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LIGHTLIKE DEVELOPABLES IN MINKOWSKI 3-SPACE 

Abstract. We say that a surface in Minkowski 3-space is a lightlike developable if all 
pseudo-normal vectors of the regular part of the surface sire lightlike. The tangent surface 
of a lightlike curve is one of the lightlike developables. We give a generic classification of 
such surfaces. The all arguments in this paper are elementary. However, we discovered 
the H3 type singularity appears in generic for such a class of surfaces. Since the H3 type 
singularity usually appears in non-generic situation, this is a quite interesting phenomenon. 

1. Introduction 
A surface in Euclidean space whose Gauss curvature vanishes on the 

regular part is called a developable surface. It has been known that a de-
velopable surface is a part of a conical surface, a cylindrical surface, the 
tangent surface of a space curve or the glue of such surfaces. Developable 
surfaces have singularities in general. The tangent surface of a space curve 
has the most interesting singularities in the above three kinds of surfaces. 
In fact Cleave [2] showed that the germ of the tangent surface of a generic 
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space curve is locally diffeomorphic to the cuspidal edge C x R or the cuspidal 
cross cap CCR. Here, C x R = {(x0,xi) € R3 | x\ = zf} and CCR = 
{(xo,xi,X2) € R3 | x0 = u, x\ = uv3, X2 = v2, (w, V) € R2}. 

In this paper we consider the developable surfaces in Minkowski 3-space. 
In [11] Pei introduced the RP2-valued Gauss map for the study of Lorentzian 
geometric properties of surfaces in Minkowski 3-space. We say that a surface 
is a developable surface in the Minkowski sense if the RP2-valued Gauss 
map is singular at each point analogous to the definition of developable 
surfaces in the Euclidean sense. We can show that the developable surfaces 
in the Minkowski sense are nothing but the developable surfaces as in the 
Euclidean sense (cf., Theorem 3.1). Of course the notion of the developable 
surfaces is independent of the Euclidean structure. However it might be 
specially interesting subject if we assume that any pseudo-normal is lightlike. 
We call such the developable surface a lightlike developable. This class of 
surfaces is one of the important subjects in the theory of relativity because 
they are models of different types of horizons [1, 8]. As an application of 
the classical classification theorem of developable surfaces, we show that a 
lightlike developable is a part of a lightlike plane, a part of a lightcone, a part 
of the tangent surface of a spacelike curve in a lightlike plane, a part of the 
tangent surface of a lightlike curve or the glue of such four kinds of surfaces 
(Theorem 5.1). The most interesting case is the tangent surface of a lightlike 
space curve. We can show that the germ of the tangent surface of a generic 
lightlike curve at a singular point is locally diffeomorphic to the cuspdialedge 
C x R , the Scherbak surface SB or the swallowtail SW (Theorems 5.2, 5.3). 
Here, SB = {(x\,x2,xz) \ x\ = u,X2 = v3 + uv2,x3 = 12v5 + lOw4} and 
SW = {(x\,x2, X3) |= 3uA + v?v, X2 = 4u3 + 2uv, X3 = u}. 

Scherbak surface swallowtail 

The space of lightlike curves will be described in §5, so that the exact 
meaning of genericity of the lightlike curve will be established in the same 
section. We remark that Scherbak [12] showed that SB is given as the 
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irregular orbit of the finite reflection group Hz on C3. We also remark that 
any lightlike developable is obtained (at least locally) as a one parameter 
family of lightlike lines along a spacelike curve. In [6] we gave a classification 
of singularities of the lightlike developable along a generic spacelike curve. 
As a consequence in [6], only C x K o r SW appear as generic singularities. 
The results in [6] is different from the result in this paper, because the 
space of spacelike curves is different from the space of lightlike curves. The 
classification of the singularities in this paper is generic for lightlike curves 
(Theorems 5.2 and 5.3). 

We shall assume throughout the whole paper that all the maps and man-
ifolds are C°° unless the contrary is explicitly stated. 

2. Developable surfaces in Euclidean space 
In this section we briefly review the results on developable surfaces in 

Euclidean space. Let x : U —> R3 be an embedding from an open region 
U C R 2 . We call x or the image S = x(U) a regular surface in R3 . For any 
regular surface x : U —• R3, we define the first fundamental invariants: 

where a • b denotes the Euclidean scaler product of a, b. We define the unit 
normal vector 

•Z*n X Xv X «C-u 
n ~ \\xu x « J ~ y/EG - F2 5 

where a x b is the vector product of a, 6. Then we define the second funda-
mental invariants by 

L — * ^ — ®ti' nu , 
lid — ' ^ — * T^y — ' f^u i 

N — * 71 — * . 
The Gauss curvature K(u, v) is defined by 

LN-M2 

We say that a surface x : U —> R3 is a developable surface if K(u, v) = 0 
at any point (u, v) £ U. If the surface has singularities, we say that it is a 
developable surfaces if the Gauss curvature of the regular part of the surface 
vanishes. Since the Gauss curvature is the determinant of the differential of 
the Gauss map, S = x(U) is a developable surface if and only if the Gauss 
map of the surface is singular at any point of S. It has been known that a 
developable surface is a ruled surface [14]. A ruled surface in M3 is a surface 
given by a one-parameter family of lines [7, 14]. It is locally defined as a 
mapping : / x R —> R3 by F^S)(t,u) = 7 ( t )+uS(t) , where 7 : I -> R3, 
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6 : I —> R 3 \ {0} are smooth mappings. By a straight forward calculation, 
we can show that (to, uq) £ I x R is a singular point of F^^) if and only 
if 7(^0) x 6(to) + uoS(to) x <5(¿o) = 0. If we calculate the Gauss curvature 
of -F(7)5), then K = 0 if and only if d e t ( 7 , 6 , 6 ) = 0. We say that F^^ is 
a cylindrical surface if <5 is a constant vector, -F(7)(s) is a conical surface if 
7 is a constant vector and F,(7i<j) is a tangent surface if 6 is tangent to 7 . 
Then we have the following well-known classification theorem of developable 
surfaces [14], 
T H E O R E M 2 . 1 . A developable surface is one of the following: 
(1) A part of a cylindrical surface. 
(2) A part of a conical surface. 
(3) A part of a tangent developable surface. 
(4) A glue of the above three surfaces. 

We remark that once we have the above classification theorem, the notion 
of the developable surfaces is independent of the metric structure of R3 . We 
only need the affine structure on R 3 for defining the developable surfaces. In 
the reminder of the paper, we say that a surface is a developable surface if 
it is one of the four surfaces in the above theorem. In general, developable 
surfaces have singularities. The tangent surface has the most interesting 
singularities of the surfaces in the above theorem. Therefore there are many 
articles concerning the singularities of tangent surfaces. Let 7 : I —• R 3 

be a smooth curve and denote that 7 ( t ) = (x\(t), X2(t), ^ ( i ) ) . We consider 
the germ of 7 at to £ I. We say that 7 at ¿o is a finite type if there exist 
natural numbers a^ (i = 1,2,3) with 1 < a\ < 02 < such that Xi(t) = 
tai + o(tai) (i = 1, 2,3) under a suitable Affine coordinate transformation of 
R 3 around 7(io) and a parameter transformation. In this case we say that 
A = (ai,a2,a3) is the type of 7 at 7(^0) and denote that A(7 i o). We say 
that a type A is deterministic if A(7 i o) = A(7t~) = A then the map germs 

(¿o, 0)) and (to, 0)) are ^-equivalent. Here two map germs 
/ : (N,x) —» (P,y), g : ( N ' , x ' ) ( P ' , y ' ) are A-equivalent if there exist 
diffeomorphism germs (ft '• (N',x') —> (N, x) and tp : (P',y') —> (P, y) such 
that / o (j> = ijj o g. We have the following theorem [2, 4, 5, 9, 10, 13]. 

T H E O R E M 2 . 2 . The type A of a smooth curve germ in R 3 is deterministic 
if and only if A is one of the following types: 

(1)A = ( l ,2 ,2 + r ) , r = l , 2 , 3 . . . , 
(2) A = (1,3,4), 
(3) A = ( 1 , 3 , 5 ) , 
(4) A = (2,3,4), 
(5) A = (3,4,5). 
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We can recognize the type of a smooth curve germ by using the following 
simple calculations. 

P r o p o s i t i o n 2.3. Let 01,02,03 be natural numbers with ai < 02 < 03. 
For a smooth curve germ 7 : (I, to) —> R3 , A(7(io)) = (ai, «2, ^3) if and only 
if 

det( 7 ( a i ) ( io) ,7 ( a 2 ) ( io) ,7 ( a 3 ) ( io) )^0 

and for any natural numbers 61,62,63 with bi < 62 < 63 such that b\ < 
a 1, ¿>2 < 0,2,63 < 03, 61 = ai, 62 < 02, i>3 < 0,3 or b\ = a\, 62 = a2,63 < 03, we 
have 

d e t ( 1 ^ ( t o ) , ^ ( t o ) , - f ^ ) ( t o ) ) = 0. 

Let 7 : / —> R3 be a space like curve with type A at to- Then we can 
show the following assertions ([13, 9, 10, 5, 7]). 

(1) If A = (1,2,3), then the germ of the tangent surface x R) at 
(¿0,0) is diffeomorphic to C x R. 

(2) If A = (1,3,5), then the germ of the tangent surface x R) at 
(to, 0) is diffeomorphic to SB. 

(3) If A = (2,3,4), then the germ of the tangent surface x R) at 
(to, 0) is diffeomorphic to SW. 

3. Developable surfaces in Minkowski 3-space 
We now prepare basic notions on Minkowski space. Let R3 = {(xo, xi, X2) \ 
G M, i = 0 ,1 ,2} be a 3-dimensional vector space. For any vectors x — 

(xo,x\,%2),y = (3/0,3/1,2/2) € R3 , the pseudo scalar product of x and y 
is defined by (x,y) = —xoyo + a;i2/i + a;22/2- The space (R3, (, )) is called 
Minkowski 3-space (or, Lorentz-Minkowski 3-space) and denoted by Rf. 

We say that a vector x in R3 is spacelike, lightlike or timelike if (x, x) > 0, 
= 0 or < 0 respectively. We remark that the zero vector is considered to 
be lightlike in this paper. The norm of the vector x € K3 is defined by 
11a:11 = ^/\{x, £c)|. Given a vector n G R3 and a real number c, the plane with 
pseudo normal n is given by 

P(n, c) = {x € R3 | («, n) = c}. 

We say that P(n,c) is a spacelike , timelike or lightlike hyperplane if n 
is timelike, spacelike or lightlike respectively. For any point p € R3 , the 
lightcone with the vertex p is defined by 

LCP = {x e R? | (x - p, x - p) = 0}. 

We also define the lightcone circle by 

S\ = {x € R? | x = (1, x2, x3), (x, x) = 0}. 
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For any non zero lightlike vector x = (xo, x\, £2), we denote that 

V Xo XoJ 
Moreover, the following hypersurface is called de Sitter space: 

Sj = {x e R? | (x,x) = 1}. 

For any x = (XQ,X\,X2), y = (yo, 2/1,2/2) € Rf, the pseudo vector product 
of x and y is defined as follows: 

- e o ei e-2 
x A y = xo x\ X2 = {-{xiy2 - X2yi),x2yo - xoy2,xoyi - xiyd) 

yo 2/1 2/2 

In [11] D. Pei studied Lorentzian geometric properties of surfaces by 
defining the RP2-valued Gauss map, where RP 2 is the real projective plane. 
Let x : U —> Rf be an immersion from an open region U C R2. We define 
a map G M '• U —» MP2 by GM(U,V) = (x u (u , v ) A xV(U,v))R. We call G M 

the Minkowski Gauss map of S = x(U). We consider a surface in Minkowski 
3-space such that the Minkowski Gauss map is singular at any point of the 
surface. We can show that such surfaces are developable surfaces. 

T H E O R E M 3 . 1 . Let x : U —> R J be a surface. If the Minkowski Gauss map 
GM is singular at any point of S — X(U), then S = x(U) is a developable 
surface. 

Proof. We consider the canonical Euclidean scalar product on Rf: 

x • y = x0y0 + X12/1 + x2y2-

For any x = (x0,xi ,x2) € Rf, we denote that x — (—X0,x\,X2). It follows 
that x and y are pseudo-orthogonal by the Minkowski scalar product if and 
only if x and y are orthogonal by the canonical Euclidean scalar product. 
We define a map G% : U —> S2 by 

xu(u,v) Axv(u,v) 
GE{U,V) — : , 

\\xu(u,v) A xV(U,V)\\E 

where | |a| |£ is the Euclidean norm of a. Then GE is the Gauss map of 
S — x(U) in the Euclidean sense. 

On the other hand we consider a mapping C : RP 2 —> RP 2 defined by 
C ( ( : E ) R ) = (¿C)R. Then C is a diffeomorphism such that C O G M = TT O GE, 
where TT : S2 —> R P 2 is the canonical double covering. It follows that GM 
is singular at a point p = x(u,v) if and only if GE is singular at p. This 
completes the proof. • 
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Since vectors in Rf are classified into three kinds of vectors, RP2 is a 
disjoint union of the disk D2, the circle S1 and the Moebius strip MB such 
that (aj)n e D2 if cc is timelike, (®)k € S1 if x is lightlike and £ MB 
if x is spacelike. 

4. Curves in Minkowski 3-space 
In this section we consider the properties of curves in Minkowski 3-space 

which will be used in §5. Let 7 : I —• Rf be a spacelike regular curve. We 
denote that N(t) = 7(i) and B(t) = 7 ( t ) A N(t). 
PROPOSITION 4.1. For any unit speed, spacelike curve 7 : 1 —» Rf, ifi"(s) 
is lightlike for any s € I, then 7 (I) is a curve in a lightlike plane. Here 
7 '(s) = d'y/ds{s). 
Proof. Since (7'(s),7'( s)) = 1, we have (j" (s), *y'(s)) = 0. Since 7 " ( s ) is a 
tangent vector of Sf and lightlike, 7 " ( s ) is a lightlike line, so that 7 " ( s ) is a 
constant vector. Therefore we have 7 " ( s ) = *y"(so). By the above relation, 
we have {"y'(s), 7"(so)) = 0- It follows that 

¿ < 7 ( s ) , 7 " ( s o ) > = 0. 

If we put c = (7(so),7 / /(so)}) then (7(5),7"(so)) = c. The last equation 
means tat 7 is a curve in the lightlike plane LP{~f"(so),c). • 

We say that a curve 7 : I —> Rj is a lightlike curve if 7 is lightlike. 

PROPOSITION 4.2. Let 7 : Sl —> R^ be a lightlike curve. Then there exists 
a point to € S1 such that 7(^0) = 0 (i.e., singularities exist ). 
Proof. We denote that 7 ( t ) = (xo(t),xi(0),x2(0)). Since 7 is a lightlike 
curve, we have the relation (±o{t))2 = (¿i(i))2 + (¿2(t))2, so that 7(^0) = 0 
if and only if ±o(i) = 0. However, S1 is compact, then io(t) has the maximum 
and the minimum points. At such points, we have xo(t) = 0. • 

5. Lightlike developables in Minkowski 3-space 
In this section we study a special class of developable surfaces in Min-

kowski 3-space. By Theorem 3.1, if the Minkowski Gauss map is singular at 
any point of a surface, then the surface is a developable surface. The most 
interesting developable surfaces in Minkowski 3-space are surfaces whose 
pseudo normal field xu A x̂ i is always lightlike. We call such a surface 
a lightlike developable surface. Of course the lightlike developable surface is 
a developable surface, so that we can apply the classification theorem. 

THEOREM 5.1. A lightlike developable surface is one of the following sur-
faces: 



394 S. Chino, S. Izumiya 

(1) A part of a lightlike plane. 
(2) A part of the lightcone. 
(3) A part of the tangent surface of a curve in a lightlike plane. 
(4) A part of the tangent surface of a lightlike curve. 
(5) A glue of the above four surfaces. 

Proof. Let x : U —> Rf be a lightlike developable surface. If the Minkows-
kian Gauss map GM is a point, then x(U) is a part of a lightlike plane. 
We now assume that the image of the Minkowski Gauss map Gm is a non-
singular curve. By Theorem 2.1, a developable surface is a conical surface, 
a cylindrical surface, a tangent surface of a space curve or a glue of these 
three surfaces. We distinguish three cases. 

(1) Suppose that a surface is a cylindrical surface x(t, u) = 7 ( t ) + ue, 
where e is a constant vector. The pseudo normal vector is given by 

xt(t, u) A xu(t, u) = 7 ( t ) A e. 

Suppose that 7 ( t ) A e is lightlike. If the smooth curve 7(í) A e is not a line, 
there exist three points to, í i , Í2 £ R such that two pairs 7(to) A e, 7(^1) A e 
7(to) A e, 7^2) A e are consist of linearly independent vectors. Therefore we 
have two different lines 

LP(i(t0) A e, 0) n LP(j(h), 0) LP(j(t0) A e, 0) n LP(j(t2), 0). 

Since (7(i) A e, e) = 0, we have e € LP(~f(t) A e, 0) for any t. However,we 
have 

e G LP(i(t0) A e, 0) n LP(i(h), 0) 
e e LP(-y(to) A e, 0) n LP(7(i2), 0). 

This is a contradiction. Therefore 7 ( t ) A e has a constant direction v. Since 
7 ( t ) £ LP{v, 0), we have ( 7 ( t ) , v ) = c. It follows from the fact e £ LP(v, 0) 
that x(t,u) G LP(v,c), so that a lightlike cylindrical surface is a part of a 
lightlike plane. 

(2) Suppose that a surface is a conical surface x(t,u) = a + ue(t), where 
a is a constant vector. The pseudo normal vector is given by 

Xt(t, u) A xu(t, u) = e(t) A e(t). 

Suppose that e(t) A e(t) is lightlike. We remark that the surface x(t,u) is 
the envelope of the family of tangent planes 

LP(é{t) A e(t), c{t)) = {X G Rf | ( X , e(t) A e(i)> = c(i) }, 

where 
c(t) = {a + ue(t), é(t) A e{t)) = (a, e{t) A e{t)). 
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On the other hand, we consider a lightcone defined by 

x(t, v) = a + ve(t) A e(t). 

We also consider a function F(X,t) = (X — a, e(t) A e ( i ) ) . Then we have 

^ ( X , t ) = ( X - a , e ( t ) A e ( t ) ) . 

Since e(t) A e(t) is lightlike, we have 

F(x(t, v), t) = (ve(t) A e(t),e(t) A e ( f ) ) = 0. 

If we have derivative with respect to t, we have 

dF 
— ( x ( t , v), t) = 2 v ( e ( t ) A e ( i ) , e ( i ) A e(t)) = 0. 

Therefore the lightcone x(t,v) is also the envelope of the same families of 
lightlike planes LP(e(t) A e(£), c( i ) ) , so that the surface x(t,u) is a part of 
a lightcone. 

(3) Suppose that a surface is a tangent surface x(t,u) = 7 ( t ) + u j ( t ) . 
Since Xt(t,u) = 7 ( t ) + wy(t), xu(t,u) = 7 ( t ) , the tangent space is 
(7(i ) ,7(i ) ) iR. By the assumption, this space is lightlike. If 7 ( t ) is spacelike, 
we may assume that j(t) has unit length (i.e., ( 7 ( i ) , 7 ( i ) } = 1). Therefore 
we have 2 { 7 ( i ) , 7 ( f ) ) = 0. If we also suppose that 7 ( t ) is spacelike, then 
the pseudo-normal vector 7 ( t ) A 7 ( t ) is timelike, so that it contradicts to 
the assumption that ( j ( t ) , ' j ( t ) ) u is a lightlike plane. It follows that 7 ( t ) is 
spacelike and ^f(t) is lightlike or 7 ( i ) is lightlike and 7 (t) is spacelike. By 
Proposition 4.1, if 7 ( t ) is lightlike for any t, then 7 is a curve in a lightlike 
plane. In this case the surface is the tangent surface of a curve in a light-
like plane. If 7 ( i ) is lightlike for any t, the surface is the tangent surface of 
a lightlike curve. • 

In the above list of lightlike developable surfaces the most interesting 
surface might be the tangent surface of a lightlike curve. We call such 
the surface a lightlike tangent surface. We stick to lightlike tangent sur-
faces. We now consider the space of lightlike curves in R j . If <r(i) = 
(r(t), r(t) cos0(i), r(t) sin0(i) ) is a smooth mapping, then 

t 

7(i) = J a(r)dr 

to 

is a lightlike curve. On the other hand, let 7 : I —• R j be a lightlike 
curve. If there exists an interval J C / such that 7 ( t ) = 0 for any t G J, 
then 7 ( t ) is constant on J. Therefore, we assume that 7 has only isolated 
singular points. In this case, we denote that 7 ( t ) = ( x o ( t ) , x i ( t ) , X 2 ( t ) ) and 
7 ( t ) = ( x o ( t ) , i i ( t ) , X 2 ( t ) ) . Since 7 ( i ) is lightlike, ¿o(io) = 0 if and only if 
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7(io) = 0. If ¿0(t) 0, then there exists a smooth function 6(t) that 

?44 = cos 0(t), = sin 0(t). 
x0 (t) V h ¿o (t) V ' 

On the other hand, suppose that ±o(io) = 0- By Taylor's theorem, we have 

io(t) = ao(t — to)r° + o(ro) (a0 ± 0), 
ii(t) = ai(t — to)T1 + o(ri) ( a i ^ O ) , 
x2(t) = ao(t - toP + o(r2) (a2 ? 0) 

at any t € (to — e, to + e) for sufficiently small e > 0. Since xo(t)2 = x\(t)2 + 
x2(t)2, we have 

<4(t - t0)2ro + o(2r0) = aj(t - t0)2n + o(2n) + a2
2(t - t0)2r2 + o(2r2), 

so that we have TQ = min(ri,r2). Therefore, 
iijt) x2(t) 
&o(t) ' ¿0(t) 

are smooth functions at to- This means that there exists smooth functions 
r(t) and 6(t) we have 

7(t) = (r(t),r(t) cos6{t),r{t) sinQ(t)). 
We now consider the following set of curves in Rf: 

L(/,R?) = {a(t) = (r(i) ,r(i)cos0(i),r(i)sin0(i)) \ t (E I 
r(t),6(t) are smooth functions such that r(t) has isolated zero points.}. 

We now regard L(I, Rf) as the space of lightlike curves equipped with the 
Whitney C°°-topology. From now on, we say that 7 : I —> Rf is a lightlike 
curve if 7 € L(I, Rf). Moreover, we define a smooth mapping : R x S1 —* 
LC0 by 

ip(r, cos 9, sin0) = (r, rcosO, rsinfl). 
Then V,l(R\{o})x51 : \ {°}) x S"1 ^ LC0 \ {0} is a diffeomorphism. We 
define that 

C£°(7, R x S1) = {(r(t), cos 0(t), sin 0(t)) | t£l 
r(t),0(t) are smooth functions such that r(t) has isolated zero points.}. 

We define a mapping ip* : C ~ ( / , R x S1) L(I, Rf) by = ^ o 6. 
Then ip* is continuous with respect to the Whitney C°°-topology. We can 
also define a well-defined continuous mapping 1 : L(I, Rf) —> C£°(/,R x S1) 
by ¿(r(t),r(t)cos0(t),r(i)sin0(i)) = (r(t),cos0(t),sin0(i)). Then we have 
V>* o l = !.£,(/m3)> l 0 ip* = 1 CfiJ.RxS1)- Therefore ip* is a homeomorphism. 
This means that we can consider that C£°(/,R x S1) is the space of light-
like curves. For any 7 : / —• Rf with 7 € L( / ,Rf) , we have 7 ( t ) = 
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(r(t),r(t)cos9(t),r(t)sin9(t)). In this case 7 ( i 0 ) = (I,cos0(to),sin0(io)) 
determines the tangent direction of 7 at to even if 7(^0) = 0- Therefore, we 
can define the tangent surface of 7 by 

F{i,)(t,u)=1(t) + u^(t). 

We have the following classification of singularities. 

Theorem 5 . 2 . Let 7 : I —> R f be a smooth curve such that 7 £ L(J, R f ) . 
Then we have the followings: 

(1) The tangent surface germ x R) at (io, 0) is diffeomorphic to the 

cuspidal edge C x R ifr(to) / 0 and 9(to) 0. 
(2) The tangent surface germ x R) at (¿o,0) is diffeomorphic to the 

Scherbak surface SB ifr(t0) 0, 9(t0) = 0 and 9(t0) ^ 0. 
(3) The tangent surface germ x R) at (io>0) is diffeomorphic to the 

swallowtail SW if r(t0) = 0, r(t0) ± 0 and 9(t0) ± 0. 

Proof. We now calculate the type A of 7 at io under the above three 
conditions. 
(1) By a straight forward calculation, we have 

det(i(t)MtVi(t))=r\t)mf. 

If r(io) 0 and 9(to) 0, then the type of 7 at io is (1,2,3). This means 
that the tangent surface germ F ^ x R) at (to, 0) is diffeomorphic to the 
cuspidal edge. 
(2) Suppose that r(to) 0 and 9(to) = 0. Then we have 

l(to) = {r(t0),r(t0) cos 9{t0),r{t0) sin 9(t0)). 
It follows that 7(io) A7(io) = 0. This means that det (7(^0), l(to), 7 ( 2 + n ) ( M ) 
= 0 for any natural number n. Under the above assumption, we have 

det(7(io),7'(io),7 ( 4 )(io)) 

r cos 9 r sin 9 
f cos 9 — r sin 99 r sin 9 + r cos 99 

'r 'r cos 9 — 3r sin 99 — r sin 9 9 f sin 9 + 3r cos 99 + r cos 9 9 
= 0. 

Hence the type of 7 at io is different from (1,3,4). We can also calculate 
that 

det(7(i), 7 ( 0 , 7 ( 5 ) ( 0 ) = 3(r(t0))3(9(to))3 . 
Therefore det(7(io), 1 (to), (to)) 0 under the assumption that r(to) 

0, 9(to) = 0 and 9(to) 0, so that the tangent surface germ x R) 
at (¿o,0) is diffeomorphic to the Scherbak surface. 

(to) 
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(3) Suppose that r(to) = 0. This means that •y(to) = 0, so that the type of 
7 at to is different from (1 ,n,m) for any real number 1 < n < m. By the 
direct calculation like as the case (2), we have 

det(7(to), 7(io) ,7 ( 4 )( io)) = 6(7(io))3(i?(io))3 + 0. 
Therefore, the type of 7 at to is (2,3,4), so that the tangent surface germ 

x M) at (io, 0) is diffeomorphic to the swallowtail. • 

By the standard jet transversality theorem (cf., [3], Theorem 4.9) we have 
the following proposition. 

P R O P O S I T I O N 5 . 3 . Let C°°( / ,R 2 ) be the space of smooth mappings with 
the Whitney C°°-topology. Then the set 

O = {( r ,0) g C°°(I, K2) | ( r , 0 ) satisfies the conditon (*)} 

is open and dense in C°°(/, R2). 
f 

(1) r(t) has isolated zero points. 
. , (2) If r(to) = 0, then r ( t 0) + 0 and ¿(to) + 0. (*) < 

(3) The points to with r(to) 0 and 9(to) — 0 are isolated. 
^ (4) Ifr(t0) ± 0 and 0(to) = 0, then 0(to) ± 0. 

Since ip* is a homeomorphism, it follows from Proposition 5.3 that 

O = {(r(£), r(t) cos 9(t), r(t) sin 6(t)) e L(/,R?)| 
[r,6) satisfies (1), (2), (3) in Theorem 5.2} 

is open and dense in L(I, Rf) . Therefore Theorem 5.2 gives a classification 
of singularities of the tangent surface of a generic lightlike curve. 
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