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MEDIAL AXIS AND A MOMENT MAP 

Abstract . We use Maslov dequantization to compute the medial axis of an embedded 
hypersurface. 

1. Introduction 
It is well known that the medial axis of a compact embedded submanifold 

M in R™ can be calculated as an approximation of a Voronoi diagram, see 
for instance [ABK98]. In this paper we use tropical geometry to give a new 
interpretation of that fact. 

Let M be a compact connected smooth manifold of dimension n — 1, 
embedded by 7 : M —> Rn . For every x in R™ there exists a distance function 
gx : M —> R defined by 

The medial axis Cut(M) consists of the closure of the set of those x in 
Rn for which gx has a non-unique global minimum. Recall that the corner 
locus Corner (/) of a convex function / is the set of points where / is not 
differentiable. 

The main statement of this paper is: 

T H E O R E M 1 . Let M be a compact connected smooth manifold of dimension 
n - 1, embedded by 7 : M —• Rn . Write for s € M: 

(1) fs(x) = <*,7(s)) - hh(s)\\2-, f(x) * sup /.(*) 

and 
r f c ( x ) = i o g f c ( S h ^ d S y 

M 

Then: 
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(1) The function f is a convex function, and satisfies the equality: 

(2) f{x) = lim rh{x). 
re—»oo 

(2) The corner locus of f is the medial axis Cut (M) of M. 
(3) The derivative of f outside the corner locus of f maps x € R" \ 

Cut(M) to the nearest point on M. 
(4) The derivative of the Legendre transform of f maps CH( j (M)) \ j (M) 

onto the medial axis. 
(5) The sequence of function rh(x) is monotonely increasing. 
(6) The gradient of r^x) is a diffeomorphism from Rn to the interior of 

the convex hull o f j ( M ) . 

We know of no cases where the integrals r/l(x) can be evaluated explicitly, but 
if one uses the integral formula and numerical integration for h sufficiently 
big one can plot / , as is illustrated in Figure 1. 

Fig. 1 . On the left hand side the graph of f ( x ) = sup s e M f3(x) for 7, on the right hand 
side the graph of g(x) = inf s 6M — 7(s)||2. 

In the next section we recall the definition of Voronoi diagrams and relate 
this to affine linear functions. In the third section we proove the main 
theorem. 

2. Voronoi diagrams and piecewise affine convex functions 
2.1. The Voronoi diagram 

Take a point set {P i , . . . , Fat} CK™. Throughout this article we assume 
that dim(CH({Pi , . . . , Pat})) = n. We want to divide R n according to the 
nearest distance principle. Define the functions: 

(3) gi:Rn-*R, 9i(x) = h\x - Pi\\2 g(x)= mm 9i(x). 1 \<t<N 
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Here we have used the following notation: 

i m i 2 = E * ? -
¿=1 

D E F I N I T I O N 1 . For a non-void subset A C {P i , . . . , Pn} the set Vor(a) is 
the closure of 

{x G Mn | gi(x) = g(x) P{ G a and gj(x) > g{x) Pj £ a}. 

We put Vor(0) = Rn . 

For a subset a C {P i , . . . , Pn} we have 

Vor(a) C nPieaVor(Pi)-

If the intersection of Vor(a) and Vor(a') is not empty then there is a (3 C 
{Pi,..., Pn} such that Vor(a) fl Vor(a') = Vor((3). The union over non-
void a of all Vor (a) is Rn . In this situation we can also consider the affine 
functions and their maximum 

(4) fi(x) = (x,Pi)-l\\Pi\\2; f(x) — max fi 
I i 

which are related to the distance function by 

9i(x) = ^\\x\\2 - fi(x); g(x) = ^\\xf - f(x). 
Note that we use here the same notation in the finite case, as we did in 
the continuous case, as stated in Theorem 1, formula (1). Obviously we 
might have defined the sets Vor (a) using the functions /¿, i.e.: for a subset 
a C {Pi, • • • ,Pn} the set Vor(a) is 

{xemn I fi(x) = f(x) Pi G a and f j ( x ) < f(x) Pj £ a}. 

The affine definition of Voronoi diagrams is a bit more elegant. 
The union of all Vor (a), where a contains at least two points is a closed 

set of codimension 1, and is called the Voronoi diagram. It is easy to see that 
the function / is convex and that its corner locus is equal to the Voronoi 
diagram. We have thus defined the Voronoi diagram as a corner locus of 
a convex function. Below we will define the medial axis as a corner locus of 
a convex function. 

It follows that the non-differentiability locus of the functions g and / are 
the same and that the Voronoi diagram can thus be defined using only affine 
functions. 

2.2. The Legendre transform 
Dual to the Voronoi diagram is the Delaunay triangulation. 
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DEFINITION 2 . 

fCH(a) if Vor(a) / 0, 
[0 otherwise. 

We are also interested in defining the Delaunay triangulation in a very 
different way. 

DEFINITION 3. The Legendre transform of a convex function /, with do-
main D C R n is 

/ ( 0 = sup « £ , * ) - / ( * ) ) . 
xeD 

When the supremum does not exists, we put /(£) = oo. The domain Dom(/) 
of / are those £ for which /(£) < oo. 

Let us proceed to give a few examples. The Legendre transform of h(x) = 
|̂|x||2 is the function h itself. The Legendre transform of a linear function 

fi = (x, Pi) — ^ll-Pill2 is < oo only when £ = Pi. 
Let us now calculate the Legendre transform of / defined by (4). The 

domain where /(£) < oo is the convex hull of the points { P i , . . . , Pn}. In 
fact, we have 

f m = \\\Pi\? m - mf ( E y i i ^ n 2 ) 

where the infimum is taken over all A, such that 
N 

AiPi = £ and Vz: Aj > 0 and ^ X{ = 1. 
1 <i<N i=1 

We can be more precise: for each £ in the convex hull C H ( { P i , . . . , Pn}) 
there exists a subset a = of { P i , . . . , Pn} such that f(x) = fi(x) for 
exactly those i £ a. This requires x € Vor(a), which should be non-void in 
this case. This means £ G Del(o;). It follows 

/ ( 0 = ( E T W 2 ) 

and / is an affine function on each of the cells in the Delaunay triangulation. 
Note that the domain of definition of maxi£ a fl is exactly Del(a). 

One can combine / and / in the following function 

This function hides the Gateau differential. Namely, let h: Mn —> E be a 

Del 
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function. If the limit 

u, ^ i- h(x + tO~h(x) h'(x] 0 = lim — — — v i|o t 
exists, it is called the Gateau differential. See [Hor94, Theorem 2.1.22]. For 
a convex set i f c l " the supporting function of K is the function 

£ H-> sup(x,£)-
x eic 

Theorem 2.2.11 in [Hor94] says that the Gateau differential £ —> f'(x;£) is 
the supporting function of 

{ M | F ( X , M ) = 0 } . 

The Gateau differential is called Clarke's generalized derivative in [APS97]. 
The set of which it is the support function is called df(x). It is stated in 
that article that df(x) is the convex hull of the gradients of the functions fi 
for which fi(x) = f(x). 

That last statement and the Theorem 2.1.22 are all equivalent to what 
is neatly formulated in Proposition 1 of [PR04]: 

T H E O R E M 2 . We have 

Del(a) = {£ | F(x,0 = 0 Vx € Vor(a)}. 

Reversely 
Vor(a) = {x | F(x, 0 = 0 V£ e Del(a)}. 

In other words, if x is a point in the relative interior of Vor(a) then 
df(x) = Del(a), and reversely, if £ is a point in the relative interior of 
Del(a) then df(0 = Vor(a). We see that there are two ways of looking at 
the Delaunay tr¡angulation. One simply through the duality, and the other 
through the generalized derivative of /. 

2.3. Maslov dequantization and the moment map 
In this section we approximate the function / with a parameterized 

smooth family of convex functions. The function / = max/j is convex, it 
can be approximated by convex functions x —> f(h,x) = loghiYliLi h^'^), 
whose properties are similar to those of /. 

Note that 
f(x) = lim f(h,x) 

h—>oo 

due to Maslov dequantization, which is a fancy name for the identity: 

(5) lim logh{ha + hb) = max(o, b) h—>oo 
that holds for any two real numbers a and b. 



380 D. Siersma, M. van Manen 

P R O P O S I T I O N 1 . Let 0 < h' < h, then 

• the functions f(x) and f(h, x) are convex, 
• VxeW1 f(h,x) > f(h',x) > f{x), 

• the gradient of f(h, x) is a diffeomorphism from K" to CH({Pi , . . . , PN})-

Proof. We need to show that 

f(h>\x + \v) <1-(f(h,x) + f(h,y)), 
or 

(6) J2HFI{*XHV)) ^ ( f > / i ( l ) ) " ( f > / i ( x ) ) ' -
¿=1 ¿=i ¿=1 

Put a i = > 0 and b{ = > 0 then a A = h f i $ x + * v \ a? = h ^ 
and bf = Holder's inequality says that 

N N I N I 

i=1 1=1 1=1 
which is equivalent to (6). 

The second part is proven using Jensen's inequality, which asserts that 
for a convex function q: 

N N , N 

x ¿=1 J t=1 
We need to show that 

0 <h'<h => f{h',x) < f{h,x). 
We put 

q(y) = h^k'M = y^Sh'(h) and a. = (h>yi(x)m 

The function q(y) = ya, for some a > 1, thus it is convex. Use Jensen's 
inequality and take log^ at both sides to get the desired result. 

For the third statement consider the moment map from toric geometry: 

He: Rn -> Rn, He(x) = ^ . 
E i l i e f i { x ) 

It is proved in [Ful93] that He is a real analytic diffeomorphism from R n 

to the interior of CH({Pi , . . . , PN}), when that interior is not empty. One 
recognizes He as a gradient: 

N 
H(x) = Vx (log ( £ e*(*>)) = V x ( / (c , x)). 

i=1 
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Now consider the gradient of f(h,x): 

N 

1 (x,Pi) — \\\Pi\\2. Put fi{u,j — xxj 2 
We already know that 
The fi are of the form <x,Pj) - èll^ll2- Put /¿(u) = (u,Pj) - ^ ^ H P * ) 

u —> i f (u) = ^ . 
' T i l e f i { u ) 

is a real analytic diffeomorphism from Kn to the interior of C H ( { P i , . . . , P/v})-
Because we have Hit(x) = H(x log(/i)) the proof is complete. • 

When x does not lie on the Voronoi diagram there is an i, with 1 < i < N, 
fi(x) = f(x) and /¿(x) > fj(x) for all j / i. It follows that lim^oo Hh(x) 
= Pi. Note that lim^oo Hh is no longer a diffeomorphism; full Voronoi cells 
collapse to a point! 

We continue to describe the inverse of Hh. If t is smooth convex function 
that the Legendre transform t of t is 

i ( o = « v , t r 1 ( o , o - i ( ( v , t r 1 ( o ) . 
As a consequence 

(7) = + 
j=1 

\-l 
- £ ( v * i É ) ( (Vxi ) " 1 ( 0 ) 

d(vxty 

* 
= ( v t r 1 ( 0 . 

Thus, the inverse of H^ is the gradient of Legendre transform f(h,x) of 
f(h,x). 

3. The medial axis and Maslov dequantization 
We have seen in the above that the Voronoi diagram can also be cal-

culated using the affine functions /j, instead of the distance function. We 
have also seen that the corner locus of the function / defined in (4) is the 
Voronoi diagram. We will now follow the same procedure with the embed-
ding 7 : M —> R™. We will show next that the medial axis is a corner locus 
of a convex function. Let us prove Theorem 1. 
Proof. We switch back from the function / as defined in (4) (the finite case), 
to the function / defined in equation (1) (the continuous case). The function 
f(x) is convex, because it is the supremum of a number of convex functions. 
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Let us prove part 2: the corner locus of f is the medial axis Cut (M) of M. 
Because M is compact the supremum is attained for one or more points 
s = s(x) in M. We see that x 6 R n and s 6 M, for which f(x) = fs(x), are 
related by 

Here Af(s) is the tangent vector to 7 and the inner product is taken as vectors 
with source in 7(5). So x lies on the normal of one or more s £ M. Of those 
that satisfy (8) we choose one that has the highest value of fSi (x), and thus 
the lowest value of 

The s we get from supseM fs corresponds to the point closest to x on the 
submanifold M, because it is the s we get from the minimal distance 

If x does not lie on the medial axis there is a unique closest point s on M 
and it follows that / is smooth in some neighborhood of x. If £ lies on the 
medial axis there are either two or more points that realize the supremum 
f(x) or x lies on the caustic. In both cases / is not smooth. Hence the 
points where f ( x ) is not differentiate form exactly the medial axis of M. 

Next we prove part 1: the integral formula for f in (2). The core of the 
argument is: approximate the integral on the right hand side by a point set 
on M. In the Riemann sum only the highest value of fs(x) counts as h —> 00. 

More precisely, let l: £ —> M be a triangulation of M whose top-
dimensional simplices are F (assume all of the same volume). Compute 
the lower and upper Riemann sums 

(8) ( x - 7 ( s ) , 7 ( s ) ) = 0. 

x —> inf - l lx — 7(s) | |2 . 
seM 211 'v 

l og» ( E v o l ( r ) ^ ' W ) < log* ( j h f ' W d s ) 

< \ogh ( sup vo\{T)hfsW 

Evaluate the lower Riemann sum 

log/ l ( ( # r ) vol(r)) + log, ( J2 inf hMx)) 

logh (vol(M)) + logh ( J ] '•<*>). 
re£ 
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Prom the Maslov dequantization identity (5) we know that the last expression 
tends to as h —> oo 
(10) max( inf fs{x)). v r e s set(r) 
The upper Riemann sum tends to 
(11) max( sup fs(x)). 

Sub-dividing the simplices T further both (10) and (11) tend to supsgAi fs(x), 
which is what we needed to prove. 

We will now prove part 5, namely that the functions r^x) are convex and 
monotonic in h: ry(x) < if h! < h. The proof is completely analogous 
to the proof of Proposition 1. 

To prove the convexity of r/l(x) put 

p(s) = fcs/'W and q(s) = h*f'{v) 

and apply the continuous version of the Holder inequality. The monotonic-
ity of the sequence rh(x) follows from the continuous version of Jensen's 
inequality, just as the monotonicity of the sequence f(h,x) in the proof of 
Proposition 1 followed from the discrete version of Jensen's inequality. 

Next we show part 6 that the differential of r^ is diffeomorphism from 
Rn to the interior of CR(^(M)). The gradient of r^ is 

(12) V r ^ ) ^ ^ 
lMkM')ds 

Consider again a triangulation l: E —> M of M, where each top-dimensional 
simplex T has the same volume. In each simplex T take a point Pp. Consider 
the quotient 

E r s S v o l ( r ) P r / ^ > - ^ l l 2 

1 j E r ^ v o K n ^ H l l i V I I 2 ' 
From the remarks on Riemann sums above it follows that taking barycentric 
subdivisions the quotient (13) tends to (12). From Proposition 1 we know 
that the image of (13) is the convex hull CH({Pr | T € £}). Hence the 
image of Vr^(x) is CH(7(M)). 

Part 3. We show that the derivative of f outside the corner locus of f 
maps x € R" \ Cut(M) to the nearest point on M. If x lies outside the 
medial axis then there is a point so on x such f(x) = / s o(x). The 7(^0) is 
the unique closest to x on M. For all R n B y ^ x we have f(y) > fSQ (x), so 
that certainly 7(^0) £ df(x). We are done if we show that / is smooth at x. 
Again, because x does not lie on the medial axis there is a neighborhood U 
of x in Rn \ C u t ( M ) there is a smooth map h: U —> M that assigns to y the 
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closest point h(y) on M. Hence, on U the / can be written f ( y ) — fh(y)(y), 
which is a smooth function. 

Before we prove part 4 we discuss the situation at the medial axis. At 
the medial axis the gradient of / is not defined. The generalized derivative 
can be calculated for points on the medial axis. For each point x on the 
medial axis there is a subset A(x) C M defined by 

A(x) = {seM | f ( x ) = fs(x)}. 

The point x is the center of a sphere of radius —2/(x) that is 
tangent to 7 (M) at all points of A(x). The generalized derivative d f ( x ) is 
CH(7(j4(x))). One can think of it as the Delaunay cell dual to a point on 
the medial axis. The union of all the A(x) for all x on medial axis Cut(M) 
is M itself. The sets d f ( x ) fill CR^(M)). For each £ g CH(7(M)) \ 7 ( M ) 
there is a unique x G Cut (M) . 

Part 4: The derivative of the Legendre transform of f maps CH(7(M)) \ 
7(M) onto the medial axis. The convex functions / and / fulfil the duality 
relation: 

F(x,Z) = f ( x ) + f(Q-(x,O = 0. 

Standard theory of convex functions tells us that this is equivalent with each 
of the conditions: 

d f ( X ) = e, d f ( o = x. 

As we have seen above d f ( x ) = CH(7(yl(a;))). And x is unique for each 
So d / (£ ) contains a single point. Now we are ready. • 

The union of all the A{x) for all x on the interior medial axis In tCut(M) 
is M itself. The convex structure of the Legendre transform gives is very 
intriguing, since it shows the similariry with the Delaunay triangulation. The 
cells dual to points on the medial axis can be seen if we take a lot of points 
on M and calculate the Delaunay triangulation of this point set. We get 
Figure 2. This is another way of saying that the dual of the interior medial 

Fig. 2. Delaunay triangulation for a lot of points on the curve 7 from Figure 1. 
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axis in the sense of the Theorem of Passare and Rullgard is the region in Rn 

bounded by manifold CH(Af) itself. 
A direct computation of the Legendre transform / of / shows, that its 

domain is CH(M) and that it is afRne on each of the simplices df(x) = 

CH(7(^4(x))). For a finite set A(x) there is the formula f{£) = Y^A{x) ^-MMI2' 
where \ are coordinates in the hull. 
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