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THE SECOND JUMP OF MILNOR NUMBERS

Abstract. Let fo be a plane curve singularity. Let (uo, p1,-- ., px) be all possible
Milnor numbers of non-degenerate deformations of fo (in decreasing order). We prove
that g2 = pu1 — 1 for f; with one segment Newton polygon (u; is given by the Bodin
formula).

1. Introduction

Let fo : (C™,0) — (C,0) be an isolated singularity (for short a singu-
larity), i.e. fop is the germ of a holomorphic function having an isolated
critical point at 0. A deformation of fo is a family (fs)sev of isolated sin-
gularities (or smooth germs) analytically dependent on the parameter s in
an open neighborhood U C C of 0 € C. The jump of Milnor numbers of the
deformation (fs)scy is the number

u(fo) — u(fs) s U\{0},

where p(fs) is the Milnor number of fs. This number is well defined because
1(fs) is independent of s # 0 for sufficiently small s. We will denote it
by A((fs)). Moreover, by the upper semi-continuity of u (Proposition 11.5.3
in [8], Theorem 2.6 in [2]) it is a non-negative integer. The jump A(fo)
(or the first jump) of fy is the minimum of the non-zero jumps of the (f;)
over all deformations of fy. According to A. Bodin [1] N. A’Campo posed
the problem to compute A(fp). It is still an open problem. S. Gusein-Zade
[3] proved that there are singularities fo such that A(fo) > 1 and that for
irreducible fo, A(fo) = 1.

Bodin in (1] considered the following weaker problem: to compute the
jump XN(fo) of fo over all non-degenerate deformations of fy (i.e. fs are
non-degenerate in the Kouchnirenko sense for s # 0). Of course, we have
always A(fo) < N(fo). For n = 2 he gave a formula for X' (fo) for fo with the
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Newton polygon reduced to one segment (in particular for fy irreducible;
in this case XN (fop) = 1). Much more general problem is to compute all
Milnor numbers arising from all deformations of f or at least from all non-
degenerate deformations of fy. In the last case to each singularity fy we may
associate a finite strictly decreasing sequence

A,(fO) = (NO,,U'I, ce ,/Lk),

of all possible Milnor numbers of non-degenerate deformations of f;. We

have po = u(fo), p1 = p(fo) — N(fo), uk = 0. This sequence may be
curious. We easily check that

1. for fo(z,y) = 28 — y°, we have A'(fo) = (28,27,...,0),
2. for fo(z,y) = 28 ~ y*, we have A'(fo) = (21,18,17,...,0),
3. for fo(z,y) = =7 — y°, we have A'(fo) = (24,23,...,16,15,13,12...,0).

The Bodin formula gives p; for singularities with one segment Newton
polygon. The main result of the paper is that for such singularities uz =
pu1 — 1 i.e. the "second jump" of fp is always equal to 1.

2. Non-degenerate singularities

Let N = {0,1,2,...}. Let fo(z,y) = X (; jjenz aijz'y’, f0(0,0) = 0 be
a singularity. Let supp(fo) := {(i,7) € N2 : a;; # 0}. The Newton diagram
of fo is the convex closure of U(i,j)ESupp(fo)((z',j)+Ri), (R% = {(z,y) e R?:
z > 0Ay>0}). We denote it by Iy (fo)-

The boundary of the Newton diagram Iy (fp) is the union of two semi-
lines and a finite number of compact, non-parallel segments, which are not
contained in these semi-lines. These segments constitute the Newton polygon
of singularity fo, which we will denote by I'(fp). Often we will identify pairs
(i,§) € N? with monomials ziy/. We will call singularity fo convenient if
I'(fo) has common points with OX and OY axes.

For segment v € I'(fo) we define (fo)y = 3 j)eqy aijz'y’. We call
a singularity fo non-degenerate on v € I'(fo) (in the Kouchnirenko sense),
when the system of equations

Moz =0, by~
has no solutions in C* x C*. We call a singularity fo non-degenerate, when
fo is non-degenerate on every segment v € I'(fo). We notice that if (fs)
is a deformation of fy, then for sufficiently small s # 0, Newton’s diagram
I'y (fs) doesn’t depend on s.

Let fo be a convenient singularity. By S we denote area of the set

bounded by OX and OY axes and the polygon I'(fo). By a and b we
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denote distance between the origin (0,0) and the common part of Newton
polygon I'y (fo) with OX and OY axes.

'

b ¢
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Y

For a convenient singularity fo we define its Newton’s number by
v(fo) =28 —a—-b+1.

It is easy to check that v(fp) > 0.
We will remind a known theorem about non-degenerate singularities that
we will use further.

THEOREM 1. (Kouchnirenko [4]) Assume that a singularity fo is conve-
nient. Then

o u(fo) > v(fo),
o if fo is non-degenerate, then p(fo) = v(fo).

3. Non-degenerate jump of Milnor numbers of a singularity

Let fo be a singularity. A deformation (fs)sey of fo is called non-
degenerate if f; is non-degenerate for s # 0. The set of all non-degenerate
deformations of the singularity fo we will denote D™(f). Non-degenerate
gump X (fo) of the singularity fp is the minimal of non-zero jumps over all
non-degenerate deformations fo, what means

X(fo) == A((£5)),

min
(f)ED3(fo)

where by Dj4(fo) we denote the all non-degenerate deformations (f;) of fo
for which A((fs)) # 0.
Obviously

PROPOSITION 1. For each singularity fo we have the inequality

A(fo) < X(fo)-
The above inequality may be strict.
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EXAMPLE 1. Let fo(z,y) = z* — y*. From Gusein-Zade [3] we have
A(fo) > 1. It is easy to check, that A((fs)) = 2 for fs(z,y) = ¢~ (v? +s2)2.
Therefore A(fo) = 2. From the next part of the article (see Theorem 3
and Example 2) we have X (fy) = 3. It realizes non-degenerate deformation
fs(z,y) = 2t — y* + s23, s € C. Therefore, in this case A(fo) < N (fo).

4. Formula for non-degenerate jump of a non-degenerate
singularity
First we recall definitions and some well known facts about quasi-homo-
geneous polynomials. Let f € C[X,Y] be a non-constant polynomial. We
call f quasi-homogeneous polynomial of degree d, when there exists
(m,n) € N% such that, GCD(m,n) = 1 and

F™z, Ahy) = M1 (2, y).
We call numbers m and n weights of vartables x and y. f is a homogeneous
polynomial, when m =n = 1.

PROPERTY 1. Let f be a quasi-homogeneous polynomial with weights m
and n. Then there exists a homogeneous polynomial (a form) v and numbers
r, s € N such that

f(l', y) = $Tysl/($n7ym), V(Oa y) # 0, U(.’L‘,O) 7é 0.

The form v is called corresponding to fo. Before we give Bodin formula for
non-degenerate jump we will recall known properties about non-degenerate
singularities. Let fy be a singularity and I'(fp) its Newton polygon.

PROPERTY 2. For any v € I'(fo) polynomial (fo), is quasi-homogeneous.

PROPERTY 3. For any v € I'(fo) the ends of v belong to suppfo. If
~ doesn’t contain any other point of suppfo besides ends, then fy is non-
degenerate on 7.

PROPERTY 4. fy is non-degenerate ony € I'(fo) < the form v correspond-
ing to (fo)y has no multiple factors < discriminant A(v) of the form v is
not zero.

One can find Property 3 in [7] (the proof of Property 2.6) and Property 4
in [5].

Let fp be a non-degenerate and convenient singularity. We will denote
by J the set of all monomials zPy?, where p + ¢ > 1, lying in closed domain
bounded by axes and Newton diagram Iy (fp). Obviously J is a finite set.

LEMMA 1. For any zPy? € J the deformation fs = fo + sxPy?, s € U, is
non-degenerate.
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Proof. Because zPy? € J, so for s # 0, supp(fs) = {(p,q)} U suppfo.
Therefore Newton diagram fs is constant for sufficiently small s # 0. Let ~
be a segment of the Newton polygon of fs, for s # 0. We will consider cases:

1. (p,q) € . Then ends = lie in supp fo, v is segment of Newton polygon
of singularity fo and (fs)y = (fo)y. Because fo is non-degenerate, so f; is
non-degenerate over +.

2. (p,q) € v and besides (p,q) there exists the only one point from
supp fo, (which we denote by (k,!)) lying in 4. Then (k,!) and (p, q) are the
ends of 7. From Property 3 fs is non-degenerate on +.

3. (p, q) € v and besides (p, q) there exist more than one point of supp(fs)
lying on «. We will consider subcases:

(i) (p,q) € I'(fo). Consider the discriminant A(s) of the form v corre-
sponding to (fs)y. The value A(0) is equal to the discriminant of the form
corresponding to (fo)y, so A(0) # 0 (because fo is non-degenerate on 7).
Therefore A(s) # 0 for s from sufficiently small neighborhood of zero. From
Property 4, f; is non-degenerate on 4.

(i1) (p,q) & I'(fo). Then (p,q) is an end of . In this case v is a contin-
uation of a certain segment yp € I'(fp). Without loss of generality we may
assume, that (p,q) is the left end of . Let (fs)y(z,y) = (fo)y(x,y) + szPyq.
From Property 2 the polynomial (fs) is quasi-homogeneous. We denote by
m, n weights of variables z and y and d degree of this polynomial. From
Property 1 there exists homogeneous polynomial v; and numbers r, t € N
such that

(fs)’y(xay) = xrytl/s(-rn7 y™) vs(0,y) #0, wve(z,0) #0.
Hence and from assumption v,(z,y) has the form
vs(z,y) = sy®+ a1y? iz + ... +agr?, where aqg # 0.

Consider the discriminant A(s) of the form v, corresponding to (fs)y. It
is easy to check that A(s) = (ddag_l) - s%4 terms of a degrees less than
d. Because aq # 0, so degs A(s) > 0. It means, that A(s) # 0 for s # 0
in a certain neighborhood of zero. From Property 4 f; is non-degenerate
onvy. m

Lemma 1 says, that for each convenient and non-degenerate singularity
fo the deformation f; = fo + szPy?, zPy? € J, s € U, is a non-degenerate
deformation of fo. We will denote it by ( ® ’q)). In [1] Bodin gave the
formula for A'(fo) in terms of the deformations ( fs(p ’Q)). Since [1] has been

published only in preprint form with sketchy proofs, we will give a full proof
of the Bodin formula.
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THEOREM 2. (Bodin (1)) If fo is a non-degenerate and convenient singu-
larity, then

N(fo) = min M(f*9)),

zPyd€Jy
where Jo C J is the set of monomials zPy? such that A(( f§” ’q))) # 0.
Proof. By the definition of A'(fy) we have to prove the equality

1 — — ] _ (:)
(fs)él,[l)é}i(fo)(u(fo) u(fa)) = _min, (u(fo) = p(£:P))-

The inequality “<” is obvious. We will prove the opposite inequality “>".
Take any non-degenerate deformation (fs) € D34(fo) of fo.
Rearranging terms in f;, s # 0, we can rewrite it as follows

fs(z,y) = folz,y) + ar(s)zPy® + ... + cx(s)zP*y% + R(s, z,y),

¢i #0,¢(0) =0, (pi,g) € I'(fs), 1 = 1,...,k, and suppR lie above the
Newton polygon of f;. Because A((fs)) > 0, it is easy to prove, that among
points (p;,qi), @ = 1,...,k, there exists a point (p;,g;), such that A((fo +
cj(s)xPiy%)) > 0. We will show, that for this j

u(fo) — u(fo +cj(s)zPy%) < p(fo) — pu(fs)-

It is enough to prove that
(*) p(fo + cj(s)zPy%) = p(fs)-

Let S1, Sa be areas corresponding to deformations (fy + c;(s)zPiy%) and
(fs), respectively. By a1, b1 and ag, by we denote the distance beetwen the
origin (0,0) and common part I'(fo + c;(s)zP7y%) and I'(fs) with axes OX
and OY, respectively. Because deformations (fo + ¢j{s)zPy%) and (f,) are
non-degenerate, so by the Kouchnirenko Theorem it is enough to prove, that
2(51 - 52) — (a1 - a2) - (bl — b2) Z 0.

We will consider possible cases:

1. a3 > ag, by > by. We will denote by (my,n;), | =1,...,t, consecutive
vertices of the Newton polygon of I'( fo+¢;(s)zPiy%). From a1 > az, b1 > by
it follows, that t > 3. We have, that (m1,n;) = (0,b1) and (m¢, n:) = (a1,0).
If we consider now triangles with vertices: (0, b;), (0, b2), (mg2,n2) and (a1, 0),
(az,0), (my—1,m4~1), then denoting by hi, ho (hi, he > 1) their heights to
bases (0, b1), (0,b2) and (a3, 0), (ag,0), respectively, we have

2(51 - 82) - ((11 - a2) — (bl b bz)
> 2(%(01 —az)-ha + -;—(51 —b2) - h1) — (a1 — az) — (b1 — ba)
=(a1—az)-(h2—1)+(b1—b2)-(h1—1)20.




The second jump of Milnor numbers 367

2. a1 > ag, by = by. With the same notations as in the first case we have
that

2(51—52)—(0,1—0,2) Z 2-%(a1——a2)-h2—(a1—a2) = (al—a2)~(h2—1) Z 0.

3. When a; = ag and by > by, we have situation analogical to the second

case.
4. If a; = ag, by = by, then obviously S; > S, and then 2(S; — S2) > 0.
Therefore in every case we have (x). =

COROLLARY 1. If fo, fo are non-degenerate and convenient singularities
and I'(fo) = I'(fo), then X'(fo) = N'(fo).

5. The case of one segment Newton polygon

In some cases we can give exact value of the non-degenerate jump of
a singularity. It happens when Newton polygon of fy consists of only one
segment (particularly when fy is an irreducible singularity). We will begin
with the simplest case.
THEOREM 3. (Bodin [1]) Let fo(z,y) = 2P — 9, p,q > 2 and d :=
GCD(p, q). Without loss of generality we may assume, that p > q.
1. If1<d<q<p, then N(fo) =d.
2. Ifd = q, then N (fo) =q— 1.
Proof. 1. There exist integers a, b such that

ap+bg =d.

We may assume, that @ > 0, b < 0 and a < q. Let’s take monomial z by,
This monomial belongs to .J, because —b > 0, ¢ — a > 0 and the point
(—b,q — a) lies under line T 1Y — 1 defined by the only segment of the

q
Newton polygon fp. Moreover it is an element of Jy, because the area of the
triangle with vertices (p,0), (0,q) and (—b,g—a) is equal to g which implies
/\((fs(_b’q_a))) =d > 0. Hence

N(fo) < d.

To prove the opposite inequality we will take any monomial z"y9~% € Jy,
r>0,g—s>0and r+ (g —s) > 0. Then the area of triangle with
| — sp+rq|

5 . Since z"y77% € Jy

vertices (p,0), (0,q), (r,q — s) is equal to
then | — sp+rq| > 0.
Consider cases:

1°7 > 0 and g—s > 0. Then by the property of greatest common divisor
| —sp+rgl>d
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and hence
A((f&re))) > d.

20 7 =0. Then ¢ — s > 0 and
ML) =sp—s=s(p—1) > sd > d.
30¢—s=0. Then r > 0 and
MM =@-rg—(p-r)=(-r)(a-1)>(p-r)d>d.
Hence by Theorem 2
N(fo) > d.
Together
X(fo) = d.
2. Observe first, that for the point (p — 1,0) we have

AU =2(50100) ~1= -1

Therefore A'(fo) < g — 1. On the other hand, taking any point of the form
(p—m,0),m=2,...,p—1 we get

1

AU <2(3 meg) ~m = mig-1) > a1

Similarly for any point of the form (0,q —m), m = 1,...,q — 1 we get
- 1

A((f§°’q m))) = 2(5 -m-p) —m =m(p—1) > g — 1. Consider now a point
(—u,q — w) € Jp such that —u > 0, ¢ —w > 0. Then A(( g—u,q—w))) _
I—up—wQI=qu£+w' 2q>q—1=
EXAMPLE 2. Let fo(z,y) = 74 — y*. From the above theorem ) (fo) = 3.
The jump is realized by the deformation fs(z,y) = z* — y* + sz.

Consider now a general case of a singularity which Newton polygon con-
sists of only one segment.

COROLLARY 2. Let fy be a non-degenerate and convenient singularity,
with the Newton polygon reduced to only one segment. Then this segment
connects points (p,0) and (0,q) for some p,q € N, p,q > 2. Moreover, if
d = GCD(p, q), then:

1. If 1 < d < min(p, q), then N (fo) = d.
2. If d = min(p, q), then X' (fo) = min(p,q) — 1.

Proof. The first part of the corollary is obvious, the second follows from
Corollary 1 and Theorem 3.
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6. The Milnor numbers of non-degenerate deformations of singu-
larities

Let fo be a non-degenerate and convenient singularity. Let

A,(fo) = (ﬂO, His 42y -, ,U/k)

be the strictly decreasing sequence of all possible Milnor numbers of all
non-degenerate deformations (fs) of fo. In particular, o = p(fo), 1 =
u(fo) — N(fo), ux = 0. From Corollary 2, we have a formula for u; in the
case fg is a singularity with one segment Newton polygon (in particular for
fo irreducible). Namely, if the ends of this segment are (p,0) and (0,q),
p,q > 2, then for d := GCD(p, q)

Loy =po(f) —d if 1<d<min(p,g),
2. 1 =po(f) —d+1 if d=min(p,q).

The main theorem of the paper is a formula for us in the same class of
singularities.

We consider first simple singularities of the form zP — y9. Since the case
p = q = 2 is trivial (we have A'(z? — y2) = (1,0)), we will confine to the
casesp > 2or q> 2.

THEOREM 4. Let fo(z,y)=2P —y?, p>q>2,p+q>5. Then
p2 = — L

In the proof we will use the following elementary lemma.

LEMMA 2. Letp,q € N, p>¢g>1 and d = GCD(p,q). Assume d < q t.e.
q1p. Then there exist a,b € Z such that

ap + bg = d, 0<a<%.

Moreover, a and b are unique and
GCD(a,b) = 1.

The proof of Theorem 4. Let’s consider cases:

1. ¢ | p. There exists n € N such that p = nqg. From Corollary 2
X (fo) = ¢ — 1 and the jump is realized by the point (p — 1,0) (precisely by
the deformation (fs(p*l’o))). Sincep>¢>2,p+q>5thenp—1>1
ie. f(z,y) = zP~! — y? is an isolated singularity. The assumption ¢ | p
implies GCD(p—1,q) = 1. Then there exists a, b such that a(p—1)+bg = 1,
0 < a < ¢. Then the point (—b,q — a) realizes the jump equal to 1 for the
function f(z,y) = zP~! — y9. So, the deformation composed of two points
(p—1,0) and (—b,q—a) (i.e. fs(z,y) = fo(z,y)+s2P~! +5270y9~?) realizes
the jump for fy equal to M (fp) + 1.
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2. g1 p. Then GCD(p,q) =:d < q. Let ap+bg=d,0<a <%, b<0,
GCD(a, b) = 1. Then the point (—b,q — a) realizes the jump X (fp) = d.

A

v

Observe that

19 GCD(a, —b) = 1

29 GCD(p+b,q—a) =1

1° Follows from Lemma 2. For 20 let GCD(p + b,q — a) = r. We have

a(p+b)+blg—a)=ap+ab+bg—ab=ap+bg=d.

Because r | (p+b) and r | (¢ —a),so 7 | d. Then r | p and r | g. Since
r | (p+b), then r | b and analogously r | (¢ — a) implies 7 | a. Because
GCD(a, b) = 1, we obtain r = 1.

Consider subcases:

(i)a=1.

e g = 2. Since g 1 p then p is odd. Then —b = %1 Moreover, the
point (—b, 1) realizes the jump equal to 1 for the function fo(z,y) = zP —y2.
Hence X (fo) = 1.

A

2

1

v

-b 26-1 -2b P

We easily check that the point (—2b—1,0) i.e. the deformation fs(z,y) =
fo(z,y) + sz~2%~1 realizes the jump equal to 2 = X(fo) + 1.

e ¢ > 2. Because GCD(p + b,q — 1) = 1, so there exist integers «, 3
such that a(p+b) + B(g—1) = 1,0 < o < ¢g—1, 8 < 0. The point
(=B,9 — 1 — ) realizes the jump equal to 1 for the function f(z,y) =
zPt® — 491, Since the point {—b,q — 1) gives the first jump equal to d, then
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two points (—b,q — 1) and (=8 — b,q — 1 — «) realize the jump d + 1 for
fo(z,y) = 2P — y?. In fact it suffices to show that the following broken line
(0,9)(~b,q — 1)(—8 — b,qg — 1 — &)(p, 0) is convex (as a graph of a function).

v

We must show that

-1 _(g-1)—-(¢g—-1-0a)
T (=B (b

ie.
ba— > 0.
But, we have p + bg = d and a(p+ b) + 8(¢ — 1) = 1. Calculating from

the first equality p + b = d — b(¢ — 1) and substituting to the second, we
get

a(d—-blg—1))+B(g—-1) =1
Hence after simple calculations we obtain

ad—1 —ab— 6.

g—1

Because ad —1 >0 and ¢ — 1 > 0, then ab — 3 > 0, as desired.

(i) b= —1. Then a =1 (because p > q), so we get the case (i).

(liiya=q—1,¢>3. Let @1 = (0,q) and Q2 = (p,0). From Theorem 3,
XN(fo) = d and the jump is realized by the point P, = (=b,1). By 1°
GCD(g—1, —b) = 1 hence the point (—3, g—a—1) with non-zero coordinates
realizes the jump equal to 1 for the function f(z,y) = z7% —y9~1. We claim
that the points P, = (=b,1) and P, = (—3,q — &) i.e. the deformation
fs(z,y) = folz,y) + sz~by + sz~Py9~ realize the jump equal to d + 1 =
N (fo)+1. In fact, it suffices to show that the broken line Q P, P, Q3 is convex
i.e. P, lies over the line Lg,p,. Since ¢ > 3 then the equality (g—1)p+bg = d
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implies that —p — 2b > 0. Then the point P; = (—p — 2b,2) lies on Lg,p,
and the area of the triangle Q1 P, P; is equal to %.

A
Q
'l—\a‘
| P
2 >
1 P,
P, >—-p
-B -p-2b -b Q.

Since P; realizes the jump for z~%—y9~! then p(P3, Lg,p) <p(P, Lo, p,).
Suppose to the contrary that P; lies beneath the line Lg,p,. Then P, would
lie on the right of P ie. —B8 > —p — 2b. Moreover, its second coordinate
g —1 > 1. The only point which satisfies these conditions is P;, which
contradicts the supposition.

(iv) b= —(p — 1). The case is imposible (because p > g).

(v)1<a<g-1,1<-b<p—1. Thenp+b>1and g—a > 1. Hence,
from 1° and 20 there exist points P;, P, realizing the jumps equal to 1 for the
functions fy(z,y) = 2 °—y® and fo(z,y) = 2PP—y97? respectively. Denote

Q1 =(0,q), Q2 = (=b,g—a), Q3 = (p,0) and 71 = Q1Q2, 72 = Q2Qs.
A
i

@,

v

e

We claim that the broken line Q;P1Q2Q3 or Q1Q2P2Q3 is convex (in

other words, one of the points P;, P» changes the Newton polygon of fs(—b’q_a)
only on segment 7; or v2). In fact, let h; = p(P;, ;) be the distance of P; to
the segment v;, ¢ = 1,2. We may assume that h; < hg (the case hy < hy is
analogous). If our claim would be false, then the point P; would lie beneath
the line L,, containing the segment ~o.
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Hence and from the convexity of Q1Q2Q3
b= p(P1, Ly,) < p(Pr, Ly, ) = ha.

In consequence h < hy. If we translate the point P; of a multiple of the
length of segment 72 along the direction of the line L,,, then we obtain a
point P, which will have integers coordinates and lie in a rectangle with one
side ¢ and second of lenght h. Since always h < 32@, then it is easy to check
that P, will lie in the triangle Q2Q2Q3, where Q; = (—b,0).

A

Q

But p(P2,72) = p(Pi,Ly,) = h < ho = p(Pa,72) which contradicts the
choice of the point P;.

We have proved that Q1 P1Q2Q3 or Q1Q2P>Q3 is convex. In consequence,
the points Pj, Q2 or Q2, P realize the jump d+1=XN(fo)+1. =

Summing up, we may formulate the known facts on Milnor numbers
associated to a singularity.
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COROLLARY 3. Let fo be a non-degenerate and convenient singularity,
which Newton polygon is reduced to one segment. If A'(fo) = (uo, 11, - - -, k)
is the sequence of Milnor numbers associated to fy, then

1. po = po(fo),
2. p s given in Corollary 2,

3. pe=pm —1L
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