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MEDIAL AXIS AND A MOMENT MAP

Abstract. We use Maslov dequantization to compute the medial axis of an embedded
hypersurface.

1. Introduction

It is well known that the medial axis of a compact embedded submanifold
M in R™ can be calculated as an approximation of a Voronoi diagram, see
for instance [ABK98|. In this paper we use tropical geometry to give a new
interpretation of that fact.

Let M be a compact connected smooth manifold of dimension n — 1,

embedded by v: M — R™. For every z in R™ there exists a distance function
gz : M — R defined by

gs(s) = llz = v(s)|I*.
The medial azis Cut(M) consists of the closure of the set of those z in
R™ for which g, has a non-unique global minimum. Recall that the corner
locus Corner(f) of a convex function f is the set of points where f is not
differentiable.
The main statement of this paper is:

THEOREM 1. Let M be a compact connected smooth manifold of dimension
n — 1, embedded by v: M — R™. Write forse€ M:

(1) £:@) = @16 = S GI% £ sup fi(a)
seM

and
rr(z) = logy, ( S hf’(m)ds).
M
Then:
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(1) The function f is a convex function, and satisfies the equality:
(2) flz) = hl'irgorh(m).

(2) The corner locus of f is the medial azis Cut(M) of M.

(3) The derivative of f outside the corner locus of f maps ¢ € R™\
Cut(M) to the nearest point on M.

(4) The derivative of the Legendre transform of f maps CH(y(M))\v(M)
onto the medial azis.

(5) The sequence of function rp(x) is monotonely increasing.

(6) The gradient of rp(x) is a diffeomorphism from R™ to the interior of
the convez hull of y(M).

We know of no cases where the integrals r,(z) can be evaluated explicitly, but
if one uses the integral formula and numerical integration for h sufficiently
big one can plot f, as is illustrated in Figure 1.

~J

Fig. 1. On the left hand side the graph of f(z) = sup,cp fs() for 4, on the right hand
side the graph of g(z) = infsem ||z — v(s)[|%.

In the next section we recall the definition of Voronoi diagrams and relate
this to affine linear functions. In the third section we proove the main
theorem.

2. Voronoi diagrams and piecewise affine convex functions
2.1. The Voronoi diagram

Take a point set {P},..., Py} CR"™ Throughout this article we assume
that dim(CH({P4,...,Pn})) = n. We want to divide R" according to the
nearest distance principle. Define the functions:

1 :
B  w:R"—R  gl@)=3zle-PRl* g()= min )
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Here we have used the following notation:

Jall? =322
=1

DEFINITION 1. For a non-void subset a C {Py,..., Py} the set Vor(a) is
the closure of

{z €R" | gi(z) = g(z) P; € o and gj(z) > g(z) P; € a}.
We put Vor(@) = R".
For a subset o C {P1,..., Py} we have
Vor(a) C Np,ea Vor(F;).

If the intersection of Vor(a) and Vor(a') is not empty then there is a § C
{Pi,..., PN} such that Vor(a) N Vor(a’) = Vor(8). The union over non-
void a of all Vor(a) is R™. In this situation we can also consider the affine
functions and their maximum

@ film) = (@ Py~ SIPI%  f(@) = max

which are related to the distance function by

0i(x) = 3lal’ ~ i) o@) = LIl ~ 1(z),

Note that we use here the same notation in the finite case, as we did in
the continuous case, as stated in Theorem 1, formula (1). Obviously we
might have defined the sets Vor(a) using the functions f;, i.e.: for a subset
a C {P,...,Pn} the set Vor(a) is

{z eR" | fi(z) = f(z) Pi € aand fj(z) < f(x) P; & a}.
The affine definition of Voronoi diagrams is a bit more elegant.

The union of all Vor(a), where a contains at least two points is a closed
set of codimension 1, and is called the Voronoi diagram. It is easy to see that
the function f is convex and that its corner locus is equal to the Voronoi
diagram. We have thus defined the Voronoi diagram as a corner locus of
a convex function. Below we will define the medial axis as a corner locus of
a convex function.

It follows that the non-differentiability locus of the functions g and f are
the same and that the Voronoi diagram can thus be defined using only affine
functions.

2.2. The Legendre transform
Dual to the Voronoi diagram is the Delaunay triangulation.
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DEFINITION 2.
CH(a) if Vor(a) # 0,

) otherwise.

Del(a) = {

We are also interested in defining the Delaunay triangulation in a very
different way.

DEFINITION 3. The Legendre transform of a convex function f, with do-
main D C R" is

£(&) = sup ((6,2) - f(2)).
€D

When the supremum does not exists, we put f (€) = co. The domain Dom( f )
of f are those £ for which f(£) < oo.

Let us proceed to give a few examples. The Legendre transform of h(z) =
3l|lz||? is the function h itself. The Legendre transform of a linear function

fi={(z,B) = 3||B|? is < oo only when £ = P;.

Let us now calculate the Legendre transform of f defined by (4). The
domain where f (€) < oo is the convex hull of the points {P,...,Py}. In
fact, we have

(P) = JIRIP = f6) = mt (Y- F1RP)

where the infimum is taken over all )\; such that

N
Z MNP, =€ and Vi: \; >0 and Zz\i=1.
1<i<N i=1

We can be more precise: for each € in the convex hull CH({Pi,..., Pn})
there exists a subset & = a(§), of {Py,..., Py} such that f(z) = fi(z) for
exactly those ¢ € . This requires £ € Vor(a), which should be non-void in
this case. This means £ € Del(a). It follows

A _ i 9
fo = (X 3mr)
1€x
and f is an affine function on each of the cells in the Delaunay triangulation.
Note that the domain of definition of max;eq f; is exactly Del(a).

One can combine f and f in the following function

(& z) > F(z,8) = f(z) + £(€) — (z,€).
This function hides the Gateau differential. Namely, let h: R® — R be a
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function. If the limit

ooy e W@+ t) — h(z)
h(m,s)—ltlllg)l ,

exists, it is called the Gateau differential. See [H6r94, Theorem 2.1.22]. For
a convex set K C R™ the supporting function of K is the function

§ — sup(z, §).
zeK

Theorem 2.2.11 in [H6r94] says that the Gateau differential £ — f'(z;&) is
the supporting function of

{w | F(z,n)=0}.
The Gateau differential is called Clarke’s generalized derivative in [APS97].
The set of which it is the support function is called df(z). It is stated in
that article that 9f(z) is the convex hull of the gradients of the functions f;
for which fi(z) = f(z).
That last statement and the Theorem 2.1.22 are all equivalent to what
is neatly formulated in Proposition 1 of [PR04]:

THEOREM 2. We have
Del(a) = {¢ | F(z,£) =0 Vz € Vor(a)}.

Reversely
Vor(a) = {z | F(z,§) =0 V¢ € Del(a)}.

In other words, if = is a point in the relative interior of Vor(a) then
0f(z) = Del(a), and reversely, if £ is a point in the relative interior of
Del(a) then 8f(£) = Vor(a). We see that there are two ways of looking at
the Delaunay triangulation. One simply through the duality, and the other
through the generalized derivative of f.

2.3. Maslov dequantization and the moment map

In this section we approximate the function f with a parameterized
smooth family of convex functions. The function f = max f; is convex, it
can be approximated by convex functions z — f(h,z) = Iogh(zilil hfi(=)),
whose properties are similar to those of f.

Note that

f(z) = lim f(h,z)
h—oo0
due to Maslov dequantization, which is a fancy name for the identity:
(5) hlim logy, (h® + h®) = max(a, b)
— 00

that holds for any two real numbers a and b.
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PROPOSITION 1. Let 0 < b’ < h, then

o the functions f(x) and f(h,z) are convex,
o vz €R" f(h,z) > f(K,z) > f(),
o the gradient of f(h,x) is a diffeomorphism from R* to CH({P,...,Pn}).

Proof. We need to show that

$(hgo+ 3v) < 500 + 100

or

(6) Z hf1(2z+2y) (Z hfl(z)) (Z hfl(x))

Put a; = h%fi(z) > 0 and b; = h3/i® > 0 then a;b; = hfi(3=+32Y), a? = hfi@)
and b2 = hfi¥), Holder’s inequality says that

N N ) _% N ) %
;aibig(;ai) (;bi)

which is equivalent to (6).
The second part is proven using Jensen’s inequality, which asserts that
for a convex function g:

TESVAERS

i=1

=

We need to show that
O0<h<h = f(z)<f(hz).
We put
q(y) = hlogw W) = ylogw (M) gnq q; = (B/)f:(@),

The function ¢(y) = y?, for some a > 1, thus it is convex. Use Jensen’s
inequality and take log;, at both sides to get the desired result.
For the third statement consider the moment map from toric geometry:

211211 efz(z) '
It is proved in [Ful93] that H, is a real analytic diffeomorphism from R"

to the interior of CH({ P, ..., Pnx}), when that interior is not empty. One
recognizes H. as a gradient:

H(z) = Vz(log (ieﬂ@)) = Va(f(e,2)).
i=1

H.:R"—>R", H(z)=
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Now consider the gradient of f(h, ac)

fi(z)
fi(z) Zz IPh’
H(z) = (logh (Zh )) SN hfi@)
The f; are of the form (z, P;) — 3||7||*. Put filu) = (u, P) — @HHH?
We already know that
~ P fz(u)
u— H(u) = _Zl;__e_
Zi:l efz('u')
is a real analytic diffeomorphism from R™ to the interior of CH({ Py, ..., Pn}).
Because we have Hp(z) = H(zlog(h)) the proof is complete. m

When z does not lie on the Voronoi diagram there is an ¢, with 1 <{ < N,
filz) = f(z) and fi(z) > f;(z) for all j # i. It follows that limp_,oo Hp(z)
= P,. Note that limy,_,, H}, is no longer a diffeomorphism; full Voronoi cells
collapse to a point!

We continue to describe the inverse of Hy,. If t is smooth convex function
that the Legendre transform £ of ¢ is

() = (Vat) ™! (€),6) — ¢ ((vxt)-l ©)-

As a consequence

) Vi) = (Vat)~ 2

8 (Vat)™?
—Z(vm,m( ())T
= (V)7 (©).

Thus, the inverse of H), is the gradient of Legendre transform f(h,z) of
f(h, ).

—1

3. The medial axis and Maslov dequantization

We have seen in the above that the Voronoi diagram can also be cal-
culated using the affine functions f;, instead of the distance function. We
have also seen that the corner locus of the function f defined in (4) is the
Voronoi diagram. We will now follow the same procedure with the embed-
ding v: M — R". We will show next that the medial axis is a corner locus
of a convex function. Let us prove Theorem 1.

Proof. We switch back from the function f as defined in (4) (the finite case),
to the function f defined in equation (1) (the continuous case). The function
f(z) is convex, because it is the supremum of a number of convex functions.
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Let us prove part 2: the corner locus of f is the medial azis Cut(M) of M.
Because M is compact the supremum is attained for one or more points
s = s(z) in M. We see that € R™ and s € M, for which f(z) = fs(z), are
related by

(8) (x —(s),7(s)) = 0.

Here 4(s) is the tangent vector to v and the inner product is taken as vectors
with source in y(s). So z lies on the normal of one or more s € M. Of those
that satisfy (8) we choose one that has the highest value of f;,(x), and thus
the lowest value of

1, 9 L2
Sllzl = fu(@) = 5lle = (s,

The s we get from sup,c,s fs corresponds to the point closest to = on the
submanifold M, because it is the s we get from the minimal distance

1
inf ~|z — 2,
z— inf Sz~ (s)]

If z does not lie on the medial axis there is a unique closest point s on M
and it follows that f is smooth in some neighborhood of z. If z lies on the
medial axis there are either two or more points that realize the supremum
f(z) or z lies on the caustic. In both cases f is not smooth. Hence the
points where f(z) is not differentiable form exactly the medial axis of M.

Next we prove part 1: the integral formula for f in (2). The core of the
argument is: approximate the integral on the right hand side by a point set
on M. In the Riemann sum only the highest value of fs(z) counts as h — o0.

More precisely, let +: ¥ — M be a triangulation of M whose top-
dimensional simplices are I' (assume all of the same volume). Compute
the lower and upper Riemann sums

log, ( 1% sé?(fr) VOI(F)hf’(z)) < log, ( 1§4 hfs(w)ds)

< logy, (Z sup vol(I‘)hfs(I)).
rex s€4(T)
Evaluate the lower Riemann sum

(9) log, ( Z sérbl(%) vol(l‘)hfs(””))

rex

= log, ((#I') vol(I")) + log;, ( 3 s én(fr | hfs(z))
rex

= logh (VOI(M)) + logh ( Z hinfsEL(F) fs(:t)) .
' rex
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From the Maslov dequantization identity (5) we know that the last expression
tends to as h — oo

(10) ’Fé’%‘(séﬁfp) fs(z)).

The upper Riemann sum tends to

max( su .
(11) max (SEL(I;) fs(2))
Sub-dividing the simplices I' further both (10) and (11) tend to sup,¢ s fs(z),
which is what we needed to prove.

We will now prove part 5, namely that the functions r(z) are convezr and
monotonic in h: Ty (z) < rhp(z) if A’ < h. The proof is completely analogous
to the proof of Proposition 1.

To prove the convexity of ry(z) put

p(s) = h3f2@)  and q(s) = hafs®)
and apply the continuous version of the Holder inequality. The monotonic-
ity of the sequence r4(z) follows from the continuous version of Jensen’s
inequality, just as the monotonicity of the sequence f(h,z) in the proof of
Proposition 1 followed from the discrete version of Jensen’s inequality.
Next we show part 6 that the differential of ry is diffeomorphism from
R"™ to the interior of CH(y(M)). The gradient of 7, is

3 SM’Y(S)hf’(”)dS
(12) V(@) = Ty B @ ds

Consider again a triangulation ¢: ¥ — M of M, where each top-dimensional
simplex I' has the same volume. In each simplex I take a point Pr. Consider
the quotient

Y res vol(I') Pph @ Pr) =3 I Frll?
Y rex vOl(T)A®Fr —3lPr?

From the remarks on Riemann sums above it follows that taking barycentric
subdivisions the quotient (13) tends to (12). From Proposition 1 we know
that the image of (13) is the convex hull CH({Pr | I' € £}). Hence the
image of Vry(z) is CH(y(M)).

Part 3. We show that the derivative of f outside the corner locus of f
maps £ € R™\ Cut(M) to the nearest point on M. If z lies outside the
medial axis then there is a point so on = such f(z) = fs(z). The y(sp) is
the unique closest to z on M. For all R” 3 y # = we have f(y) > fs,(z), so
that certainly v(so) € 8f(z). We are done if we show that f is smooth at z.
Again, because = does not lie on the medial axis there is a neighborhood U
of z in R™\ Cut(M) there is a smooth map h: U — M that assigns to y the

(13)
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closest point A(y) on M. Hence, on U the f can be written f(y) = fny)(v),
which is a smooth function.

Before we prove part 4 we discuss the situation at the medial axis. At
the medial axis the gradient of f is not defined. The generalized derivative
can be calculated for points on the medial axis. For each point x on the
medial axis there is a subset A(z) C M defined by

A(x) ={se M | f(z) = fs(z)}.

The point z is the center of a sphere of radius \/||z||? — 2f(z) that is
tangent to y(M) at all points of A(z). The generalized derivative df(z) is
CH(+(A(z))). One can think of it as the Delaunay cell dual to a point on
the medial axis. The union of all the A(x) for all z on medial axis Cut(M)
is M itself. The sets df(z) fill CH(y(M)). For each £ € CH(y(M)) \ v(M)
there is a unique z € Cut(M).

Part 4: The derivative of the Legendre transform of f maps CH(y(M))\
~(M) onto the medial azis. The convex functions f and f fulfil the duality
relation:

F(z,8) = f(z) + f(£) - (z,&) = 0.

Standard theory of convex functions tells us that this is equivalent with each
of the conditions:

of(x)=¢ Of(¢) ==
As we have seen above 0f(z) = CH(v(A(z))). And z is unique for each .
So 8f (&) contains a single point. Now we are ready. =

The union of all the A(z) for all z on the interior medial axis IntCut(M)
is M itself. The convex structure of the Legendre transform gives is very
intriguing, since it shows the similariry with the Delaunay triangulation. The
cells dual to points on the medial axis can be seen if we take a lot of points
on M and calculate the Delaunay triangulation of this point set. We get
Figure 2. This is another way of saying that the dual of the interior medial

Fig. 2. Delaunay triangulation for a lot of points on the curve v from Figure 1.
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axis in the sense of the Theorem of Passare and Rullgard is the region in R™
bounded by manifold CH(M) itself.

A direct computation of the Legendre transform f of f shows, that its
domain is CH(M) and that it is affine on each of the simplices 8f(z) =
CH(v(A(z))). For a finite set A(z) there is the formula f(¢)= 2 Alz) Iillyll3,
where \; are coordinates in the hull.
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