a, b} with an involution to permuting a and b, 
the homotopy theory of words and the theory of stable equivalence of ordered 
pointed multi-curves on surfaces are equivalent. Thus as an application of the 
homotopy classification of nanophrases, we obtain the classification of sta-
ble equivalence classes of multi-curves on surfaces. Homotopy of nanowords 
and nanophrases is an equivalence relation. Thus, to classify the nanowords, 
nanophrases, étale words and étale phrases up to homotopy is natural prob-
lem. In the paper [15], Turaev gave the homotopy classification of nanowords 
with less than or equal to six letters. Furthermore, in the same paper, Tu-
raev gave the homotopy classification of étale words with less than or equal 
to five letters. 

The purpose of this paper is to introduce the results on the homotopy 
classification of nanophrase and étale phrases which was given by the author 
in [2], [3] and [4]. To classify nanophrases and étale phrases up to homo-
topy, the author constructed some homotopy invariants for nanophrases (see 
Section 4 for more details). Moreover we introduce applications of the ho-
motopy classification of nanophrases and étale phrases to the theory of the 
stable equivalence of curves on surfaces. We classify the pointed ordered 
multi-component curves on surfaces up to stably equivalent using the result 
of homotopy classification of nanophrases. 

This paper is organised as follows. In section 1, we review the theory 
of topology of words. In Section 2, we give the homotopy classification 
theorem of nanowords, nanophrases, étale words and étale phrases with some 
conditions which were given in [15], [2], [3] and [4], In Section 3, we introduce 
homotopy invariants of nanophrases which was introduced by the author and 
A. Gibson in [2], [3], [4] and [8]. In Section 4, using the results in Section 2, we 
classify the ordered pointed multi-curves on surfaces up to stably equivalent. 

2. Topology of words and phrases 
In this section, we review the theory of topology of words and phrases 

which was introduced by V. Turaev in [15] and [16]. 
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2.1. Nanowords, nanophrases and their homotopy 
In this paper, an alphabet means a finite set and letters are its elements. 

For a positive integer n, a word of length n on an alphabet .A is a map-
ping w : {1,2, . . . , n} —> A. We denote a word of length n as follows: 
u;(l)u;(2) • • • w(n). If all letters in an alphabet A appear exactly twice in a 
word w, then we call the word w is a Gauss word. So if A has n elements, 
then length of a Gauss word on A is In (C. F. Gauss studied plane curves 
by using Gauss words. See [6]). 

Let a be an alphabet endowed with an involution r : a —> a. An a-
alphabet is an alphabet A endowed with a map | • | : A —• a. We call this 
map | • | a projection. An isomorphism of a-alphabets A\, A2 is a bijection 
/ : A\ —» A2 such that |A| is equal to |/(A)|. 

Now we define étale phrases and nanophrases. An étale word over a 
is a pair (an a-alphabet A, a word on A). A nanoword over a is a pair 
(an a-alphabet A, a Gauss word on A). We call nanoword in an empty 
a-alphabet the empty nanoword and we denote this empty word 0. For 
a positive integer k, an étale phrase of length k over a is a pair consisting 
of an a-alphabet A and a sequence of words u>i, W2,..., Wk on A. We de-
note this étale phrase by (A, (w\\u)2\ • • • |iufc))> or we denote it simply by 
{w\\w2 \ • • • \ wk). A nanophrase of length k over a is an étale phrase (.4, 
(i^i I • • • IWk)) such that w\ • • • w^ is a Gauss word. Note that we can consider 
a nanoword w to be a nanophrase (w) of length 1. A map f : A\ ^ A2 is an 
isomorphism of two nanophrases {A\, (wi| • • • and (.42, • • • l̂ fc)) if 
/ is an isomorphism of a-alphabets such that Vj is equal to / o wj for all 
j € {1 *:>-

Next we define homotopy moves of nanophrases. 

D E F I N I T I O N 2 . 1 . We define homotopy moves (l)-(3) of nanophrases as 
follows: 

(1) {A,{xAAy)) {A\{A},{xy)) 
for all A G A and x,y are sequences of letters in A \ {.A}, possibly 
including the | character. 

(2) (A, (xAByBAz)) — (A \ {A, B}, (xyz)) 
if A, B € A satisfy |£ | = r(|^4|). x,y,z are sequences of letters in 
A \ {A, B}, possibly including | character. 

(3) (A, (xAByACzBCt) ) —• {A, (:xBAyCAzCBt)) 
if A, B,C G A satisfy = = \C\. x,y,z,t are sequences of letters 
in A, possibly including | character. 

Now we define homotopy of nanophrases. 
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DEFINITION 2 .2 . Two nanophrases (.Ai, Pi) and (A2, P2) over a are homo-
topic (denoted (AL, PI) ~ (A2, P2)) if ( A , P2) can be obtained from (Ai, Pi) 
by a finite sequence of isomorphism, homotopy moves (l)-(3) and the inverse 
of moves (l)-(3). 

REMARK 2 .3 . In [15] and [16], Turaev gave more general definition of 
homotopy moves of nanowords and nanophrases (called S-homotopy moves). 
See [15] and [16] for more detail. 

A nanoword which is homotopic to the empty nanoword is called con-
tractible nanoword. We denote the set of homotopy classes of nanophrases 
over a of length k by Vk(a)-

Recall following lemmas from [16]. 

LEMMA 2 .4 . (V. Turaev [16]) Let A be an a-alphabet. Then 

(i) (A, (xAByACzBCt)) ~ (A, (xBAyCAzCBt)) if \A\ = T(\B\) = |C|, 
(ii) (A, (xAByC AzBCt)) ~ (A, (xBAyACzCBt)) if T(\A\) = r( |B|) 

= \C\, 
(iii) (A, ( x A B y A C z C B t ) ) ~ (A, (xBAyCAzBCt)) if T{\A\) = \B\ = \C\, 

where x, y, z, t are sequences of letters in A \ {A, B, C}, possibly including \ 
character. 

LEMMA 2 .5 . (V. Turaev [16]) Let A be an a-alphabet. Then 

(A, (xAByABz)) ~ (A \ {A, B}, (xyz)) 

if |J4| = T(\B\); where x, y, z are words in A \ {A, B} possibly including the 
I character. 

We define homotopy of étale phrases via desingularization of étale 
phrases. For an étale phrase (A, P = [w] \ • • • ¡w^)) over a, we define desin-
gularization of (A, P) as follows: Let Ad be an a-alphabet {Ahj := (A) i,j) | 
A € A, 1 < i < j mp(A)} with the projection | A j | : = 1-̂ 1 f° r &11 
where mp(A) is defined by Card((w\ • • • Wk)^1(A)). The phrase Pd is ob-
tained from P by first deleting all A G A with mp(A) is less than or equal 
to one. Then for each A e A with mp(A) is greater than or equal to two 
and each i = 1,2 , . . . mp(A), we replace the z-th entry of A in P by 

AitiA2j ... Ai-itiAiti+iAiti+2 • • • 

The resulting (Ad , Pd) is a nanophrase with YIA^A ,mp(A)(mp(A) — 1) letters 
and called a desingularization of (A, P). 

Then we define two étale phrases are homotopic as étale phrases if their 
desingularizations are homotopic as nanophrases. 
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3. Homotopy classification of nanophrases and étale phrases 
In this section, we introduce the classification theorems of nanophrases 

and étale phrases. Geometric applications of the classification of nanophrases 
is stated in Section 5. 

For nanowords, Turaev gave the classification of nanowords with less 
than or equal to six letters in [15]. In this paper we introduce classification 
theorem of nanowords with less than or equal to four letters. 

T H E O R E M 3.1. (V. Turaev [15]) Let w be a nanoword of length four over a. 
Then w is either homotopic to the empty nanoword or isomorphic to the 
nanoword := (A = {A,B},ABAB) where = a, \B\ = b € a with 
a ^ r(6). Moreover for a / r(b), the nanoword wa^ is non-contractible and 
two nanowords wa^ and wa>are homotopic if and only if a = a' and b = b'. 

Moreover Turaev gave the classification of étale words with less than or 
equal to five letters in [15]. 

T H E O R E M 3.2. (V. Turaev [15]) A multiplicity-one-free word of length less 
than or equal to four in the alphabet a has one of the following forms: aa, 
aaa, aaaa, aabb, abba, abab with distinct a,b € a. The words aa, aabb, 
abba are contractible. The words aaa and aaaa are contractible if and only 
if r(a) = a. The word abab is contractible if and only if r(a) = b. Non-
contractible words of type aaa, aaaa and abab are homotopic if and only if 
they are equal. 

For nanophrases, using the Theorem 3.1 and some homotopy invariants 
of nanophrases which are introduced in the next section the author gave the 
classification of nanophrases with less than or equal to four letters. 

First we describe the classification theorem of nanophrases with less than 
ii h 

or equal to two letters. Set P ^ 1 ^ 2 : = (0|... |0| A |0| • • • |0| A |0| • • • |0) with 
|;4| is equal to a for 1 < Zi < I2 < k. 

T H E O R E M 3 . 3 . ([3]) Let P be a nanophrase of length k with two letters. 
Then P is either homotopic to (0| • • • |0) or isomorphic to p^'1^1'12 for some 

I1J2 G {1, • • •, k}, a e a. Moreover p^-1''1'*2 and p^/1''!'*2
 are homotopic if 

and only if l\ = l[, I2 = 1'2 and a = a'. 

To describe the classification theorem of nanophrases with less than or 
equal to four letters, we prepare following notations. 

(0| • • • |0| ABAB |0|...|0), 

pWuh ( 0 |. . . |0| |0|... |0| ¿ | 0 | . . . |0 ) ) 
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; = (0 | . . . |0| âb | 0 | . . . |0| ÂB |0| • • • |0), 
( 0 | . . . | 0 | ¿B | 0 | . . . | 0 | B ' A | 0 | . . . | 0 ) ) 

h 

pWuh ( 0 | . . . |0| ^ | 0 | . . . |0| BÂB |0| • • • |0), 

pWI-Mhh ( 0 | . . . |0| }B | 0 | . . . | 0 | \ |0 | . . . |0| % |0| . . . | 0 ) j 

p2,l,lll;h,l2,h ( 0 | . . . |0| ¿ 4 | 0 | . . . |0| \ |0| . . . |0| % |0| . . . | 0 ) ) 

pl,2,U-hhh ( 0 | . . . |0| \ |0| . . . | 0 | ¿ g |0| . . . |0| % |0| . . . |0), 
pl,2,ui,hh,h ( 0 | . . . |0| \ |0| . . . |0| ¿ 4 |0| . . . |0| | |0| . . . | 0 ) ) 

pl,l,2I;h,l2,l3 : = (0| . . . |0| \ |0| . . . |0| % |0| . . . |0| } 3
b |0| . . . | 0 ) ; 

pi , i ,2ma2,h ( 0 | . . . | 0 | l\ | 0 | . . . | 0 | \ | 0 | . . . | 0 | ¿ A | 0 | . . . | 0 ) ; 

p W M M h ^ U ( 0 | . . . |0| \ |0| . . . |0| \ | 0 | . . . |0| % |0 | . . . |0| \ | 0 | . . . | 0 ) ) 

pWMi-MhhM , = ( 0 | . . . | 0 | \ | 0 | . . . |0| | | 0 | . . . |0| | 0 | . . . |0| | | 0 | . . . | 0 ) j 

pi,i,iMii-,luhhM (0|... |0| \ |0|... |0| \ | 0 | . . . |0| % | 0 | . . . |0| \ | 0 | . . . |0)> 

with is equal to a and \B\ is equal to b. If a is equal to r(b), then 
nanophrases P*^, P^'jj1,11,12 and p2,2//,/i,i2 a r e homotopic to the nanophrase 

(0|•• • |0). So when we write P ^ , P l f h l u h we always assume 
that a is not equal to r(6). 

Under the above preparation, we can describe the classification theorem 
as follows. 

T h e o r e m 3.4. ([3]) Let P be a nanophrase of length k with four letters. 
Then P is either homotopic to nanophrase with less than or equal to two 

X' Y 
letters or isomorphic to Pa for some X G {4, (3 ,1) , . . . , ( 1 , 1 , 1 , 1 I I I ) } , 
Y £ {1 , . . . , k, ( 1 ,2 ) , . . . , (k - 3, k - 2, k - 1 ,k)}. Moreover P^Y and 
are homotopic if and only if X — X', Y = Y', a = a' and b — b'. 

Next we introduce the classification of étale phrases with less than or 
equal to three letters which was given by the author in [4]. First we prepare 
some notations. Let a be an alphabet endowed with an involution r : a —> a . 
Then we set 
pai,i;W2 . = ( 0 | . . . | 0 | £ |0 | . . . | 0 | ll |0 | . . . |0) , 
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I 
: = (0| • • • |0| a3 |0| • • • 10), 

h i 
p W u h (0|...|0|a'2|0|...|0|i|0|...|0)> 

h h 
py-MM (0|...|0| a |0| • • • |0| a2 |0|---|0), 

pi,lAMMs ( 0 |. . . |0| ll |0|... | ll |0|... |0| ll |0|... |0 ) ) 

where a E a and l,h,h,h € { l , . . . , f c } with l\ < I2 < I3. If a is equal 
3*/ to r(a), then we can easily check that Pa' is homotopic to the nanophrase 
3 'I 

(0| • • • |0). So when we use the notation Pa' , we always assume that a is not 
equal to r(o). 

Then the classification of étale phrases with less than or equal to three 
letters is described as follows. 
T H E O R E M 3 . 5 . ([4]) Let P be a multiplicity-one-free étale phrase over 
a with less than or equal to three letters. Then P is either homotopic to 
(0|... |0) or isomorphic to one of the following étale phrases: Po'1''1'*2, Pa'1, 
p2,v,hh) pyh,h! phhhhhh f o r s o m e h > l 2 f /3 g { 1 , . . . , A;} and a e a. 
Moreover Py h ' h , Pa3;', P ^ 1 ' * 2 , Pa M ' 1'h'h'h are homotopic if and 
only if they are equal. 

In the next section, we introduce invariants of nanophrases which was 
defined in papers [2], [3] and [8]. 

4. Homotopy invariants of nanophrases 
In this section we discuss homotopy invariants of nanophrases defined by 

the author in [2] and [3] and A. Gibson in [8] independently at the same 
time. 

4.1. Some simple invariants 
Let ( t f i l^ l • • • \wk) be a nanophrase over a. For I € { 1 , . . . , k}, we define 

w(l) G Z/2Z by the length of wi. We call the vector (w(l),... ,w(k)) G 
(Z/2Z)fc the component length vector. 

P R O P O S I T I O N 4 .1. (A. Gibson [8], see also [2]) The component length 
vector is a homotopy invariant of nanophrases. 

REMARK 4.2. Gibson proved the component length vector is also invariant 
under the shift move. See [8] for more detail. 

EXAMPLE 4.3. Consider a nanophrases (A\A) over a. Then the component 
length vector of this nanophrase is (1,1). On the other hand, the component 
length vector of the nanophrase (0|0) is (0,0). So (j4|.A) is not homotopic to 
(0|0) by Proposition 4.1. 
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Next we define another invariant of nanophrases. Let 7r be the group 
which is defined as follows: 

7r := (a € a\ar(a) = 1, ab = ba for all a,b € a ). 

Let {w\\w2\ • • • be a nanophrase of length k over a. We define (wi, Wj)p 
€ 7r for i < j by 

(wi,wj)p :— Yl \A\• 
A&Im(wi)C\Im{wj) 

We call a vector ((wi, Wj)p)i<j £ the linking vector. 

PROPOSITION 4.4. ([3]) The linking vector of nanophrases is a homotopy 

invariant of nanophrases. 

EXAMPLE 4.5. Consider a nanophrase (AB\AC\BC) over a with |J4| is 
equal to a, |.B| is equal to b and |C| is equal to c. Then the linking vector 
of this nanophrase is (a, b, c). On the other hand, the linking vector of the 
nanophrase (0|0|0) is (1,1,1). In the group 7r, an element a E it is not equal 
to the unit element of 7r. So (a,b,c) is not equal to (1,1,1). Therefore 
(AB\AC\BC) and (0|0|0) are not homotopic each other. Note that we can 
not distinguish these two nanophrases by the component length vector of 
nanophrases. 

REMARK 4.6. In [8], Gibson defined an equivalent invariant for nano-
phrases over the one-element set and proved this invariant is also invariant 
under the shift move. 

4.2. Invariant 7 for nanophrases 
In [15], Turaev defined a homotopy invariant of nanowords called 7. The 

author extended this invariant for nanophrases. Let II be the group which 
is defined as follows: 

11 := ({Za}aea\Za,ZT(a) = 1 for al1 a € «)• 

DEFINITION 4.7. Let P = (ti>i|tU2| • • • L^fc) be a nanophrase of length k 

over a and rii the length of nanoword Set n = Yli<i<kni- Then we 
define n elements 7J, 73, • • •, and 7^. for i € { 1 , . . . , k} of II by 7^ := \ 
if Wj(i) wi(m) for all I < j and for all m < i when I = j. Otherwise 
7i : = zT(\Wj(i)\). Then we define 7 ( F ) e IIfc by 

7 ( F ) := (7 i72 • •" 7n!, 7x72 """ > ' ' " . 7 ^ • •" 7nJ-

Then we obtain a following proposition. 

PROPOSITION 4.8. ([2]) 7 is a homotopy invariant of nanophrases. 
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EXAMPLE 4.9. Consider a nanophrase ( A B \ B A ) with \A\ ^ T(\B|). Then 
j((AB\BA)) is (zazb, -2T(6)-2r(a))- Th i s is not equal t o ( 1 , 1 ) in I I 2 . So 

(AB\BA) is not homotopic to (0|0). 

4.3. Invariant T for nanophrases 
We define an invariant of nanophrases T . First we prepare some nota-

tions. Consider an orbit decomposition of the r : a/r = { a^ , Oi2 , . . . , a^, 
• • - > w h e r e a^ := {al],r(alj)} such that Card (a^ ) = 2 for all 

j G { 1 , . . . , /} and Card (a^ ) = 1 for all j G {I + 1 , . . . , I + m} (we fix a 
complete representative system { a^ , ai2,..., al[, all+1,..., Oj1+m } which sat-
isfy the above condition). Let A be an a-alphabet. For A G A we define 
e(A) € { ± 1 } by 

(A) /1 ( i f \A\ = ai3 for some 3 G {!. • • • > J + m})' 

£ \ - l (if 1̂ 1 =r (o i 3 . ) for some j G { 1 , . . J } ) . 

Let P = (.4, (twi| • • • \wk)) be a nanophrase over a and A, B G A. 

Let be TL if i < I and j < I, otherwise Z/2Z. We denote -K^ i ) x 
K( 1,2) x • • • K{ M + m ) x K(2,i) x • • • x K ( i + m ) z + m ) by n K ( i , j ) - T h e n we de-

fine ap(A, B ) e [ ] as follows: If A and B form •.. A-• • B • • • A-• • B • • • 

in P , |yl| G a^and \B\ = atq for some m,n G { l , . . . , i + m } , or 
... B-• • A-• • B • • • A-• • in P, |.A| € a^ and \B\ = r(aiq) for some 

(M) 
p,q G { 1 , . . . , / + m } , then aP(A,B) := (0, • • •, 0, 1 ,0 , - - - ,0 ) . If 
... A - • • B • • • A - • • B • • • in P , G aTp and |B| = T(A I (J), or - B -A 

(P.?) 
•••B-A-•• in P, G aip and |5| = aiq, then aP(A,B) : = (0, • • • ,0 , - 1 

,0, • - ,0). Otherwise aP(A,B) : = ( 0 , . . . , 0 ) . 
Under the above preparation, we define the invariant T as follows. 

DEFINITION 4.10. Let P = (.4, (wi\w2\ • • • |Wk)) be a nanophrase of length 
k over a. For AeA such that there exist i G {1,2, • • •, k} with Card(t«~1 ( i4) ) 
= 2, we define TP(A) G U K HJ BY 

TP{A) 

BeA 

and TP(wi) G f l Ki,j b Y 

T P ( W i ) := J2 

AeA, CARD(«JR1(Y4))=2 

Then we define T(P) G FL] Kitj)k by 

T ( P ) : = (TP(Wl), Tp(w2), TP{wk)). 

P R O P O S I T I O N 4.11. ([3]) T is a homotopy invariant of nanophrases over a. 



428 T. Fukunagai 

E X A M P L E 4 . 1 2 . Set a = {a, 6} with involution r permuting a and b. 
We choose a £ a as the representative element of the orbit. Consider 
nanophrases (ABA\B) and (B\ABA) over a with \A\ is equal to a and 
\B\ is equal to b. Then T((ABA\B)) is ( -1 ,0) € Z2. On the other hand 
T((A\BAB)) is (0, - 1 ) G Z2. This implies (ABA\B) is not homotopic to 
{B\ABA). 

R E M A R K 4 . 1 3 . In [8], Gibson constructed a new homotopy invariant of 
nanophrases over the one-element set called S0 invariant, and proved Gib-
son's S0 invariant is stronger than the invariant T for nanophrases over the 
one-element set. See [8] for more details. 

Using these invariants and some consideration concerning nanophrase, 
we can prove Theorem 3.4 (see [2] and [3] for more details). 

5. Applications to topology of surface-curves 
In this section, we introduce applications of Theorems 3.3 and 3.4 to 

the topology of surface-curves. First, we review the stable equivalence of 
multi-component surface-curves. 

5.1. Stable equivalence of multi-component surface-curves 
In this paper a curve means the image of a generic immersion of an 

oriented circle into an oriented surface. The word "generic" means that 
the curve has only a finite set of self-intersections which are all double and 
transversal. A k-component curve is defined in the same way as a curve with 
the difference that they may be formed by k curves. These curves are called 
components of the ^-component curve. A A;-component curve are pointed if 
each component is endowed with a base point (the origin) distinct from the 
crossing points of the ^-component curve. A ^-component curve is ordered 
if its components are numerated. 

Next we define equivalence relation which is called stable equivalence. 
First, we define stably homeomorphic of surface-curves. Two ordered, 
pointed curves are stably homeomorphic if there is an orientation preserv-
ing homeomorphism of their regular neighborhoods in the ambient surfaces 
mapping the first multi-component curve onto the second one and preserving 
the order, the origins, and the orientations of the components. 

Now two ordered, pointed multi-component curves are stably equivalent 
if they can be related by a finite sequence of the following transformations: 
(i) a move replacing a ordered, pointed multi-component curve with a stably 
homeomorphic one; (ii) the flattened Reidemeister moves away from the 
origin as in Fig. 1. See also [12]. 

We denote the set of stable equivalence classes of ordered, pointed k-
component curves by Ck-
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Fig. 1. The flattened Reidemeister moves. 

5.2. Nanophrases versus multi-component surface-curves 
In [16], Turaev proved the study of stable equivalence classes of ordered, 

pointed, fc-component curves is equivalent to the study of homotopy of 
nanophrases of length k over an alphabet ao = {a, 6} with an involution 
r : ao —> ao permuting a and b. More precisely, Turaev showed a following 
theorem. 

T H E O R E M 5 . 1 . (V.Turaev [16]) Let ao be the set {a, 6} with an involution 
T : ao —• ao permuting a and b. Then there is a canonical bijection Ck to 
Vk(a 0). 

We explain the method of making a nanophrase P(C) over ao from an 
ordered, pointed ^-component curve C. Let us label the double points of 
C by distinct letters Ai,...,An. Starting at the base point of the first 
component of the curve C and following along C in the direction of C, we 
write down the labels of double points which we passes until return to the 
base point. Then we obtain a word w\ on an alphabet A = { A i , . . . , 
Similarly we obtain words u>2, • • •, Wk on A from the second component, . . . , 
the k-th component. Let t\ (respectively, t f ) be the tangent vector to C 
at the double point which is labeled Ai appearing at the first (respectively, 
the second) passage through this point. Set \Ai\ is equal to a, if the pair 
{ t j , t f ) is positively oriented, and \Ai\ is equal to b otherwise. Then we 
obtain an ao-alphabet A. Finally we obtain a required nanophrase P(C) := 
(,A, M - - - K ) ) -
E X A M P L E 5 . 2 . Consider a two-component pointed ordered curve showed 
in Fig. 2. Assume that a left circle is the first component of this curve and a 
right circle is the second component of this curve. Then a nanophrase which 
corresponds to this curve is ({A, B}, (AB\AB)) with is equal to b and 
\B\ is equal to a. 

Fig. 2. Example 
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By the above theorem, if we classify nanophrases of length k up to ho-
motopy, then we obtain the classification of the stable equivalence classes of 
ordered, pointed fc-component curves as a corollary. 

R E M A R K 5 . 3 . Note that the homotopy theory of nanowords over AO can be 
identified to the theory of open virtual strings which was defined by Turaev 
in [18]. See also [7] and [14]. 

5.3. Classification of stable equivalence classes of multi-component 
surface-curves 

In this subsection we classify stable equivalence classes of ordered, point-
ed, multi-component surface-curves with minimal crossing number less than 
or equal to two using the theory of words. By Theorem 5.1, stable equivalence 
classes of ordered, pointed, 2 (respectively 3, 4) component surface-curves is 
one to one corresponds to nanophrases of length 2 (respectively 3, 4) over ao 
with less than or equal to 4 letters. So if we apply Theorem 3.4 for the case 
of a is equal to ao, then we obtain following corollaries of the classification 
theorems of nanophrases. 

COROLLARY 5 . 4 . ([2]) There are exactly 19 stable equivalence classes of 
ordered, pointed, 2 component surface curves with minimal crossing number 
less than or equal to 2. 

COROLLARY 5 . 5 . There are exactly 73 stable equivalence classes of ordered, 
pointed, 3 component surface curves with minimal crossing number less than 
or equal to 2. 
COROLLARY 5 . 6 . There are exactly 201 stable equivalence classes of or-
dered, pointed, 4 component surface curves with minimal crossing number 
less than or equal to 2. 

More generally we can prove a following statement. 
COROLLARY 5 . 7 . Let k be an positive integer. Then there are exactly 

i + h 2
 + k3

 + h A 

Li ¿i 

stable equivalence classes of ordered, pointed, k- component surface curves 
with minimal crossing number less than or equal to two. 
Proof. In this proof, for X e {(1,1), 4, (3 ,1) , . . . , (1,1,1,1 III)}, an ordered, 
pointed surface-curves C is type Px means a nanophrase arise from C is 
homotopic to Pa'Y or for some a, b € a 0 , Y € {1 , . . . , k, (1, 2),...,(k-
3,k — 2, k — l,k)}. We denote the number of stable equivalence classes of 
fc-component ordered, pointed surface-curves of type Px by N(PX). By 
Theorems 3.3, 3.4 and 5.1, -^(P1 '1) = N(P2'21) = N(P2'211) = k{k - 1), 
N(Pi) = 2k, NiP3'1) = NiP1'3) = 2k(k - 1), NiP2'1'11) = NiP2'1'111) = 
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NiP1'2'11) = NiP1'2'111) = N^P1'1'21) = N^P1'1'211) = ¡k(k - 1 )(k - 2), 
1,1,1/) = N(PiXiMi) = NiP1' 1 . 1 . 1 " ' ) = - L)(FC - 2)(k - 3 ) . 

Moreover, the number of stable equivalence classes of ordered, pointed, k-
component surface curves with minimal crossing number less than or equal 

So we obtain the claim of the corollary. • 

5.4. Classification of stable equivalence classes of irreducible 
surface-curves 

In this paper, an ordered pointed multi-component surface-curve is irre-
ducible if it is not stably equivalent to a surface-curve with a simple closed 
component. In this subsection, we give the classification of irreducible or-
dered, pointed surface-curves with minimal crossing number less than or 
equal to two up to stably equivalent using Turaev's theory of words and 
phrases. First we prepare a following lemma. 

L E M M A 5 . 8 . ( [3]) The nanophrases over a, {A\A), (AB\AB) with ^ 
T(\B\), (AB\BA) with \A\ ± T(\B\), (ABA\B), (A\BAB), (AB\A\B), 
(BA\A\B), (A\AB\B), (A\BA\B), (A\B\AB), (A\B\BA), (A\A\B\B), 
(A\B\A\B) and (A\B\B\A) are not homotopic to nanophrases over a which 
have the empty words in its components. 

Now by Theorem 3.4 and Lemma 5.8, we obtain a following corollary. 

C O R O L L A R Y 5.9. ([3]) Any irreducible ordered, pointed multi-component 
surface-curve with minimal crossing number less than or equal to two is sta-
bly equivalent to one of the ordered, pointed multi-component curves arise 
from the following list (see also Remark 5.10). Moreover two different pic-
tures from Fig. 3 never produce equivalent ordered, pointed multi-component 
surface-curves. There are 2 (respectably 2, 8, 4, 24, 12) different ordered, 
pointed multi-component surface-curves arise from upper left (respectably up-
per middle, upper right, lower left, lower middle, lower right) picture. So 
there are exactly 52 stable equivalence classes of irreducible ordered, pointed, 
multi-component surface-curves. 

Fig. 3. The list of curves 
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REMARK 5.10. We want to list up the stable equivalence classes of irre-
ducible ordered, pointed multi-component surface-curves with minimal cross-
ing number less than or equal to two. However there are too many curves 
to list up. So in Fig. 3 we make just the list of multi-component curves 
without orders and orientations of the components. If we choose an order 
and an orientations, then we obtain an ordered, pointed multi-component 
curve. 

REMARK 5.11. To find application of the classification of étale words and 
étale phrases are problem in future. 

Acknowledgement. The author is deeply grateful to Professor Goo 
Ishikawa for helpful advice and encouragement. 
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