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LIGHTLIKE DEVELOPABLES IN MINKOWSKI 3-SPACE

Abstract. We say that a surface in Minkowski 3-space is a lightlike developable if all
pseudo-normal vectors of the regular part of the surface are lightlike. The tangent surface
of a lightlike curve is one of the lightlike developables. We give a generic classification of
such surfaces. The all arguments in this paper are elementary. However, we discovered
the H3 type singularity appears in generic for such a class of surfaces. Since the H3 type
singularity usually appears in non-generic situation, this is a quite interesting phenomenon.

1. Introduction

A surface in Euclidean space whose Gauss curvature vanishes on the
regular part is called a developable surface. It has been known that a de-
velopable surface is a part of a conical surface, a cylindrical surface, the
tangent surface of a space curve or the glue of such surfaces. Developable
surfaces have singularities in general. The tangent surface of a space curve
has the most interesting singularities in the above three kinds of surfaces.
In fact Cleave [2] showed that the germ of the tangent surface of a generic
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space curve is locally diffeomorphic to the cuspidal edge C xR or the cuspidal
cross cap CCR. Here, C x R = {(zo,z1) € R® | 2? = 23} and CCR =
{(z0,z1,22) € R? | 29 = u, 71 = w03, 25 = v%, (u,v) € R?}.

In this paper we consider the developable surfaces in Minkowski 3-space.
In [11] Pei introduced the RP2-valued Gauss map for the study of Lorentzian
geometric properties of surfaces in Minkowski 3-space. We say that a surface
is a developable surface in the Minkowski sense if the RP?-valued Gauss
map is singular at each point analogous to the definition of developable
surfaces in the Euclidean sense. We can show that the developable surfaces
in the Minkowski sense are nothing but the developable surfaces as in the
Euclidean sense (cf., Theorem 3.1). Of course the notion of the developable
surfaces is independent of the Euclidean structure. However it might be
specially interesting subject if we assume that any pseudo-normal is lightlike.
We call such the developable surface a lightlike developable. This class of
surfaces is one of the important subjects in the theory of relativity because
they are models of different types of horizons [1, 8]. As an application of
the classical classification theorem of developable surfaces, we show that a
lightlike developable is a part of a lightlike plane, a part of a lightcone, a part
of the tangent surface of a spacelike curve in a lightlike plane, a part of the
tangent surface of a lightlike curve or the glue of such four kinds of surfaces
(Theorem 5.1). The most interesting case is the tangent surface of a lightlike
space curve. We can show that the germ of the tangent surface of a generic
lightlike curve at a singular point is locally diffeomorphic to the cuspdialedge
C x R, the Scherbak surface SB or the swallowtail SW (Theorems 5.2, 5.3).
Here, SB = {(x1,%2,23) | 1 = u,z2 = v3 + wv?,z3 = 120° + 10uv*} and
SW = {(z1,x2, z3) |= 3u® + u?v, T2 = 4u® + 2uv, 23 = v}.

Scherbak surface swallowtail

The space of lightlike curves will be described in §5, so that the exact
meaning of genericity of the lightlike curve will be established in the same
section. We remark that Scherbak [12] showed that SB is given as the
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irregular orbit of the finite reflection group Hz on C3. We also remark that
any lightlike developable is obtained (at least locally) as a one parameter
family of lightlike lines along a spacelike curve. In [6] we gave a classification
of singularities of the lightlike developable along a generic spacelike curve.
As a consequence in [6], only C x R or SW appear as generic singularities.
The results in [6] is different from the result in this paper, because the
space of spacelike curves is different from the space of lightlike curves. The
classification of the singularities in this paper is generic for lightlike curves
(Theorems 5.2 and 5.3).

We shall assume throughout the whole paper that all the maps and man-
ifolds are C* unless the contrary is explicitly stated.

2. Developable surfaces in Euclidean space

In this section we briefly review the results on developable surfaces in
Euclidean space. Let  : U — R3 be an embedding from an open region
U C R% We call x or the image S = x(U) a regular surface in R3. For any
regular surface = : U — R3, we define the first fundamental invariants:

Ezmu'mua F:fBu'fl)v, szv'mm

where a - b denotes the Euclidean scaler product of a,b. We define the unit
normal vector
Ty X Ty Ty X Xy

n = =
|z x ||  VEG - F?’
where a x b is the vector product of a,b. Then we define the second funda-
mental invariants by

L=wuu'n=_wu'nu7
M=y N =—Ty Ny =~y * Ny,
N=xy n=—-2, Ny

The Gauss curvature K (u,v) is defined by

LN — M?

EG - F?%’

We say that a surface & : U — R? is a developable surface if K(u,v) = 0
at any point (u,v) € U. If the surface has singularities, we say that it is a
developable surfaces if the Gauss curvature of the regular part of the surface
vanishes. Since the Gauss curvature is the determinant of the differential of
the Gauss map, S = x(U) is a developable surface if and only if the Gauss
map of the surface is singular at any point of S. It has been known that a
developable surface is a ruled surface [14]. A ruled surface in R3 is a surface
given by a one-parameter family of lines [7, 14]. It is locally defined as a
mapping F, 5) : I xR — R3 by Fi 5)(t,u) = ¥(t)+ud(t), where v : T — R?,

K(u,v) =
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§ : I — R3\ {0} are smooth mappings. By a straight forward calculation,
we can show that (to,up) € I x R is a singular point of Fi, ) if and only

if 4(to) x 8(to) + uod(to) x 8(tg) = 0. If we calculate the Gauss curvature
of F(y4), then K = 0 if and only if det (4, 8,8) = 0. We say that F, 4 is
a cylindrical surface if 8 is a constant vector, F{, s is a conical surface if
7y is a constant vector and Fi,s) is a tangent surface if 4 is tangent to ~y.
Then we have the following well-known classification theorem of developable
surfaces [14].

THEOREM 2.1. A developable surface is one of the following:

(1) A part of a cylindrical surface.

(2) A part of a conical surface.

(3) A part of a tangent developable surface.
(4) A glue of the above three surfaces.

We remark that once we have the above classification theorem, the notion
of the developable surfaces is independent of the metric structure of R3. We
only need the affine structure on R? for defining the developable surfaces. In
the reminder of the paper, we say that a surface is a developable surface if
it is one of the four surfaces in the above theorem. In general, developable
surfaces have singularities. The tangent surface has the most interesting
singularities of the surfaces in the above theorem. Therefore there are many
articles concerning the singularities of tangent surfaces. Let v : I — R3
be a smooth curve and denote that y(t) = (z1(¢), z2(t), z3(t)). We consider
the germ of « at ty € I. We say that v at ¢y is a finite type if there exist
natural numbers a; (i = 1,2,3) with 1 < a; < az < ag such that z;(t) =
t% + o(t*) (i = 1,2, 3) under a suitable Affine coordinate transformation of
R? around ~(¢9) and a parameter transformation. In this case we say that
A = (a1,02,03) is the type of v at y(tp) and denote that A(y,,). We say
that a type A is deterministic if A(v,,) = A(J;) = A then the map germs
(Fly,4) (to0,0)) and (Fﬁ,#)’ (to,0)) are A-equivalent. Here two map germs
f:(N,z) =» (Py), g: (N,2') — (P,y) are A-equivalent if there exist
diffeomorphism germs ¢ : (N’,z') — (N,z) and ¢ : (P',y") — (P,y) such
that f o ¢ =1 o g. We have the following theorem [2, 4, 5, 9, 10, 13].
THEOREM 2.2. The type A of a smooth curve germ in R3 is deterministic
if and only if A is one of the following types:

HA=(1,2,247r),r=1,2,3...,
(2) A=(1,3,4),
(3) A=(1,3,5),
(4) A=(2,3,4),
(5) A=(3,4,5).
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We can recognize the type of a smooth curve germ by using the following
simple calculations.

PROPOSITION 2.3. Let a1,as, a3 be natural numbers with a1 < as < as.
For a smooth curve germ v : (I,tp) — R3, A(~(to)) = (a1, az, a3) if and only
if

det (v(*)(to), ¥ (to), 71**) (t)) # 0
and for any natural numbers by, be,bs with by < by < bz such that by <
a1,by <ag,b3 < as, by =ay,b2 <ag,b3 <az orb =ar,by =az, bz <asz, we
have

det (W(bl) (tO)v 7(b2)(t0)a 7(b3) (tO)) =0.

Let v : I — R3 be a space like curve with type A at t5. Then we can
show the following assertions (|13, 9, 10, 5, 7]).

(1) If A = (1,2,3), then the germ of the tangent surface Fi, (I x R) at
(to,0) is diffeomorphic to C x R.

(2) If A = (1,3,5), then the germ of the tangent surface F(,s (I x R) at
(to, 0) is diffeomorphic to SB.

(3) If A = (2,3,4), then the germ of the tangent surface F{,s)(I x R) at
(to, 0) is diffeomorphic to SW.

3. Developable surfaces in Minkowski 3-space

We now prepare basic notions on Minkowski space. Let R3 ={(xo, 71, z2) |
z; € R, 1 =0,1,2} be a 3-dimensional vector space. For any vectors & =
(wo,71,72),y = (yo,¥1,¥2) € R3, the pseudo scalar product of x and y
is defined by (z,y) = —zoyo + Z1y1 + Tay2. The space (R3,(,)) is called
Minkowski 3-space (or, Lorentz-Minkowski 3-space) and denoted by R3.

We say that a vector x in R$ is spacelike, lightlike or timelike if (x, z) > 0,
= 0 or < 0 respectively. We remark that the zero vector is considered to
be lightlike in this paper. The norm of the vector £ € R} is defined by
lz|l = /|{z, z)|. Given a vector n € R} and a real number c, the plane with
pseudo normal n is given by

P(n,c) = {x € R} | (z,n) = c}.

We say that P(n,c) is a spacelike , timelike or lightlike hyperplane if n
is timelike, spacelike or lightlike respectively. For any point p € R}, the
lightcone with the vertex p is defined by

LCp = {z e R} | (z — p,x — p) = 0}.
We also define the lightcone circle by
St ={z e R} |z = (1,22, x3), (x,x) = 0}.
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For any non zero lightlike vector & = (o, 1, z2), we denote that
~ T T
F = (1, _1._2) e sL.
o Zg
Moreover, the following hypersurface is called de Sitter space:
St={z e R} | (z,z)=1}.

For any « = (zo, z1,%2), ¥ = (Y0, ¥1,Y2) € R:{’, the pseudo vector product
of £ and y is defined as follows:

—€p) €1 €2
cAy=|z9 z1 x2| = (—(T1Y2 — Z2y1), T2Y0 — ToY2, Toy1 — T1Y0)-
Yo Y1 Y2

In [11] D. Pei studied Lorentzian geometric properties of surfaces by
defining the RP2-valued Gauss map, where RP? is the real projective plane.
Let  : U — R} be an immersion from an open region U C R?. We define
amap Gy : U — RP? by Gm(u,v) = (€ (u,v) A T, (u,v))g. We call Gy
the Minkowski Gauss map of S = &(U). We consider a surface in Minkowski
3-space such that the Minkowski Gauss map is singular at any point of the
surface. We can show that such surfaces are developable surfaces.

THEOREM 3.1. Let : U — R3 be a surface. If the Minkowski Gauss map
Gwu s singular at any point of S = X (U), then S = x(U) is a developable
surface.

Proof. We consider the canonical Euclidean scalar product on R$:
Z-Y = Toyo + T1y1 + T2y2-

For any ¢ = (z9,71,72) € R}, we denote that T = (—z9,x1,2). It follows
that & and y are pseudo-orthogonal by the Minkowski scalar product if and
only if Z and y are orthogonal by the canonical Euclidean scalar product.
We define a map Gg : U — S? by

_ 3 (4,0) Az (u,0)
Gg(u,v) = 2w, v) A a;v(u,v)”E,

where |la||g is the Euclidean norm of a. Then Gg is the Gauss map of
S = z(U) in the Euclidean sense.

On the other hand we consider a mapping C : RP? — RP? defined by
C({z)r) = (Z)r. Then C is a diffeomorphism such that C o Gy = 7 o G,
where 7 : 2 — RP? is the canonical double covering. It follows that Gy
is singular at a point p = @(u,v) if and only if Gg is singular at p. This
completes the proof. m
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Since vectors in R} are classified into three kinds of vectors, RP? is a
disjoint union of the disk D?, the circle S! and the Moebius strip M B such
that (xz)g € D? if x is timelike, (x)g € S if z is lightlike and (z)g € MB
if  is spacelike.

4. Curves in Minkowski 3-space
In this section we consider the properties of curves in Minkowski 3-space

which will be used in §5. Let v : I — R3 be a spacelike regular curve. We
denote that N(t) = 4(t) and B(t) = §(t) A N(t).

PROPOSITION 4.1. For any unit speed spacelike curve v : I — R3, if v"(s)
is lightlike for any s € I, then ~(I) is a curve in a lightlike plane. Here

v'(s) = dv/ds(s).
Proof. Since (7'(s),~'(s)) = 1, we have (y"(s),~v/(s)) = 0. Since 'y”(s) is a
tangent vector of S? and lightlike, 7”( )isa hghthke line, so that " (s) isa

constant vector. Therefore we have " (s) ~" ( 0). By the above relation,
we have (v'(s),v"(s0)) = 0. It follows that
d

£<’Y(5),’Y"(30)) =0.

If we put ¢ = (¥(s0),7"(s0)), then (v(s),7”(sp)) = c. The last equation
means tat 4 is a curve in the lightlike plane LP (%" (s¢),c). =

We say that a curve v : I — R3 is a lightlike curve if 4 is lightlike.

PROPOSITION 4.2. Let v : S' — R$ be a lightlike curve. Then there exists
a point tg € S such that (to) = 0 (i.e., singularities exist ).

Proof. We denote that v(t) = (zo(t),z1(0),z2(0)). Since « is a lightlike
curve, we have the relation (:vo(t))2 (£1(t))% + (£2(2))?, so that 4(¢g) =0
if and only if Zo(t) = 0. However, S is compact, then zo(¢) has the maximum
and the minimum points. At such points, we have z¢(t) =0. =

5. Lightlike developables in Minkowski 3-space

In this section we study a special class of developable surfaces in Min-
kowski 3-space. By Theorem 3.1, if the Minkowski Gauss map is singular at
any point of a surface, then the surface is a developable surface. The most
interesting developable surfaces in Minkowski 3-space are surfaces whose
pseudo normal field z, A x, is always lightlike. We call such a surface
a lightlike developable surface. Of course the lightlike developable surface is
a developable surface, so that we can apply the classification theorem.

THEOREM 5.1. A lightlike developable surface is one of the following sur-
faces:
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(1) A part of a lightlike plane.

(2) A part of the lightcone.

(3) A part of the tangent surface of a curve in a lightlike plane.
(4) A part of the tangent surface of a lightlike curve.

(5) A glue of the above four surfaces.

Proof. Let = : U — R} be a lightlike developable surface. If the Minkows-
kian Gauss map Gy is a point, then &(U) is a part of a lightlike plane.
We now assume that the image of the Minkowski Gauss map Gy is a non-
singular curve. By Theorem 2.1, a developable surface is a conical surface,
a cylindrical surface, a tangent surface of a space curve or a glue of these
three surfaces. We distinguish three cases.

(1) Suppose that a surface is a cylindrical surface z(t,u) = y(t) + ue,
where e is a constant vector. The pseudo normal vector is given by

x:(t,u) Ay (t,u) =9(t) ANe.

Suppose that 4(t) A e is lightlike. If the smooth curve 4(t) A e is not a line,
there exist three points g, t1, 2 € R such that two pairs 4(tp) A e,¥(¢t1) Ae
4(to) N e, (t2) A e are consist of linearly independent vectors. Therefore we
have two different lines

LP(¥(to) A e,0) N LP(7(t1),0) LP(¥(to) A €,0) N LP(¥(t2),0).
Since (¥(t) A e,e) = 0, we have e € LP(¥(t) A e,0) for any t. However,we
have
e € LP((to) A e,0) N LP((t1),0)
e € LP(#(to) N e, 0) N LP(¥(t2),0).
This is a contradiction. Therefore %(t) A e has a constant direction v. Since
4(t) € LP(v,0), we have (y(t),v) = c. It follows from the fact e € LP(v,0)
that (t,u) € LP(v,c), so that a lightlike cylindrical surface is a part of a
lightlike plane.
(2) Suppose that a surface is a conical surface x(t,u) = a + ue(t), where
a is a constant vector. The pseudo normal vector is given by
@e(t,u) Az (t,u) = e(t) Ae(t).
Suppose that é(t) A e(t) is lightlike. We remark that the surface (¢, u) is
the envelope of the family of tangent planes
LP(é(t) Ae(t),c(t)) = {X € R} | (X, e(t) Ae(t)) = c(t) },
where
c(t) = (a + ue(t), e(t) Ae(t)) = (a, e(t) Ae(t)).
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On the other hand, we consider a lightcone defined by
T(t,v) = a +ve(t) Ae(t).
We also consider a function F(X,t) = (X — a, é(t) A e(t)). Then we have

%il(x,t) = (X —a,&(t) A e(t).

Since é(t) A e(t) is lightlike, we have
F(ZE(t,v),t) = (vé(t) Ae(t),e(t) Ae(t)) =0.

If we have derivative with respect to ¢, we have

%?(‘a‘:(t, V),t) = 20(&(t) A e(t), é(t) A () = 0.

Therefore the lightcone Z(t,v) is also the envelope of the same families of
lightlike planes LP(é(t) A e(t), c(t)), so that the surface x(t,u) is a part of
a lightcone.

(3) Suppose that a surface is a tangent surface x(t,u) = ~(t) + u¥(t).
Since xi(t,u) = (t) + uy(t), Tu(t,u) = F(t), the tangent space is
(4(t),4(t))r- By the assumption, this space is lightlike. If 4(t) is spacelike,
we may assume that 4(t) has unit length (i.e., (¥(¢),%(t)) = 1). Therefore
we have 2(¥(t),%(t)) = 0. If we also suppose that %(t) is spacelike, then
the pseudo-normal vector 4(t) A (t) is timelike, so that it contradicts to
the assumption that (§(¢),¥(t))r is a lightlike plane. It follows that 4(t) is
spacelike and #(t) is lightlike or 4(¢) is lightlike and #(¢) is spacelike. By
Proposition 4.1, if 4(¢) is lightlike for any ¢, then < is a curve in a lightlike
plane. In this case the surface is the tangent surface of a curve in a light-
like plane. If 4(¢) is lightlike for any ¢, the surface is the tangent surface of
a lightlike curve. =

In the above list of lightlike developable surfaces the most interesting
surface might be the tangent surface of a lightlike curve. We call such
the surface a lightlike tangent surface. We stick to lightlike tangent sur-
faces. We now consider the space of lightlike curves in R}. If o(t) =
(r(t),r(t) cos B(t), r(t) sin@(t)) is a smooth mapping, then

t

v(t) = §o(r)dr

to
is a lightlike curve. On the other hand, let v : I — R} be a lightlike
curve. If there exists an interval J C I such that 4(¢t) = 0 for any t € J,
then ~y(¢) is constant on J. Therefore, we assume that 4 has only isolated
singular points. In this case, we denote that ~(t) = (zo(t), z1(¢), z2(t)) and
A(t) = (&o(t), Z1(t), £2(t)). Since 4(t) is lightlike, Zo(tg) = 0 if and only if
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A(to) = 0. If zo(¢) # 0, then there exists a smooth function 6(t) that
(4 .
:1':1( ) _ 0sd(t), ?2@)
Zo(t) Zo(t)
On the other hand, suppose that #o(tg) = 0. By Taylor’s theorem, we have
Zo(t) = ao(t — to)"™ +o(ro) (ao # 0),
Ci)l(t) = al(t — to)rl + 0(7’1) (a1 #* 0),
i’g(t) = ao(t — to)r2 + 0(7‘2) ((12 # 0)
at any t € (to —€,to +¢€) for sufficiently small € > 0. Since o(t)? = &1(£)% +
t2(t)?, we have
a3(t — 0)%™ 4 0(2rg) = a(t — to)¥™ + 0(2r1) + a2(t — to)¥2 + o(2r9),
so that we have ry = min(rq,72). Therefore,
Ei(t)  2a(?)
to(t)’  2o(t)
are smooth functions at tg. This means that there exists smooth functions
7(t) and 6(t) we have

F(t) = (r(t), r(t) cos 8(t), r(t) sin §(¢)).
We now consider the following set of curves in R3:
L(I,R}) = {o(t) = (r(t),r(t) cosO(t),(t)sinb(t)) | t € T
r(t),8(t) are smooth functions such that r(¢) has isolated zero points.}.

= sin0(t).

We now regard L(I ,R?) as the space of lightlike curves equipped with the
Whitney C*°-topology. From now on, we say that v : I — ]R:f is a lightlike
curve if 4 € L(I, R:{’) Moreover, we define a smooth mapping ¥ : R x S —
LCO by

Y(r,cosf,sin @) = (r,rcosf,rsinb).
Then ¥|m\ (opyxst + (R\ {0}) x S — LCy \ {0} is a diffeomorphism. We
define that

C>®(I,R x 81) = {(r(t),cos8(t),sin6(t)) | t € I

r(t),6(t) are smooth functions such that r(¢) has isolated zero points.}.
We define a mapping ¥, : CX(I,R x S') — L(I,R3) by 1.(8) = ¢ o 4.
Then v, is continuous with respect to the Whitney C*°-topology. We can
also define a well-defined continuous mapping ¢ : L(I,R3}) — C®(I,R x S')
by (r(t),r(t) cosb(t),r(t)sind(t)) = (r(t),cosb(t),siné(t)). Then we have
YOl = lramey t© Yx = logo(1,Rxs1)- Therefore ¢, is a homeomorphism.
This means that we can consider that C°(I,R x S1) is the space of light-
like curves. For any v : I — R? with 4 € L(I,R}), we have ¥(¢) =
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(r(t),r(t) cosB(t), 7(t) sin(t)). In this case A (to) = (1,cosf(to),sin8(to))
determines the tangent direction of « at ¢y even if 4(tg) = 0. Therefore, we
can define the tangent surface of v by

F(%;)(t, u) =~(t) + U:;'(t)

We have the following classification of singularities.

THEOREM 5.2. Let v : I — R3 be a smooth curve such that ¥ € L(I,R3).

Then we have the followings:

(1) The tangent surface germ F., ;)(I x R) at (to, 0) is diffeomorphic to the
cuspidal edge C x R if r(to) # 0 and 0(ty) #

(2) The tangent surface germ F., )(I x R) at (to, 0) is diffeomorphic to the
Scherbak surface SB if r(to) # 0, 8(to) = 0 and 8(to) # 0.

(3) The tangent surface germ F 3 (I x R) at (t9,0) is diffeomorphic to the
swallowtail SW if r(to) = 0, 7(to) # 0 and 6(to) # 0.

Proof. We now calculate the type A of « at t{g under the above three

conditions.
(1) By a straight forward calculation, we have

det (5(t), 5(2), () = 7 (£)(8(2))°
If r(to) # 0 and 6(to) # 0, then the type of 4 at tg is (1,2,3). This means
that the tangent surface germ F_ )(I x R) at (g, 0) is diffeomorphic to the

cuspidal edge.
(2) Suppose that r(tg) # 0 and 6(tp) = 0. Then we have

ﬁ(to) = (’f‘(to), 'f'(to) Cos g(to), T"(t()) sin B(to)).
It follows that 4(to) A¥(to) =0. This means that det (§(to), ¥ (to), Y*1t™ (t0))
= 0 for any natural number n. Under the above assumption, we have

det(¥ (o), ¥ (to), YV (to))

T rcosf rsinf
=|# #cos® — rsin 0 #sin@ + r cos 6 (to)
7 7 cosf — 3rsinff —rsind§ T sin@+ 3rcosff +rcoshf
=0.

Hence the type of v at ¢ is different from (1,3,4). We can also calculate

that

det(¥(2), ¥ (), YO (1)) = 3(r(t0))*(6(t0))>.
Therefore det(<(to), ¥ (to), ~v®)(tg)) # O under the assumption that r(to)
# 0, 8(tg) = 0 and f(ty) # 0, so that the tangent surface germ F, )(I x R)

at (o,0) is diffeomorphic to the Scherbak surface.
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(3) Suppose that r(tp) = 0. This means that ¥(¢o) = 0, so that the type of
v at tp is different from (1,7n,m) for any real number 1 < n < m. By the
direct calculation like as the case (2), we have

det(%(to), ¥ (t0), 7'*)(to)) = 6(¥(t0))*(B(0))* # 0.
Therefore, the type of v at tg is (2, 3,4), so that the tangent surface germ

Fo 5 (I x R) at (t9,0) is diffeomorphic to the swallowtail. w

By the standard jet transversality theorem (cf., [3], Theorem 4.9) we have
the following proposition.

PROPOSITION 5.3. Let C®(I,R?) be the space of smooth mappings with
the Whitney C*°-topology. Then the set

O = {(r,8) € C®(I,R?) | (r,8) satisfies the conditon (x)}
is open and dense in C®(I,R?).
(1) r(t) has isolated zero points.
(2) If r(to) = 0, then #(to) # 0 and (ty) # 0.
(3) The points to with (o) # 0 and (o) = 0 are isolated.
(4) If r(to) # 0 and 6(tg) = 0, then G(tp) # 0.
Since 1, is a homeomorphism, it follows from Proposition 5.3 that
O = {(r(t),(t) cos8(t), r(t) sin8(t)) € L(I,R3)]

(r,0) satisfies (1), (2),(3) in Theorem 5.2}

is open and dense in L(I,R}). Therefore Theorem 5.2 gives a classification
of singularities of the tangent surface of a generic lightlike curve.

(%)

References

[1] S. Chandrasekhar, The Mathematical Theory of Black Holes, International Series of
Monographs on Physics 69, Oxford Univeristy Press, 1983.

[2] J. P. Cleave, The form of the tangent developable at points of zero torsion on space
curves, Math. Proc. Cambridge Philos. Soc. 88 (1980), 403-407.

[3] M. Golubitsky, V. Guillemin, Stable Mappings and their Singularities, Springer GTM
14 (1973).

[4] G. Ishikawa, Determinacy of envelope of the osculating hyperplanes to a curve, Bull.
London Math. Soc. 25 (1993), 603—610.

[5] G. Ishikawa, Developable of a curve and determinacy relative to osculation-type,
Quart. J. Math. Oxford 46 (1995), 437-451.

[6] S. Izumiya, D. Pei, T. Sano, The lightcone Gauss map and the lightcone developable
of a spacelike curve in Minkowski 3-space, Glasgow Math. J. 42 (2000), 75-89.

[7] S.Izumiya, N. Takeuchi, Geometry of Ruled Surfaces, Applicable Mathematics in the
Golden Age, Ed. by J. C. Misra, Narosa Publishing House (2003).



Lightlike developables in Minkowski 3-space 399

[8] C. W. Misner, K. S. Thorne, J. W. Wheeler, Gravitation, W. H. Freeman and Co.,
San Francisco, CA (1973).
[9] D. Mond, On the tangent developable of a space curve, Math. Proc. Cambridge Philos.
Soc. 91 (1982), 351-355.
[10] D. Mond, Singularities of the tangent developable surface of a space curve, Quart. J.
Math. Oxford 40 (1989), 79-91.
[11] D. Pei, Singularities of RP2-valued Gauss maps of surfaces in Minkowski 3-space,
Hokkaido Math. J. 28 (1999), 97-115.
[12] O. P. Scherbak, Wavefront and reflection groups, Russian Math. Surveys 43-3 (1988},
149-194.
[13] O. P. Scherbak, Projectively dual space curves and Legendre singularities, Trudy
Thiliss. Univ. 232-233 (1982), 280-336.
[14] 1. Vaisman, A first course in differential geometry, Pure and Applied Mathematics.
A series of Monograph and Textbooks, Marcel Dekker, (1984).

DEPARTMENT OF MATHEMATICS
HOKKAIDO UNIVERSITY
SAPPORO 060-0810

JAPAN

E-mail: izumiya@math.sci.hokudai.ac.jp

Received December 12, 2009.






