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ON HOMOTOPY CLASSIFICATION OF PHRASES
AND ITS APPLICATION

Abstract. This paper is a survey on the recent study of homotopy theory of gen-
eralized phrases in Turaev’s theory of words and phrases. In this paper, we introduce
the homotopy classification of generalized phrases with some conditions on numbers of
letters. The theory of topology of words and phrases are closely related to the theory of
surface-curves. We also introduce applications of topology of words to the topology of
surface-curves.

1. Introduction

The theory of topology of words and phrases was introduced by V. Turaev
in the papers [15] and [16]. In this paper, we introduce results on homotopy
classification of nanophrases and étale phrases in the theory of topology of
words and phrases which was given in [15], [2], [3] and [4].

The homotopy theory of words and phrases is related to the theory of
virtual links and multi-strings (see [7] and [16]), free knot and links (see [9)
and [13]). Moreover, Turaev’s theory of words and phrases is also used in
the studies of Arnold basic invariants and finite type invariants of curves and
fronts (see [1], [10] and [11]), and categorification of the Jones polynomial
(see [5]). .

An alphabet is a finite set and a letter is an element of an alphabet.
A word on an alphabet A is finite sequence of letters in .4 and a phrase on
A is a finite sequence of words on A.

Turaev introduced generalized words and phrases (which is called étale
words and étale phrases) as follows. Let a be an alphabet endowed with an
involution 7. Then an o-alphabet is a pair of an alphabet .A and a map | - |
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from A to o (we call this map |- | projection). Then an étale words is a pair
of an a-alphabet A and a word on .A. Similarly, an étale phrases is a pair
of an a-alphabet A and a phrase on A. Especially, if a word (respectively
phrase) is a Gauss word (respectively a Gauss phrases), in other words, each
letter appear exactly twice, then we call an étale word (respectively an étale
phrase) a nanoword (respectively a nanophrase).

Moreover Turaev defined an equivalence relation which is called homo-
topy on nanophrases and étale phrases (see Section 2 for more details). Fur-
ther, Turaev showed homotopy of nanowords and nanophrases are closed
related to the topology of curves on surfaces. Indeed, Turaev showed that
for an alphabet g given by {a, b} with an involution 7y permuting a and b,
the homotopy theory of words and the theory of stable equivalence of ordered
pointed multi-curves on surfaces are equivalent. Thus as an application of the
homotopy classification of nanophrases, we obtain the classification of sta-
ble equivalence classes of multi-curves on surfaces. Homotopy of nanowords
and nanophrases is an equivalence relation. Thus, to classify the nanowords,
nanophrases, étale words and étale phrases up to homotopy is natural prob-
lem. In the paper [15], Turaev gave the homotopy classification of nanowords
with less than or equal to six letters. Furthermore, in the same paper, Tu-
raev gave the homotopy classification of étale words with less than or equal
to five letters.

The purpose of this paper is to introduce the results on the homotopy
classification of nanophrase and étale phrases which was given by the author
in [2], [3] and [4]. To classify nanophrases and étale phrases up to homo-
topy, the author constructed some homotopy invariants for nanophrases (see
Section 4 for more details). Moreover we introduce applications of the ho-
motopy classification of nanophrases and étale phrases to the theory of the
stable equivalence of curves on surfaces. We classify the pointed ordered
multi-component curves on surfaces up to stably equivalent using the result
of homotopy classification of nanophrases.

This paper is organised as follows. In section 1, we review the theory
of topology of words. In Section 2, we give the homotopy classification
theorem of nanowords, nanophrases, étale words and étale phrases with some
conditions which were given in [15], [2], [3] and [4]. In Section 3, we introduce
homotopy invariants of nanophrases which was introduced by the author and
A. Gibson in [2], [3], [4] and [8]. In Section 4, using the results in Section 2, we
classify the ordered pointed multi-curves on surfaces up to stably equivalent.

2. Topology of words and phrases

In this section, we review the theory of topology of words and phrases
which was introduced by V. Turaev in [15] and [16].
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2.1. Nanowords, nanophrases and their homotopy

In this paper, an alphabet means a finite set and letters are its elements.
For a positive integer n, a word of length n on an alphabet A is a map-
ping w : {1,2,...,n} — A. We denote a word of length n as follows:
w(l)w(2)---w(n). If all letters in an alphabet A appear exactly twice in a
word w, then we call the word w is a Gauss word. So if A has n elements,
then length of a Gauss word on A is 2n (C. F. Gauss studied plane curves
by using Gauss words. See [6]).

Let o be an alphabet endowed with an involution 7 : @ —» a. An a-
alphabet is an alphabet A endowed with a map |-} : A — . We call this
map | - | a projection. An isomorphism of a-alphabets A1, A; is a bijection
f: Ay — Az such that |A] is equal to |f(A)|.

Now we define étale phrases and nanophrases. An étale word over o
is a pair (an a-alphabet A, a word on A). A nanoword over « is a pair
(an a-alphabet A, a Gauss word on A). We call nanoword in an empty
a-alphabet the empty nanoword and we denote this empty word @. For
a positive integer k, an étale phrase of length k over a is a pair consisting
of an a-alphabet A and a sequence of words wy,ws,...,w; on A. We de-
note this étale phrase by (A, (wi|ws|---|w)), or we denote it simply by
(wr|we| -+ |wk). A nanophrase of length k over a is an étale phrase (A,
(wi] - - - |wg)) such that w; - - - wy, is a Gauss word. Note that we can consider
a nanoword w to be a nanophrase (w) of length 1. A map f: .A4; — Az is an
isomorphism of two nanophrases (A;, (w1]|---|wg)) and (Ag, (v1]---|vg)) if
f is an isomorphism of a-alphabets such that v; is equal to f o w; for all
je{1,...,k}.

Next we define homotopy moves of nanophrases.

DEFINITION 2.1. We define homotopy moves (1)—(3) of nanophrases as
follows:

(1) (A, (z44y)) — (A\ {4}, (1)
for all A € A and z,y are sequences of letters in A \ {A}, possibly
including the | character.

(2) (A, (zAByBAz)) — (A\ {4, B}, (zyz2))
if A,B € A satisfy |B| = 7(|A|). =z,y,z are sequences of letters in
A\ {A, B}, possibly including | character.

(3) (A, (zAByACzBCt)) — (A, (zBAyCAzC Bt))
if A, B,C € A satisy |A| = |B| = |C|. z,y, 2,t are sequences of letters
in A, possibly including | character.

Now we define homotopy of nanophrases.
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DEFINITION 2.2. Two nanophrases (A;, P;) and (A, P») over o are homo-
topic (denoted (A1, P1) ~ (Ag, P)) if (A2, P2) can be obtained from (A;, P;)
by a finite sequence of isomorphism, homotopy moves (1)—(3) and the inverse
of moves (1)—(3).

REMARK 2.3. In [15] and [16], Turaev gave more general definition of

homotopy moves of nanowords and nanophrases (called S-homotopy moves).
See [15] and [16] for more detail.

A nanoword which is homotopic to the empty nanoword is called con-
tractible nanoword. We denote the set of homotopy classes of nanophrases
over « of length k by Pi(a).

Recall following lemmas from [16}.

LEMMA 2.4. (V. Turaev [16]) Let A be an a-alphabet. Then

(1) (A, (zAByACzBCt)) ~ (A, (tBAyCAzCBY)) if |A| = 7(|B]) = |C],
(ii) (Al,églvAByCAzBCt)) ~ (A, (zBAyAC2CBt)) if 7(|A]) = 7(|B])
(iii) (A, (x,AByACzC’Bt)) ~ (A, (zBAyCAzBCt)) if 7(|A|) = |B| = |C],

where z,y, z,t are sequences of letters in A\ {A, B, C}, possibly including |
character.

LEMMA 2.5. (V. Turaev [16]) Let A be an c-alphabet. Then
(A, (zAByABz)) ~ (A\ {4, B}, (zyz))

if |A] = 7(|B|); where x, y, z are words in A\ {A, B} possibly including the
| character.

We define homotopy of étale phrases via desingularization of étale
phrases. For an étale phrase (A, P = (w1|-- - |wg)) over a, we define desin-
gularization of (A, P) as follows: Let A% be an a-alphabet {4; ; := (4,14,5) |
Ae A '1<i<j<mp(A)} with the projection |A; ;| := |A] for all A;;
where mp(A) is defined by Card((w; - --wg)"1(A)). The phrase P? is ob-
tained from P by first deleting all A € A with mp(A) is less than or equal
to one. Then for each A € A with mp(A) is greater than or equal to two
and each 1 =1,2,...mp(A), we replace the i-th entry of A in P by

A1iAz; .. Aicridiinidiive - Aimp(a)-

The resulting (A%, P%) is a nanophrase with 3 4 s mp(A)(mp(A)—1) letters
and called a desingularization of (A, P).

Then we define two étale phrases are homotopic as étale phrases if their
desingularizations are homotopic as nanophrases.
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3. Homotopy classification of nanophrases and étale phrases

In this section, we introduce the classification theorems of nanophrases
and étale phrases. Geometric applications of the classification of nanophrases
is stated in Section 5.

For nanowords, Turaev gave the classification of nanowords with less
than or equal to six letters in [15]. In this paper we introduce classification
theorem of nanowords with less than or equal to four letters.

THEOREM 3.1. (V. Turaev [15]) Let w be a nanoword of length four over a.
Then w is either homotopic to the empty nanoword or isomorphic to the
nanoword wyp := (A = {A, B}, ABAB) where |A| = a,|B| = b € o with
a # 7(b). Moreover for a # 7(b), the nanoword weyp is non-contractible and
two nanowords w,p and wy i are homotopic if and only if a = o' andb=1V'.

Moreover Turaev gave the classification of étale words with less than or
equal to five letters in [15].

THEOREM 3.2. (V. Turaev [15]) A multiplicity-one-free word of length less
than or equal to four in the alphabet a has one of the following forms: aa,
aaa, aaaa, aabb, abba, abab with distinct a,b € a. The words aa, aabb,
abba are contractible. The words aaa and aaaa are contractible if and only
if 7(a) = a. The word abab is contractible if and only if 7(a) = b. Non-
contractible words of type aaa, aaaa and abab are homotopic if and only if
they are equal.

For nanophrases, using the Theorem 3.1 and some homotopy invariants
of nanophrases which are introduced in the next section the author gave the
classification of nanophrases with less than or equal to four letters.

First we describe the classification theorem of nanophrases with less than

l 153
or equal to two letters. Set Pa’''"2 .= (]..- 0| A |0|---|0] A |0|- - - |0) with
|A| is equal to a for 1 < 13 <y < k.

THEOREM 3.3. ([3]) Let P be a nanophrase of length k with two letters.
Then P is either homotopic to (0] - -|0) or isomorphic to Pe™ ™™ for some

1,301l L1l
li,lo € {1,...,k}, a € a. Moreover P, and P

” are homotopic if
and only if ly =11, la =1, anda = d.

To describe the classification theorem of nanophrases with less than or
equal to four letters, we prepare following notations.

l
P .= (#|---|0| ABAB|0|---10),

l] lg
P33t = (0)---10] ABA 0| ---10] B |0]---|0),
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P22 = (|- 10) AB 1010 4B 10]--10),

PRt = (). |9) AB (0] 10| BA - 10),

Pyt = (0] ---10| Aol BAB 0l 10),

P2yttt (g|... o) AB 101014 10]---10] B o] 10),
pERI (o]0 BA 0]~ 0] A10]---10] B19]---10),
Pyptitiate . (g)...|p) fi m: 0] 4B 10].-10] B 0]~ 10)
pyitilal.— (g|.. I(Dl 10} 10 BAIGI--10) B 10]--10)

Pyytivtele = (@) o) 210010/ B10)--10) AB jo| - 10),
Py Piinints . (). 1| ANy 101 B10]- 10 Ba 0] [0),

phpHsisls . (0] (0] A 10]--10] A 0]~ (0] B 10| 10| 5 0]~ 10)
PRI s ls @) 0 A10]--10] B 0] 10) A19]-10] B 0] 1),

phppIThlsls .- @|...|0) A |0]---|0] B |0]---10]| B|0|---|0] A|0|---]0),

a,

with |A] is equal to a and |B| is equal to b. If a is equal to 7(b), then

nanophrases P l, P2 2Lkt and P2 2UTihk 56 homotopic to the nanophrase
P a,b P p
0|---10). So when we write P“ P2 ilnla - p22Lhilz o always assume
ab’ ~ab » T ab Y

that a is not equal to 7(b).

Under the above preparation, we can describe the classification theorem
as follows.

THEOREM 3.4. (|3]) Let P be a nanophrase of length k with four letters.
Then P is either homotopic to nanophrase with less than or equal to two
letters or isomorphic to PaXb;Y for some X € {4,(3,1),...,(1,1,1,111I)},
Ye{1,..,k(Q1,2),...,(k—3,k—2,k—1,k)}. Moreover be;y and P:,(b,yl
are homotopic ifand only if X = X', Y =Y, a=a andb=1V'.

Next we introduce the classification of étale phrases with less than or
equal to three letters which was given by the author in [4]. First we prepare

some notations. Let a be an alphabet endowed with an involution 7 : & — a.
Then we set

PR = (0] 0] 10]--10] & [0]---]0),
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4
Pyt i=(0]---|0] a® I(DII - 10),

PRl — (). .10 a2 |0] - -- |q)|llg§ 10]---9),
PAH = (0]---10] 3 [0]-+-10] a2 0] - [0),

PLbtls < (0] 10) & 0] | & 10]---10] & 18] --10),
where @ € a and [,13,l2,l3 € {1,...,k} with [; < lp < l3. If a is equal
to 7(a), then we can easily check that Pf s homotopic to the nanophrase
(0] - |0). So when we use the notation Ps*, we always assume that a is not
equal to 7(a).

Then the classification of étale phrases with less than or equal to three
letters is described as follows.

THEOREM 3.5. ([4]) Let P be a multiplicity-one-free étale phrase over
« with less than or equal to three letters. Then P is either homotopic to
(0]...|Q) or isomorphic to one of the following étale phrases: pltivlz p3il
p2litvtz - pl2ilnle - pLLLhlls g0 some 1) 1y 13 € {1,...,k} and a € a.
Moreover PY1iVl2 p3it - p2Linle pLElle  plLLLhlals op homotopic if and
only if they are equal.

In the next section, we introduce invariants of nanophrases which was
defined in papers [2], [3] and [8].

4. Homotopy invariants of nanophrases

In this section we discuss homotopy invariants of nanophrases defined by
the author in [2] and [3] and A. Gibson in [8] independently at the same
time.

4.1. Some simple invariants

Let (w1|ws] - - - |wg) be a nanophrase over a. For ! € {1,...,k}, we define
w(l) € Z/2Z by the length of w;. We call the vector (w(1),...,w(k)) €
(Z/2Z)* the component length vector.

PROPOSITION 4.1. (A. Gibson (8], see also [2]) The component length
vector is a homotopy invariant of nanophrases.

REMARK 4.2. Gibson proved the component length vector is also invariant
under the shift move. See (8] for more detail.

EXAMPLE 4.3. Consider a nanophrases (A|A) over a. Then the component
length vector of this nanophrase is (1,1). On the other hand, the component
length vector of the nanophrase (0]0) is (0,0). So (A|A) is not homotopic to
(0|0) by Proposition 4.1.
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Next we define another invariant of nanophrases. Let 7 be the group
which is defined as follows:

m:=(a € alar(a) =1,ab=ba for all a,b€ a).

Let (w;|wa|- - - |wk) be a nanophrase of length k over a. We define (w;, w;)p
enfori<jby

(wi,’w]')p = H |A|

AGIm(wi)ﬂlm(wj)
We call a vector ((w;, w;)p)icj € 73k¢-1) the linking vector.

PROPOSITION 4.4. ([3]) The linking vector of nanophrases is a homotopy
invariant of nanophrases.

ExXAMPLE 4.5. Consider a nanophrase (AB|AC|BC) over a with |A] is
equal to a, |B]| is equal to b and |C| is equal to ¢. Then the linking vector
of this nanophrase is (a,b,c). On the other hand, the linking vector of the
nanophrase (§|0|0) is (1,1,1). In the group =, an element a € 7 is not equal
to the unit element of 7. So (a,b,c) is not equal to (1,1,1). Therefore
(AB|AC|BC) and (0{0|0) are not homotopic each other. Note that we can
not distinguish these two nanophrases by the component length vector of
nanophrases.

REMARK 4.6. In [8], Gibson defined an equivalent invariant for nano-
phrases over the one-element set and proved this invariant is also invariant
under the shift move.

4.2. Invariant v for nanophrases

In [15], Turaev defined a homotopy invariant of nanowords called . The
author extended this invariant for nanophrases. Let II be the group which
is defined as follows:

II:= ({Za}aéalzazr(a) =1 for all a € a).

DEFINITION 4.7. Let P = (wj|ws]|---|wg) be a nanophrase of length k
over a and n; the length of nanoword w;. Set n = 3, mi. Then we

define n elements 74,74, -+, and 7%, for i € {1,...,k} of Il by ~} := 2}, (9)|
if w;(7) # wi(m) for all I < j and for all m < 4 when [ = j. Otherwise
Y] = Zr(jw;(i)))- Then we define v(P) € I1* by
YP) = (M2 s BV Yoo WA+ Wy )-
Then we obtain a following proposition.

PROPOSITION 4.8. ([2]) v is a homotopy invariant of nanophrases.
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EXAMPLE 4.9. Consider a nanophrase (AB|BA) with |A| # 7(|B|). Then
Y((AB|BA)) is (2azb, 2-(b)%r(a))- This is not equal to (1,1) in IT2. So
(AB|BA) is not homotopic to (0]0).

4.3. Invariant T' for nanophrases
We define an invariant of nanophrases T. First we prepare some nota-
tions. Consider an orbit decomposition of the 7 : a/7 = {a;;, a4, -.,;,

Giyrs - > Gigen ), Where @i, := {ai;,7(ai;)} such that Card(a;;) = 2 for all
j€A{l,...,1} and Card(a;;) = 1 for all j € {I+1,...,1 + m} (we fix a
complete representative system {a;,, as,,...,ai, a5, ,,---, 0, } which sat-

isfy the above condition). Let A be an a-alphabet. For A € A we define
e(A) € {£1} by

e(4) = 1 (if |A| = ai; for some j € {1,...,1+m}),
-1 (if)A] = 7(ay;) for some j € {1,...1}).
Let P = (A, (wi|---|wk)) be a nanophrase over @ and A, B € A.
Let K(; ;) be Z if i <[ and j < I, otherwise Z/2Z. We denote K(; ) X

K(I,Z) X - "K(l,l+m) X K(g’l) X - X K(l+m,l+m) by HK(i,j)- Then we de-
fine op(A, B) € [[ K; ;) as follows: If Aand B form ---A---B---A4---B---

in P, |A] € a,and |B| = a5, for some m,n € {1,...,1 + m}, or

-+B--+A---B---A--- in P, |A] € a;, and |B| = 7(a;,) for some
(p.g)

p,g € {1,...,1 + m}, then op(A4,B) := (0,---,0, 1,0,---,0). If

(p:9)

~-B-.-A--- in P, |A| € a;, and |B| = a;,, then op(4, B) :=(0,---,0, -1
,0,-++,0). Otherwise op(4, B) := (0,...,0).
Under the above preparation, we define the invariant T' as follows.

DEFINITION 4.10. Let P = (A, (w1|we| - - - |{wk)) be a nanophrase of length
k over a. For A€ A such that there exist i € {1,2, -, k} with Card(w;] }(A))
= 2, we define Tp(A) € [[ K;; by

Tp(A) :=¢(A) ¥ _ op(A, B),
BeA
and Tp(w;) € [ K;; by
Tp(w;) := > Tp(A).
A€A, Card(w; ' (A))=2
Then we define T(P) € ([] Ki;)* by
T(P) := (Tp(w1), Tp(wz), -+, Tp(wk))-

PROPOSITION 4.11. ([3]) T is a homotopy invariant of nanophrases over o.
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EXAMPLE 4.12. Set a = {a,b} with involution 7 permuting a and b.
We choose a € o as the representative element of the orbit. Consider
nanophrases (ABA|B) and (B|ABA) over a with |A] is equal to a and
|B| is equal to b. Then T((ABA|B)) is (—1,0) € Z2?. On the other hand
T((A|BAB)) is (0,—1) € Z?. This implies (ABA|B) is not homotopic to
(B|ABA).

REMARK 4.13. In [8], Gibson constructed a new homotopy invariant of
nanophrases over the one-element set called S, invariant, and proved Gib-
son’s S, invariant is stronger than the invariant T for nanophrases over the
one-element set. See [8] for more details.

Using these invariants and some consideration concerning nanophrase,
we can prove Theorem 3.4 (see [2] and [3] for more details).

5. Applications to topology of surface-curves

In this section, we introduce applications of Theorems 3.3 and 3.4 to
the topology of surface-curves. First, we review the stable equivalence of
multi-component surface-curves.

5.1. Stable equivalence of multi-component surface-curves

In this paper a curve means the image of a generic immersion of an
oriented circle into an oriented surface. The word “generic” means that
the curve has only a finite set of self-intersections which are all double and
transversal. A k-component curve is defined in the same way as a curve with
the difference that they may be formed by k curves. These curves are called
components of the k-component curve. A k-component curve are pointed if
each component is endowed with a base point (the origin) distinct from the
crossing points of the k-component curve. A k-component curve is ordered
if its components are numerated.

Next we define equivalence relation which is called stable equivalence.
First, we define stably homeomorphic of surface-curves. Two ordered,
pointed curves are stably homeomorphic if there is an orientation preserv-
ing homeomorphism of their regular neighborhoods in the ambient surfaces
mapping the first multi-component curve onto the second one and preserving
the order, the origins, and the orientations of the components.

Now two ordered, pointed multi-component curves are stably equivalent
if they can be related by a finite sequence of the following transformations:
(i) a move replacing a ordered, pointed multi-component curve with a stably
homeomorphic one; (ii) the flattened Reidemeister moves away from the
origin as in Fig. 1. See also [12].

We denote the set of stable equivalence classes of ordered, pointed k-
component curves by C.
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-0 KA

Fig. 1. The flattened Reidemeister moves.

5.2. Nanophrases versus multi-component surface-curves

In [16], Turaev proved the study of stable equivalence classes of ordered,
pointed, k-component curves is equivalent to the study of homotopy of
nanophrases of length k over an alphabet ag = {a,b} with an involution
T : ag — ap permuting a and b. More precisely, Turaev showed a following
theorem.

THEOREM 5.1. (V.Turaev [16]) Let ag be the set {a,b} with an involution
T : ag — ap permuting a and b. Then there is a canonical bijection Cy to

Pr(ao)-

We explain the method of making a nanophrase P(C) over ag from an
ordered, pointed k-component curve C. Let us label the double points of
C by distinct letters Aj,...,A,. Starting at the base point of the first
component of the curve C and following along C in the direction of C, we
write down the labels of double points which we passes until return to the
base point. Then we obtain a word w; on an alphabet A = {4;,...,A4,}.
Similarly we obtain words ws, ..., w; on A from the second component, ...,
the k-th component. Let t} (respectively, t?) be the tangent vector to C
at the double point which is labeled A; appearing at the first (respectively,
the second) passage through this point. Set |A;| is equal to a, if the pair
(t},t?) is positively oriented, and |4;| is equal to b otherwise. Then we

17

obtain an ag-alphabet A. Finally we obtain a required nanophrase P(C) :=
(A, (wi]- - - [wg)).

EXAMPLE 5.2. Consider a two-component pointed ordered curve showed
in Fig. 2. Assume that a left circle is the first component of this curve and a
right circle is the second component of this curve. Then a nanophrase which
corresponds to this curve is ({A, B}, (AB|AB)) with |4| is equal to b and

| B| is equal to a.

Fig. 2. Example
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By the above theorem, if we classify nanophrases of length k£ up to ho-
motopy, then we obtain the classification of the stable equivalence classes of
ordered, pointed k-component curves as a corollary.

REMARK 5.3. Note that the homotopy theory of nanowords over ag can be
identified to the theory of open virtual strings which was defined by Turaev
in [18]. See also [7] and [14].

5.3. Classification of stable equivalence classes of multi-component
surface-curves

In this subsection we classify stable equivalence classes of ordered, point-
ed, multi-component surface-curves with minimal crossing number less than
or equal to two using the theory of words. By Theorem 5.1, stable equivalence
classes of ordered, pointed, 2 (respectively 3, 4) component surface-curves is
one to one corresponds to nanophrases of length 2 (respectively 3, 4) over ag
with less than or equal to 4 letters. So if we apply Theorem 3.4 for the case
of a is equal to ag, then we obtain following corollaries of the classification
theorems of nanophrases.

COROLLARY 5.4. ([2]) There are ezactly 19 stable equivalence classes of
ordered, pointed, 2 component surface curves with minimal crossing number
less than or equal to 2.

COROLLARY 5.5. There are exactly 73 stable equivalence classes of ordered,
pointed, 3 component surface curves with minimal crossing number less than
or equal to 2.

COROLLARY 5.6. There are exactly 201 stable equivalence classes of or-
dered, pointed, 4 component surface curves with minimal crossing number
less than or equal to 2.

More generally we can prove a following statement.

COROLLARY 5.7. Let k be an positive integer. Then there are exactly
1 1
14+ k2 4+ K34+ 2kt
+ 5k + K+ o
stable equivalence classes of ordered, pointed, k-component surface curves
with minimal crossing number less than or equal to two.

Proof. In this proof, for X € {(1,1),4,(3,1),...,(1,1,1,1II1)}, an ordered,
pointed surface-curves C is type PX means a nanophrase arise from C is
homotopic to PX'Y or P(fb;y for some a,b € ag, Y € {1,...,k,(L,2),...,(k—
3,k —2,k—1,k)}. We denote the number of stable equivalence classes of
k-component ordered, pointed surface-curves of type PX by N(PX). By
Theorems 3.3, 3.4 and 5.1, N(PY1) = N(P?2?) = N(P?*!) = k(k - 1),
N(PY) = 2k, N(P31) = N(P'®) = 2k(k — 1), N(P?>bH) = N(P2LUT) =
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N(P1,2,1I) — N(Pl,2,111) — N(P1,1,21) — N(P1,1,2II) — %k‘(k _ 1)(k _ 2),
N(Pl,l,l,ll) — N(Pl,l,l,lll) — N(Pl,l,l,llll) — %k(k _ 1)(k _ 2)(k‘ _ 3).
Moreover, the number of stable equivalence classes of ordered, pointed, k-
component surface curves with minimal crossing number less than or equal
to two is equal to 1 + Y.y N(PX) where X runs over

{(1,1),4,(3,1),...,(1,1,1, 111D}
So we obtain the claim of the corollary. m

5.4. Classification of stable equivalence classes of irreducible
surface-curves

In this paper, an ordered pointed multi-component surface-curve is irre-
ducible if it is not stably equivalent to a surface-curve with a simple closed
component. In this subsection, we give the classification of irreducible or-
dered, pointed surface-curves with minimal crossing number less than or
equal to two up to stably equivalent using Turaev’s theory of words and
phrases. First we prepare a following lemma.

LEMMA 5.8. ([3]) The nanophrases over a, (A|A), (AB|AB) with |A| #
r(1B|), (AB|BA) with |A| # 7(|Bl), (ABA|B), (A|[BAB), (AB|A|B),
(BA|AIB), (A|AB|B), (A|BAIB), (A|B|AB), (A\BIBA), (A|A|B|B).
(A|B|A|B) and (A|B|B|A) are not homotopic to nanophrases over a which
have the empty words in its components.

Now by Theorem 3.4 and Lemma 5.8, we obtain a following corollary.

COROLLARY 5.9. ([3]) Any irreducible ordered, pointed multi-component
surface-curve with minimal crossing number less than or equal to two is sta-
bly equivalent to one of the ordered, pointed multi-component curves arise
from the following list (see also Remark 5.10). Moreover two different pic-
tures from Fig. 3 never produce equivalent ordered, pointed multi-component
surface-curves. There are 2 (respectably 2, 8, 4, 24, 12) different ordered,
pointed multi-component surface-curves arise from upper left (respectably up-
per middle, upper right, lower left, lower middle, lower right) picture. So
there are ezactly 52 stable equivalence classes of irreducible ordered, pointed,
maulti-component surface-curves.

L @&

.

Fig. 3. The list of curves
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REMARK 5.10. We want to list up the stable equivalence classes of irre-
ducible ordered, pointed multi-component surface-curves with minimal cross-
ing number less than or equal to two. However there are too many curves
to list up. So in Fig. 3 we make just the list of multi-component curves
without orders and orientations of the components. If we choose an order
and an orientations, then we obtain an ordered, pointed multi-component
curve.

REMARK 5.11. To find application of the classification of étale words and
étale phrases are problem in future.
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