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SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE

Abstract. We investigate the differential geometry of spacelike submanifolds of codi-
mension at least two in de Sitter space as an application of the theory of Legendrian
singularities. We also discuss related geometric property of spacelike hypersurfaces in de
Sitter space.

1. Introduction

It is known that de Sitter space is a Lorentzian space form with a posi-
tive curvature. Recently, Izumiya, Pei and Sano [3] investigated the extrinsic
differential geometry of hypersurfaces in the hyperbolic space by applying
the theory of Legendrian singularities. The main tool is a lightcone Gauss
indicatrix, which is defined by a lightlike normal of hypersurface, and their
singularity sets correspond to lightcone parabolic sets of hypersurfaces. For
higher codimension case, the normal vector is not uniquely determined, how-
ever it is possible to construct hypersurfaces from normal unit vector fields
of the subspace. Izumiya, Pei, Romero Fuster and Takahashi [6] introduced
the notion of canal hypersurfaces and horospherical hypersurfaces from the
normal frames of submanifolds in the hyperbolic space, and investigated sub-
manifolds of higher codimension in the hyperbolic space from the viewpoint
of singularity theory. On the other hand, the differential geometry of de
Sitter space is also studied. In [7] we introduced the notion of lightcone
Gauss image which is an analogous tool introduced in [3], and investigate
the case of spacelike hypersurface in de Sitter space. For codimension two
case, Fusho and Izumiya [2| firstly introduced the notion of lightlike surface
of a spacelike curve in the de Sitter three-space. In [8] we investigated sin-
gularities of lightlike hypersurface of spacelike submanifold of codimension
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two in de Sitter n-space for n > 3 by using the lightlike normal direction,
which is an analogous study in the Minkowski space [4, 5].

In this paper, we argue an analogous study of the submanifolds of higher
codimension in hyperbolic space [6] and introduce the notions of horospher-
ical hypersurfaces and spacelike canal hypersurfaces by using timelike unit
normal vector fields. The singular point of horospherical surface corresponds
to the parabolic point of spacelike canal hypersurface, which we call a horo-
spherical point, and the spacelike submanifold is tangent to a de Sitter hyper-
horosphere at the horospherical point. If we assume a hypothesis of Theorem
6.5, then a contact type of a de Sitter hyperhorosphere and a spacelike sub-
manifold corresponds to a singular type of horospherical hypersurface, and
also corresponds to a singular type of lightcone Gauss image of spacelike
canal surface. In this paper we consider timelike normal direction of space-
like submanifolds, so that this study is not a generalization of [8, 9]. In
§2 we review briefly the basic notions of differential geometry of spacelike
hypersurfaces [7]. In §3, 4 we define a timelike normal vector field of space-
like submanifolds in de Sitter space and introduce a notion of horospherical
height function and horospherical hypersurface. We also define a space-
like canal hypersurface, whose lightcone Gauss image is diffeomorphic to
a horospherical hypersurface. In §5 we naturally interpret a horospherical
hypersurfaces of a spacelike submanifold as a wave front set of horospherical
height functions in the theory of Legendrian singularities. In §6 we use the
theory of contacts between the submanifolds due to Montaldi [10], and we
discuss geometric properties of singularities of horospherical hypersurfaces.
We also consider generic properties of spacelike submanifolds.

2. Spacelike hypersurfaces in de Sitter space

In this section we review the extrinsic differential geometry of spacelike
hypersurfaces in de Sitter space [7], which is an analogous study of [3]. Let
R**! = {x = (z9,...,2n) |z ER (i =0,...,n)} be an (n + 1)-dimensional
vector space. For any vectors X = (2o, -..,Zn), ¥ = (40, -.-,Yn) in R**! the
pseudo scalar product of x and y is defined by (x,y) = —zoyo + D1y Zi¥s-
We call (R™,(,)) a Minkowski (n + 1)-space and write R} instead of
R™1,(,)).

We say that a vector x € R7™ \ {0} is spacelike, lightlike or timelike if
(x,x) > 0, (x,x) = 0 or (x,x) < 0 respectively. The norm of the vector
x € Rt is defined by ||x|| = +/[(x,x)|. For a vector v € R} \ {0}
and a real number ¢, we define a hyperplane with pseudo normal v in the
Minkowski space by HP(v,c) = {x € R} | (x,v) = c}. We say that
a hyperplane HP(v,c) is spacelike, timelike or lightlike if the vector v is
timelike, spacelike or lightlike.
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We now respectively define hyperbolic n-space and de Sitter n-space by
H?(-1) = {x e R | (x,x) = —1, sgn(zo) = £1},
ST = {x € R} | {x,%) = 1},

and we write H"(—1) = H?(-1) U H*(~1). For any x1,X2, ..., X, € R},
we can define a vector x3 Ax2A...AX, with the property (x,x;A.. . Axp) =
det(x,x1,...,Xn), so that x; A ... A x, is pseudo-orthogonal to any x; for
i=1,...,n. We also define future (resp. past) lightcone at the origin by

LCY = {x e R}™ | (x,x) =0, 20 >0 },
LC* = {x e R | (x,x) =0, 290 <0},

and we write LC* = LC} N LC*.

Let X : U — S7 be an embedding, where U C R""! is an open subset.
We say X is a spacelike hypersurface in ST if every non zero vector generated
by {X,,(u)}?} is always spacelike, where u = (ui, . ..,u,_1) is an element
of U and X, is a partial derivative of X with respect to u;. We denote M =
X(U) and identify M with U through the embedding X. Since (X, X) =1,
we have (X,,,X) =0 fori =1,...,n— 1. It follows that a hyperplane
spanned by {X,X4y,,...,Xqy,_,} is spacelike. We define a vector e(u) =
X(u)A Xy, ()AL AKX, (u)/][|X(u) A Xy, () A... AX,, ,(u)||. Then
e is pseudo orthogonal to X and X, for i =1,...,n — 1. We define a map
L*:U — LCY by

L*(u) = X(u) + e(u),

which is called a positive (resp. negative) lightcone Gauss image of X.

We now consider a hypersurface defined by HP(v,c) N S}. We say that
HP(v,c) N S? is an elliptic hyperquadric or a hyperbolic hyperquadric if
HP(v,c) is spacelike or timelike respectively. We say that HP(v,c) N S} is
a de Sitter hyperhorosphere if ¢ # 0 and HP(v,c) is lightlike. We have the
following proposition analogous to ([3], Proposition 2.2).

ProPOSITION 2.1. ([7]) Let X : U — ST be a spacelike hypersurface
in ST. The lightcone Gauss image L¥ is constant if and only if the spacelike
hypersurface M = X(U) is a part of a de Sitter hyperhorosphere.

We now define the lightcone Gauss-Kronecker curvature and the light-
cone mean curvature of the spacelike hypersurface M = X(U). For any
p € M and v € T,M, we can show Dye and D,L* € T,M, where Dy is
the covariant derivative with respect to the tangent vector v. Under the
identification of U and M, dL*(u) is a linear transformation on T,M. We
call S,? = —dL*(u) a lightcone shape operator of M = X(U) of at p = X(u).
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The lightcone Gauss-Kronecker curvature K ei of M =X(U) at p=X(u) is
defined to be the determinant of the lightcone shape operator.

Since X, (fori =1,...,n—1) are spacelike vectors we have the Rieman-
nian metric (first fundamental form) ds® = zz =1 9ijduidu; on M = X(U),
where g;;(u) = (Xy,(u), Xy, (u)) for any u € U. We define a lightcone second
fundamental invariants by Bf;(u) = (—LZ (u), Xy, (u)) for any u € U. In [7]
we obtained explicit expression for the lightcone Gauss-Kronecker curvature:

Két = det(h )/ det(gag)-

We say that p = X(u) is a lightcone parabolic point of X if K li(u) =0.
We define a family of functions H : U x LC* — R by

H(u,v) = (X(u),v) - 1,

which we call a lightcone height function of M. We have the following propo-
sition analogous to ([3], Proposition 3.1).

PROPOSITION 2.2. ([7]) Let H be a lightcone height function, then H(u,V)
= 0H(u,v)/0u; =0 fori=1,...,n—1 if and only if v = L*(u).

We also naturally interpreted the lightcone Gauss image of a spacelike
hypersurface as a wave front set in the frame work of contact geometry in [7].
This is the analogous way to the differential geometry of hypersurfaces in
hyperbolic space [3].

Let 7% : PT*(LC%) — LC% be the projective cotangent bundles with
canonical contact structures. Consider the tangent bundle % : TPT*(LC})
— PT*(LC%) and the differential map dn* : TPT*(LC%) — T(LCY) of ™.
For any X € TPT*(LC?Y), there exists an element a € T*(LC%) such that
7%(X) = [a]. For v € LC}. and V € T, (LC%), the property (V) = 0 does
not depend on the choice of representative of the class [a]. Thus, we can
define the canonical contact structure on PT*(LC}) by

* = (X e TPT*(LCY) | 7 (X)(dr* (X)) = 0}.

On the other hand, we consider a point v = (vg, v1,...,vn) € LC}, then
we have the relation vp = +1/v7 +--- + v2. So we adopt the coordinate
system (vi,...,vn) of the manifold LC%. Then we have the trivialization
PT*(LC}) = LC% x P*R™, and call ((vo,...,vn),[€1 ¢ ... : &]) homoge-
neous coordinates of PT*(LCY), where [¢ : ... : &,] are the homogeneous

coordinates of the dual projective space P*R™™!.

It is easy to show that X, € K if and only if Y., ui& = 0, where
e = (v,[¢]) and drf(X.) = Yo, 10/0v; € T,LC%. An immersion i :
L — PT*(LC%) is said to be a Legendrian immersion if dimL =n — 1 and
dig(TyL) C Kjy(g) for any q € L. The map m o1 is also called the Legendrian
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map and the image W (i) = image(w o¢), the wave front of i. Moreover, i (or
the image of 1) is called the Legendrian lift of W (i).
Let F : (R® xR¥, (ug, vo)) — (R, 0) be a function germ. We say that F is
a Morse family of hypersurfaces if the map germ A*F : (R® xR¥, (ug, vg)) —
(R**1,0) defined by
wre(r 2,00

Our’ " Ous

is non singular. In this case, we have a smooth (k — 1)-dimensional smooth
submanifold,

L(F) = {(u, v) € (R"_T x RF, (UO,VO)) ‘

oF oF
F(U,V) = %(U,V) =...= au—‘(u,v) = 0},

and the map germ L : (2,(F), (ug, vo)) — PT*R¥ defined by
OF oF
Lr(u,v) = (v, [a—vl-(u,v) Pt 6—(u,v)]>

Vk
is a Legendrian immersion germ. Then we have the following fundamental
theorem of Arnol’d and Zakalyukin [1, 12].

PROPOSITION 2.3. All Legendrian submanifold germs in PT*R* are con-
structed by the above method.

We call F' a generating family of Lp(X.(F)). Therefore the wave front

is

W(Lrp) = {v eRF|JueR"

F F
such that F(u,v) = g—m(u, V)=---= afn_r (u,v) = 0}.
We call it the discriminant set of F. In [9] we showed that the lightcone
height function H is a Morse family of hypersurface and its discriminant set is
the image of lightcone Gauss images L*(U). Therefore we have a immersion
germ L* : (SE(H), (uo,vy)) — PT*(LC}) defined by

et = (v [ L D],

where vt = L*(u) and ©F(H) is a singular set of H.
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3. Spacelike submanifolds in de Sitter space

In this section, we consider the differential geometry of spacelike sub-
manifolds in de Sitter space, which is analogous to [6].

Let r > 2 be an integer and X : U — ST be an embedding from an open
set U C R"". We say that X is spacelike in ST if every non zero vector
generated by {X,, (u)}; ] is spacelike, where u € U and X,,, = 0X/0u;. We
identify M = X(U) with U through the embedding X and call M a spacelike
submanifold of codimension r in de Sitter space. Since (X, X) = 1, so that
(Xy;,X) =0for i =1,...,n—r. The tangent space of M at p = X(u) is
spanned by the vectors X, (u) fori=1,...,n—r.

Let N, M be the normal space of M at p in R} and we define Ny(M) =
NyM NT,ST. Let n: U — Nj(M) be a timelike unit normal vector field
on M. Since (n,n) = —1 and (X, n) = 0, n,, is pseudo orthogonal to both
of X and n for i = 1,...,n —r. Therefore we have n,,(u) € T,M & N;(M).
Consider two pseudo orthonormal projections

m TR - T,M, oy TR — NM.

Let dyn be the derivative of n at u, under the identification of M and U
through X, we have the linear transformations on T, M

N

T __ ¢t . .n
dpn” = m, 0 dyn, dpn” = m; odyn.

We respectively call the linear transformation A,(n) = —d,n? and S,(n) =
—(idm,m + dpnT) an n-shape operator and a horospherical n-shape operator
of M at p = X(u). We also call the linear map dyn” a normal connection
with respect to the timelike normal n of M.

We denote eigenvalues of Ap(n) and Sp(n) by xp(n) and Kp(n), which
we respectively call an n-principal curvature and a horospherical n-principal
curvature. The horospherical Gauss-Kronecker curvature with respect to n
at p = X(u) is defined to be

Kp(n)(u) = det Sp(n).

We say that a point po =X (up) is an n-umbilic point if Sp, (n) = kp, (n)idr, M-
Since the eigenvectors of Sp,(n) and Ap, (n) are the same, the above condition
is equivalent to Ap,(n) = p,(n)idr, p. We say that the spacelike submani-
fold M is totally n-umbilic if every point on M is n-umbilic. We also say that
the timelike unit normal vector field n is parallel at po if dy, nV = 07, M-
The timelike unit normal field n is parallel if n is parallel at any points on M.
Then we have the following result which is analogous to ([6], Proposition 3.1).

PROPOSITION 3.1. Let X : U — S} be a spacelike submanifold of codi-
mension T > 2. Suppose that M = X(U) is totally n-umbilic, where n is a
timelike unit normal parallel vector field. Then kp(n) and Rp(n) are constant
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k(n) and k(n), and there exists a vector v € R?*! and real number ¢ such
that M is a part of a hyperquadric HP(v,c) N S} in de Sitter space. Under
this condition we have following cases:

(1) If 1 < |k(n) + 1| = |k(n)| then M is a part of a hyperbolic hyperquadric
HP(v,+1).

(2) If0 < |R(n)+1] = |k(n)| < 1 then M s a part of an elliptic hyperquadric
HP(v,+1).

(3) If K(n) + 1 = k(n) = 0 then M is a part of an elliptic hyperquadric
HP(v,0).

(4) If k(n) = 1 (namely K(n) = 0) then M is a part of a de Sitter hyper-
horosphere HP(v,+1).

Proof. By the assumption, we have Ay(n) = rpidr,p. This means that
w1 0Ny, (u) = £pXy,(u). Since n is parallel, we have n,, (u) = £, Xy, (u).
So that Ny, (1) = Ky, pXa, (U) + KXo, (1) and Ny, (1) = Ky, pXo; (1) +
KpXaju; (0). It follows that Xu,u; = Xyju; and Ny, = Ny, then we have
Kou; pXa; (W) = Ky, pXy;(u). Since X;(u) and X;(u) are linearly indepen-
dent, Ky, p = Ku;p = 0. This means that «, and %, are constant « and &.

We now assume that £ + 1 = k # 0. By the assumption, we have
n, (u) = —kXy,(u), so that there exists a constant vector v such that
X(u) = v — (1/k)n(u). Then the vector v satisfies (v,v) = 1 — 1/x? and
(X(u) — v,X(u) — v) = —1/2, so that (X(u),v) =1 for any u € U. This
means that M is a part of a hyperquadric in de Sitter space HP(v,+1).
Therefore we have (1), (2) and (4).

On the other hand, if K + 1 = k = 0 then there exists a constant time-
like vector v such that n(u) = v for any u € U. So that (X(u),v) =
(X(u),n(u)) =0 for any u € U. This means that M C HP(v,0) Therefore
(3) holds. This completes the proof. =

We now consider the following Weingarten type formula. Since {X,, };=/

spans a spacelike vector subspace, we induce a Riemannian metric (the horo-
spherical first fundamental form) by ds? = ti=1 9ijduidu; on M = X(U),
where g;; = (Xy,, Xy,;). We respectively define the second fundamental in-
variant and horospherical second fundamental invariant with respect to the
timelike unit normal vector field n by hi;(n) = —(ny,, Xy,) and hij(n) =
—(Xu; + Dy, Xy;). We have the relation

hij(n) = —gi; + hij(n)  (fori,j=1,...,n—r).

Under the above notations, we have the following Weingarten type for-
mula with respect to the timelike unit normal vector field n, which is anal-
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ogous to ([6], Proposition 3.2)
71 o (X 4+ n), Z b (n) X,

where (I_z{(n)),-j = (hik(n))ik(g*)k; and (g¥) = (gi;)~!. Therefore, the
Gauss-Kronecker curvature with respect to n is given by

Kp(n) = det(hix(n))/ det(gr;)-
Since (X + n,X,;) = 0, the coefficients of the second fundamental in-

variant with respect to the timelike parallel unit normal vector field n are
expressed by

E'L](n) = _<XU1 + n‘uivxuj>
= —0(X +n,Xy,;)/0u; + (X + n, Xy,y;)
= (X + n, Xy;u,)-

Therefore the horospherical second fundamental invariant at a point pg =
X(up) depends only on the timelike vector ng = n(ug). It is independent of
the choice of timelike parallel unit normal vector field n with ny = n(uy).

Let ng be a timelike unit normal vector. We say that a point py = X(up)
is an ng-parabolic point (resp. ng-umbilic point) of M if Kp(n)(ug) = 0
(Spo(n) = Kpy(n)idr, a) for some timelike parallel unit normal vector field
n with n(ug) = ng. We also say that pg is an ng-horospherical point if it is
an ng-parabolic point and an ng-umbilic point.

4. Horospherical hypersurfaces and horospherical height functions
In this section we introduce the notions of horospherical height function
and horospherical hypersurface.
Let X : U — ST be a spacelike submanifolds of codimension r > 2 in de
Sitter space and p = X(u). We choose unit orthonormal sections

Np(M) = (X(u), no(u), n1(u), ..., nr—1(w)x,
where ng(u) is a timelike unit normal vector and n;(u) fori =1,...,r —1

are spacelike unit normal vectors. We define a map e : U x H™"1(-1) —
H"(-1) by

e(u, ﬂ) 0n0 + Z uznz

where i = (uo,...,4r—1). Let 8 be a ﬁxed real number, we also define a
map Xg : U x H™"}(-1) — ST by

Xg(u, i) = cosh#X(u) + sinh fe(u, fz).
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We remark that for any spacelike submanifold X and point (ug, fig) € U x
H™"1(—1), there are a real number 6 # 0 and an open neighborhood V of
(ug, fio) such that Xy is spacelike embedding on V. We assume that for any
(u, i) € V then (u,—f) € V. We write CM as an image Xg(V') and call it
a spacelike canal hypersurface of M = X(U). Izumiya, Pei, Romero Fuster
and Takahashi [6] introduced the notion of canal surfaces of submanifolds in
the hyperbolic space.

We now consider the horospherical height function on a spacelike sub-
manifold. For a spacelike submanifolds X of codimension r, we define the
family of functions

H:UxLC*—R

by H(u,v) = (X(u),v) — 1, and we call H a horospherical height function
on M. For vo € LC* we denote hy,(u) = (X(u),vg) — 1. We have the
following proposition which is analogous to ([6], Proposition 3.4).

PROPOSITION 4.1, Let H : UXLC* — R be a horospherical height function
of a spacelike submanifold X : U — ST of codimension r. Then H(u,v) =
OH(u,v)/0u; =0 fori=1,...,n—r if and only if v=X(u) + e(u, 1) for
some i € H'71(-1).

The proof of the above proposition is similar to that of Proposition 3.4
in [6], so it is omitted. The discriminant set of the horospherical height
function H is

Dy = {X(u) + e(u,g) | (u,5) €U x H'(-1)}.
We define a map HSx : U x H™"}(—~1) — LC* by
HSx(u,p) = X(u) + e(u, ),

which we call a horospherical hypersurface of M. We remark that HSx
depends on the choice of the orthonormal frames of N(M).

Let {X,no,...,n,_1} and {X,ny,...,n._;} be two orthonormal frames
of N(M) with no,n) € H?'(—1). Then we have n; = 373 Mn’;, where

7=0 "¢ 5
. _ . ,. . P
N(u) = { 7 ons) 15=0,
(n,-,nj) ifj=1,...,7—1.

Then we have a diffeomorphism ® : U x H™"1(~1) — U x H""1(—1) defined
by

®(u, i) = <u, <:z;§/\?(u)m, e f A;-l(u)ui)).

i=0
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We also define '(u,fi) = S.7_o wnj(u). It follows from the above that
e(u, i) = € o ®(u, 1). Therefore we have

HSX(ua ﬂ) = H‘Sg( © (I)(u’ p’)a

where HSy = X(u) +€'(u, i). This means that HSx is independent to the
choice of orthonormal frames of N(M) up to the diffeomorphic parametriza-

tion. We have a following proposition which is analogous to (6], Proposi-
tion 3.5).

PROPOSITION 4.2. Let X : U — ST be a spacelike hypersurface of codimen-
sion r > 2 in de Sitter space, then HSx(u, i) = X(u) + e(u, i) is constant
map for some smooth map i : U — H™~1(=1) if and only if M is a part
of de Sitter hyperhorosphere HP(v,1) N ST. By Proposition 3.1, if M is to-
tally e(u, i(u))-umbilic for some parallel normal vector field e(u, i(u)) and
Ky (e(u, i{u)))(u) = 0, then the above assertion holds.

Proof. Suppose that vop = X(u)+e(u, i) is a constant vector. Since e(u, i)
is pseudo orthogonal to X(u), then we have (X(u),vp) = +1 for anyu e U.
This means that M is a part of a de Sitter hyperhorosphere H P(vg,1)NS}.
On the other hand, if M C HP(vo,1) NS} for some lightlike vector, then
(vo — X(u),X(u)) =0 for any u € U. Since X(u) is pseudo orthogonal to
Xy, (u), it follows that (vo— X (u), Xy, (u)) = 0. This means that X(u) -

is a normal vector of M at p = X(u). We define a function f(u) by

ia(u) = —(X(u) — vo,np(u )+ Z — vo, n;(u))n;(u).
=1

Then we have vo — X(u) = e(u, ). This completes the proof. =

Since the image of H Sx is the discriminant set of the horospherical height
function H on M, the singular set of HSx corresponds to the null set of the
Hessian matrix of the horospherical height function with the fixed param-
eter v at each point. Therefore we have the following proposition which is
analogous to ([6], Proposition 3.6).

PROPOSITION 4.3. The singular set of HSx is given by
L(HSx) = {(u,) € U x H""}(~1) | Kn(e(u, ))(u) = 0}.

Proof. Let hy(u) be a horospherical height function with v € LC*, then
we have Hesshy(u) = (Xy;u;(u),v). Suppose that (u,v) € X.(H), then
v = X(u) + e(u, z) for some i € H™"}(—~1). We recall that h;;j(v)(u) =
(Xuu; (), X(u) + e(u, )}, where (hi;(v)(u)) is the horospherical second
fundamental invariant with respect to the timelike direction e(u, ). The
horospherical Gauss-Kronecker curvature is
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Kr(e(u, 1)) (u) = det({Xuu,; (u), X(u) + e(u)))/ det(gi; (u))
= det Hess hy(u)/ det(g;;(u)),

where (g;;(u)) is the first fundamental invariant of M. Therefore Hess hy(u)
= 0 if and only if Kp(e(u, ))(u) = 0. This completes the proof. =

The singular set of HSx corresponds to the parabolic set of M with re-
spect to some timelike parallel normal vector field e(u, ). By the proof of
above proposition, we have rank Hess hy, (ug) = rank(h;;(vo)(uo))ij. There-
fore we also have the following proposition which is analogous to ([6], Propo-

sition 3.7).
PROPOSITION 4.4. For any spacelike submanifold X of codimension r > 2
and lightlike vector vo = X(ug)+e(uy, fip), we have the following assertions.
(1) A point po = X(up) is an e(uy, fig)-parabolic point if and only if

det Hess hy,(up) = 0.
(2) A point po is an e(ug, fip)-horospherical point if and only if

rank Hess hy,(up) = 0.

Here Hess hy,(ug) is a Hessian matriz of hy,(u) at u = ug.

We now consider the lightcone height function and the lightcone Gauss

image of spacelike canal hypersurface Xg : V — ST with V. Cc U x H™"1(-1).
The lightcone height function H : V x LC* — R of the spacelike hypersurface
X, is
H(w,7),v) = (Xo(u, 1), ¥) ~ 1.
We denote hy(u) = H((u, ), v) for any v € LC*. Now we define a map
& :V — H"1(-1) by &(u,z) = sinhdX(u) + coshfe(u,z). Then we
have (8(u, &), Xo(w)) = (&(u, ), Ko, (w)) = O for any (u,z) € V and
i = 1,...,n —r. Therefore € is a timelike normal of CM. The positive
lightcone Gauss image Lops : V — LC* is defined by

Lea(u, i) = Xg(u) + &(u, 1) = (cosh 8 + sinh 8)(X(u) + e(u, fz)).
By Proposition 2.2, H((u,f),v) = Hy,((u,f),v) = Hy,((a,z),v) = 0 for
t=1,...,n—rand j =0,...,r — 1 if and only if v = Xy(u) £+ &(u, z) =
et?(X(u) + e(u,+f)). By assumption, (u,—f) is also an element of V.
Therefore the discriminant set of the lightcone height function H is
D(H) = {**(X(u) + e(u, ) | (u, i) € V}.
We now define a diffeomorphism
M.: LC* = LC*
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given by M.(v) = cv for a fixed positive real number ¢. Then we have the
following lemma, which is analogous to ([6], Proposition 3.9).

LEMMA 4.5. Under the above notations, we have
Mo HSx(u, i) = Lop(u, i)
onV C U x H~1(—1), where c = e*?.
By the above lemma, the horospherical hypersurface HSx is locally dif-

feomorphic to the lightcone Gauss image of the spacelike canal hypersur-
face Xg.

5. Horospherical hypersurfaces as wave fronts

In this section we naturally interpret the horospherical hypersurfaces of
M as a wave front set of the horospherical height functions in the theory of
Legendrian singularities.

By proceeding arguments in §2, the horospherical hypersurface HSx is
the discriminant set of the horospherical height function H, and the singular
point set of the horospherical hypersurface is the horospherical point set. We
have the following proposition which is analogous to ([6], Proposition 4.1).

PROPOSITION 5.1. Let X : U — S} be a spacelike submanifold of codi-
mension r > 2 and H : U x LC* — R be a horospherical height function of
M. Then H is a Morse family.
Proof. We denote
X(u) = (Xo(u),...,Xn(u)) and

Xu; (u) = (XO,ui(u) v X (u))
For any v = (vp,...,vn) € LC*, we have vy # 0. Without loss of generality,
we assume that vg = \/v? + - + v2 > 0, so that we have

n
H(u,v) = (X(u),v) =1 = —Xovo + Y Xnvp — L.
i=1

We now prove a map

. OH O0H
A H —_— (H, é—’l;, seey m)
is non singular at any (u,v) € ¥,(H). The Jacobian matrix of A*H is
* | 2lwv)
8'Uj j=l,..,n

JA*H(u,v) =

0’H
*
. (8u¢8vj (u, V)) j=1,...,n
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We denote an (n — r + 1) X n matrix B by JA*H = (x| B). It is sufficient
to show that rank B = n —r + 1 at (u,v) € E,(H). We also denote an
(n—r+3) x (n+ 1) matrix C by

Yo n Un
XO Xl Xn
C =
XO,u1 Xl,u1 X'n,ul
Xoyun—r Xl yUn—r Xn)un—r

We now show that the rank of the matrix C is equal to n—r+3. Since v, X(u)
and Xy, (u) are linearly independent for all (u,v) € X,(H), it is sufficient to
show that timelike unit vector e = (1,0, ..., 0) can not be written by a linear
combination of v, X(u) and X, (u). If that is not so, there exists some real
numbers 7, 4, & such that e = nv + pX(u) + w and w = Y 17 &Xq, (u).
Then we have (e,e) = u? + (w,w). However, w is a spacelike vector, so
that (e, e) would not be negative, which contradicts our assumption. This
means that e,v,X(u) and X,,(u) are linearly independent, therefore we
have rankC =n —r 4 3.

We now show rank B = rank C' — 2. We subtract the second row mul-
tiplied by Xo/vo from the third row of the matrix C, and add the second
row multiplied by Xg 4, (u)/vo from the (3 + k)-throw for k=1,...,n—r.
Then we have a matrix

1}0 vl e vn

C'=| o
B

0
Therefore we have rank B = rankC’ — 2 = n — r + 1. This completes the
proof. m

Since H is a Morse family of hypersurfaces, we have the Legendrian
immersion germ Ly : (X.(H), (uo, vo)) — PT*(LC*) defined by

Lo(u,v) = (v, [gg—(u,v) o g—g(u,v)]),

where (vy,...,vy,) is the coordinate system of LC*.
We remark that the wave front set of the Legendrian immersion germ
L is the horospherical hypersurfaces HSx of M. On the other hand, we
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define a contact diffeomorphism M, : PT*(LC*) — PT*(LC*) by
Me(v, [€]) = (ev, [£]),

where c is a fixed real parameter with ¢ # 0. By definition, we have the
following theorem.

THEOREM 5.2. For a spacelike submanifold X : U — ST, we have
MC oLy = ﬁg,

where ¢ = e*® and L g s a Legendrian lift of the lightcone Gauss image Lcpy
of the spacelike canal hypersurface of M.

By the above theorem, the Legendrian lift of the lightcone Gauss image
Lcas is A-equivalent to the Legendrian lift of the horospherical hypersurface
H Sx of M.

6. Contact with de Sitter hyperhorospheres

In this section we use the theory of contacts between the spacelike sub-
manifolds and the de Sitter hyperhorospheres, following Montaldi [10].

Let X; and Y; (¢ = 1,2) be submanifolds of R"™ with dim X; = dim X»,
dimY; =dimYs and y; € X; NY; for ¢ = 1,2. We say that the contact of
Xi and Y7 at 4y is the same type as the contact of X9 and Y3 at yo if there
is a diffeomorphism germ ® : (R",y;) — (R",y2) such that ®((X1,11)) =
(X2,y2) and ®((Y1,91)) = (Y2,y2). In this case we write K(X1,Y1;y1) =
K(X2,Y2;92). Two function germs ¢1,92 : (R%,a;) — (R,0) (i = 1,2) are
K-equivalent if there are a diffeomorphism germ @ : (R”,a;) — (R", a2) and
a function germ A : (R",a;) — R with A(a;) # 0 such that fi = A- (g2 0 ®).
In [10] Montaldi has shown the following theorem.

THEOREM 6.1. ([10]) Let X; and Y; (i = 1,2) be submanifolds of R®
with dim X; = dim X3, dimY; = dimY; and ¢, = X; N Y; fori = 1,2.
Let g; : (Xi,z;) — (R™,y;) be immersion germs and f; : (R”,y;) — (R,0)
be submersion germs with (Yi,u) = (f72(0),y). Then K(X1,Y1;3) =
K(X2,Y2;y2) of and only if f1 0 g1 and f2 0 g2 are K-equivalent.

We now consider the function H : S} x LC* — R defined by H(z,v) =
(xz,v) — 1. Given vy € LC*, we denote by, (z) = H(z, vp), so that we have
byl (0) = HP(vo,+1) N S. Let X : U — R} be a spacelike submanifold of
codimension 7 > 2. For any ug € U and jip € H""}(—1), we take a point
vo = X(up) + e(ug, fip). By Proposition 4.1, we have

(Bvo © X)(uo) = H o (X x idrc+)(uo, vo) = H(uo, vo) =0,

hvo0X), . OH
B’U,i (uo) - ou

(o, X(uo) + e(uo, 10)) = 0.

(2
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It follows that the de Sitter hyperhorosphere b }(0) = HP(vo,+1) N ST is
tangent to M at po = X(up). In this case we call HP(vq,+1)NST a tangent
de Sitter hyperhorosphere (briefly, tangent hyperhorosphere) with respect to
X(ug) + e(ug, f1p). We may also consider the contacts of the spacelike canal
surface CM = X(V) and the de Sitter hyperhorospheres. (see [7])

We now review some notions of Legendrian singularity theory to study
the contact between hypersurfaces and de Sitter hyperhorospheres. We say
that Legendrian immersion germs ¢; : (U;,u;) — (PT*R™,p;) (i = 1,2)
are Legendrian equivalent if there are a contact diffeomorphism germ H :
(PT*R™,p1) — (PT*R™,p2) and a diffeomorphic germ 7 : (Uy,u;) —
(Uz,uz) such that H preserves fibers of # and H ot = tg07. A Leg-
endrian immersion germ at a point is said to be Legendrian stable if for
every map with the given germ there are a neighborhood in the space of
Legendrian immersions (in the Whitney C'*°-topology) and a neighborhood
of the original point such that each Legendrian map belonging to the first
neighborhood has in the second neighborhood a point at which its germ is
Legendrian equivalent to the original germ. (see [1]).

PROPOSITION 6.2. ([13]) Let i1,i2 be Legendrian immersion germs such
that regular sets of wo i1 and 7w o ig are respectively dense. Then iq,12 are
Legendrian equivalent if and only if corresponding wave front sets W (i;) and
W (ia) are diffeomorphic as set germs.

Let F; : (R™ x R¥, (a;,b;)) — (R, c) (k = 1,2) be k-parameter unfoldings
of function germs f;. We say that F; and F; are P-K-equivalent if there
exists a diffeomorphism germ & : (R™ x R¥, (a;,5)) — (R™ x R¥, (ag, b))
of the form ®(u,z) = (¢1(u, ), $2(x)) for (u,z) € R® x R¥ and a function
germ A : (R™ x R¥ (a1,b;)) — R such that A(a;,b1) # 0 and Fi(u,z) =
A(u,z) - (Fp 0 ®)(u, ).

THEOREM 6.3. ([1, 12]) Let F,G : (R¥ xR™,0) — (R, 0) be Morse families
and denote the corresponding Legendrian immersion germs by Lr, Le. Then

(1) LF and Lg are Legendrian equivalent if and only if F and G are P-K-
equivalent.
(2) LF ts Legendrian stable if and only if F is K-versal deformation of f.

Let G; : (R™,a;) — (R™,b;) (for i = 1,2) be map germs. We say that
G1 and G3 are A-equivalent if and only if there exist diffeomorphism germs
¢: (R™,a1) = (R™,a2) and @ : (R™,b;) — (R", be) such that $oG; = Gyo¢.

We denote h;y,; : (U,u;) — (R,0) (i = 1,2) by h;y,(u) = H;(u,v;).
Then we have h; v, (u) = (h;v, o X;)(u). By Theorem 6.1,
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K(X1(U),HP(v1,1) N ST;p1) = K(X2(U), HP(v2,1) N ST; p2)

if and only if by v, and hgy, are K-equivalent.

Let Q(X, ug) be the local ring of the horospherical height function germ
hyvo : (U,up) — R defined by

Q(X, uo; o) = Cg(U)/ (hvo) e vy

where vo = X(ug) + e(uo, fio), o € H""!(—1) and CZ(U) is the local
ring of function germs at up with the unique maximal ideal 9. We also
denote Q(Xg, (o, fig)) as the local ring of the lightcone height function germ
hy t(UxH™ 1(~1), (ug, io)) — (R, 0) of the canal hypersurface Xy, where

V() = Lo (o, fo)-

PROPOSITION 6.4. ([3], Proposition A.4) Let F,G : (RF x R*,0) — (R, 0)
be Morse families. Suppose that Legendrian immersion germs Lr and Lg
are Legendrian stable, then the following conditions are equivalent:

(1) (W(LF),A) and (W(Lg),N) are diffeomorphic as set germs.
(2) LF and Lg are Legendrian equivalent.
(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F |gxy (o} and

9=G lex{o}-

We have following theorem.

THEOREM 6.5. Let X; : (U;,w;) — (ST,pi) (i = 1,2) be spacelike sub-
manifold germs of codimension at least two in de Sitter space. For fi; €
H™Y(-1) (i = 1,2), we denote v; = HS;(u;, [i;), vl = Lo, (i, ),
hiv, = Hi luxqvi}, hiyv: = Hi |uxqvyy ond p; = Xip,(ui, fis). If the cor-
responding Legendrian immersion germs Ly, are Legendrian stable, then the
following conditions are equivalent.

(1) Horospherical hypersurface germs HSx, and HSx, are A-equivalent.
) Legendrian immersion germs Ly, and Ly, are Legendrian equivalent.
) Horospherical height function germs H; and Hy are P-K-equivalent.

) hiv, and hoy, are K-equivalent.

) K(Xl( ) HP(Vl, 1) N S{L;pl) = K(Xz(U), HP(VQ, 1) N S?;pg).

) Q(X1,u;) and Q(Xz,uz) are isomorphic as R-algebras.

) Lightcone Gauss image germs Lea, and Lo, are A-equivalent.

) Legendrian immersion germs Lg, and Ly, are Legendrian equivalent.
) Lightcone height function germs H; and Hz are P-K-equivalent.

) h1 v, and ho v, are K-equivalent.

) K(CMl, HP(v},+1) N ST, p)) = K(CMa, HP(v),+1) N ST; ph).

)

(2

(3
(4
(5
(6
(7
(8
9
10
11
12) Q(Xy,, (uy, i11)) and Q(Xg,, (uz, fi2)) are isomorphic as R-algebras.
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In this case (X1 Y(HP(v1,1) N S}),uy) and (Xo L(HP(v2,1) N ST),uz)
are diffeomorphic as set germs.

Proof. Since Ly, and Ly, are Legendrian stable, regular sets of HSx, and
HSx, are respectively dense, by applying Proposition 6.2, the conditions
(1) and (2) are equivalent. By Theorem 6.3, the conditions (2) and (3) are
equivalent. By the arguments in Theorem 6.1, the conditions (4) and (5)
are equivalent. If we assume the condition (3), then the P-K-equivalence
of H; (i = 1,2) preserves the K-equivalence of h;y,, so that the condition
(4) holds. Since the local rings Q(X;, u;) are K-invariant, this means that
the condition (6) holds. By Proposition 6.4, the condition (6) implies the
condition (2). Therefore the statements from (1) to (6) are equivalent.

By Theorem 5.2, (2) and (8) are equivalent. Since Ly, are Legendrian
stable, Lp, are also Legendrian stable. So that we may similarly show the
equivalence of the conditions from (7) to (12). On the other hand, h} v,.(0) =

(X;"Y(HP(v;,1) N ST),u;) and K-equivalence preserves the zero level sets,
so that (X; "} (HP(v;,1)NS}),w;) (4 = 1,2) are diffeomorphic as set germs.
This completes the proof. =

We consider generic properties of spacelike submanifolds of codimension
r > 2 in §7. Let U be an open subset of R®™". We consider the space
of spacelike embeddings Sp-Emb(U, ST') with Whitney C*°-topology. We
define a function H : S} x LC* — R by H(z,v) = (z,v), and denote
hv(z) = H(z,v). Then b, is a submersion for any v € LC*. For spacelike
submanifolds X € Sp—Emb(U ST), we have H = H o (X x idge+). We also
have the {-jet extension j¢H : U x S} — J¢(U,R) defined by j¢H(x,v) =
§thy(u). We consider the trivialization J¢(U, R)=UxRx Jén—r,1). For
any submanifold Q C J4(n—r,1), we denote @ = U x {0} x Q. Then we have
the following proposition as a corollary of Lemma 6 of Wassermann [11].

PROPOSITION 6.6. Let Q be a submanifold of J(n — 1,1). Then the set
To = {x € Sp-Emb(U, S?) | j¥H is transversal to Q}

is a residual subset of Sp-Emb(U,S}). If Q is a closed subset, then Tg is
open.

We remark that if the corresponding horospherical height function hy,
is ¢-K-determined, then H is a K-versal deformation if and only if ]1H is
transversal to IChv , where K¢ is the K-orbit through j¢hy,(0) € J¢(n —
r,1). Applying Theorem 6.3, thls condition is equivalent to the condition
that the corresponding Legendrian immersion germ is Legendrian stable.
From the previous arguments and §5 in [6], we have the following theorem.
(See also [1].)
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THEOREM 6.7. If n < 6, there ezists an open subset O C Sp-Emb(U, ST)
such that for any X € O, the corresponding Legendrian immersion germ L
is Legendrian stable.
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