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THE SECOND JUMP OF MILNOR NUMBERS 

Abstract. Let fo be a plane curve singularity. Let (¿to, Hi, - • •, Hk) be all possible 
Milnor numbers of non-degenerate deformations of fo (in decreasing order). We prove 
that fj,2 = Hi — 1 for fo with one segment Newton polygon (pi is given by the Bodin 
formula). 

1. Introduction 
Let /o : (C™, 0) —> (C, 0) be an isolated singularity (for short a singu-

larity), i.e. fo is the germ of a holomorphic function having an isolated 
critical point at 0. A deformation of fo is a family ( f s ) s e u °f isolated sin-
gularities (or smooth germs) analytically dependent on the parameter s in 
an open neighborhood U C C of 0 G C. The jump of Milnor numbers of the 
deformation (fs)seu is the number 

M ) ~ l * ( f . ) s e U \ { 0}, 
where fj,(fs) is the Milnor number of fs. This number is well defined because 
fi(fs) is independent of s ^ 0 for sufficiently small s. We will denote it 
by A ((fs))- Moreover, by the upper semi-continuity of \i (Proposition II.5.3 
in [8], Theorem 2.6 in [2]) it is a non-negative integer. The jump A(/o) 
(or the first jump) of fo is the minimum of the non-zero jumps of the ( f s ) 
over all deformations of fo- According to A. Bodin [1] N. A'Campo posed 
the problem to compute A(/o). It is still an open problem. S. Gusein-Zade 
[3] proved that there are singularities fo such that A(/o) > 1 and that for 
irreducible fo, A(/o) = 1. 

Bodin in [1] considered the following weaker problem: to compute the 
jump A ' ( / o ) of fo over all non-degenerate deformations of fo (i.e. fs are 
non-degenerate in the Kouchnirenko sense for s ^ 0). Of course, we have 
always X(fo) < A ' ( / o ) . For n = 2 he gave a formula for A ' ( / o ) for fo with the 
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Newton polygon reduced to one segment (in particular for /o irreducible; 
in this case A'(/o) = 1). Much more general problem is to compute all 
Milnor numbers arising from all deformations of /o or at least from all non-
degenerate deformations of /o. In the last case to each singularity /o we may 
associate a finite strictly decreasing sequence 

A'(fo) = (Mo, pti, - - -, Mfc), 
of all possible Milnor numbers of non-degenerate deformations of /o. We 
have fj,0 = ^(/o), £¿1 = M(/O) - A'(/0), /IFC = 0. This sequence may be 
curious. We easily check that 

1. for /0(x, y) = x8 - y5, we have A'(f0) = (28 ,27 , . . . , 0), 
2. for fo(x,y) = x8 - y\ we have A'(f0) = (21 ,18 ,17 , . . . ,0), 
3. for f0(x, y) = x7 - yb, we have A'(fo) = (24 ,23 , . . . , 16 ,15 ,13 ,12 . . . , 0). 

The Bodin formula gives for singularities with one segment Newton 
polygon. The main result of the paper is that for such singularities ¡JL2 = 

/¿1 — 1 i.e. the "second jump" of /o is always equal to 1. 

2. Non-degenerate singularities 
Let N = { 0 , 1 , 2 , . . . } . Let f0(x,y) = £ ( i j ) e r e O y z V , /o(0,0) = 0 be 

a singularity. Let supp(/o) := j) G N2 : aij ^ 0}. The Newton diagram 
of /o is the convex closure oi\J{i j)esuMfo){{i,j) + R2+), (R+ = {{x,y) G R2 : 

x > 0 A y > 0}). We denote it by r+(/0). 
The boundary of the Newton diagram /+(/o) is the union of two semi-

lines and a finite number of compact, non-parallel segments, which are not 
contained in these semi-lines. These segments constitute the Newton polygon 
of singularity /o, which we will denote by -T(/o)- Often we will identify pairs 
(i, j) G N2 with monomials x%yK We will call singularity /O convenient if 
r(/0) has common points with OX and OY axes. 

For segment 7 G -T(/o) we define (/0)7 := Yl(i,j)e-y a i jx lV j• W e c a l 1 

a singularity /O non-degenerate on 7 G r(fo) (in the Kouchnirenko sense), 
when the system of equations 

has no solutions in C* x C*. We call a singularity /o non-degenerate, when 
/o is non-degenerate on every segment 7 G F(/o). We notice that if ( f s ) 
is a deformation of /o, then for sufficiently small s ^ 0, Newton's diagram 
r+(f9) doesn't depend on s. 

Let /o be a convenient singularity. By S we denote area of the set 
bounded by OX and OY axes and the polygon -T(/o). By a and b we 



The second jump of Milnor numbers 363 

denote distance between the origin (0,0) and the common part of Newton 
polygon r+(fo) with OX and OY axes. 

For a convenient singularity fo we define its Newton's number by 

u(f0) := 2S — a — b + 1. 

It is easy to check that v(fo) > 0. 
We will remind a known theorem about non-degenerate singularities that 

we will use further. 

T H E O R E M 1 . (Kouchnirenko [4]) Assume that a singularity fo is conve-
nient. Then 

• Kfo) > f(/o), 
• if fo is non-degenerate, then n(fo) = v{fo). 

3. Non-degenerate jump of Milnor numbers of a singularity 
Let fo be a singularity. A deformation ( f s ) s e u of fo is called non-

degenerate if fs is non-degenerate for s / 0. The set of all non-degenerate 
deformations of the singularity fo we will denote Vnd{fo). Non-degenerate 
jump A'(/o) of the singularity fo is the minimal of non-zero jumps over all 
non-degenerate deformations fo, what means 

A'(/o) := min A((/,)), 
(fs)£VZd(fo) 

where by T>Qd(fo) we denote the all non-degenerate deformations ( f s ) of fo 
for which A((/„)) # 0. 

Obviously 

PROPOSITION 1 . For each singularity fo we have the inequality 

A(/o) < A'(/0). 

The above inequality may be strict. 
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EXAMPLE 1. Let fo(x,y) - x4 - y4. From Gusein-Zade [3] we have 
A(/o) > 1. It is easy to check, that A((/ s ) ) = 2 for fs(x, y) = x4 - (y2 + sx)2. 

Therefore A(/o) = 2. From the next part of the article (see Theorem 3 
and Example 2) we have \'(fo) = 3. It realizes non-degenerate deformation 
fs(x,y) = x4 — y4 + sx3, s EC. Therefore, in this case A(/o) < A'(/o). 

4. Formula for non-degenerate jump of a non-degenerate 
singularity 
First we recall definitions and some well known facts about quasi-homo-

geneous polynomials. Let / e Cp i , Y] be a non-constant polynomial. We 
call / quasi-homogeneous polynomial of degree d, when there exists 
(m, n) E N+ such that, GCD(m,n) = 1 and 

f{\mx,\ny) = \df{x,y). 

We call numbers m and n weights of variables x and y. f is a homogeneous 

polynomial, when m = n = 1. 

PROPERTY 1. Let f be a quasi-homogeneous polynomial with weights m 

and n. Then there exists a homogeneous polynomial (a form) v and numbers 

r, s E N such that 

f{x,y) = xrysu{xn,ym), u(x, 0 ) ^ 0 . 

The form v is called corresponding to fo• Before we give Bodin formula for 
non-degenerate jump we will recall known properties about non-degenerate 
singularities. Let /o be a singularity and .T(/o) its Newton polygon. 

PROPERTY 2. For any 7 € - T ( / o ) polynomial ( / o ) 7 is quasi-homogeneous. 

PROPERTY 3. For any 7 6 r(fo) the ends of 7 belong to supp/o- If 

7 doesn't contain any other point of supp/o besides ends, then fo is non-

degenerate on 7. 

PROPERTY 4. fo is non-degenerate on 7 6 - T ( / o ) ^ the form v correspond-

ing to (fo)y has no multiple factors discriminant A(v) of the form v is 

not zero. 

One can find Property 3 in [7] (the proof of Property 2.6) and Property 4 
in [5]. 

Let fo be a non-degenerate and convenient singularity. We will denote 
by J the set of all monomials xpyq, where p + q> 1, lying in closed domain 
bounded by axes and Newton diagram T+ (/o). Obviously J is a finite set. 

LEMMA 1. For any xpyq € J the deformation fs = fo + sxpyq, s G U, is 

non-degenerate. 
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Proof. Because xpyq G J, so for s / 0, supp(/s) = {(p, g ) } U supp/o. 
Therefore Newton diagram fs is constant for sufficiently small s / 0. Let 7 
be a segment of the Newton polygon of /s, for s / 0. We will consider cases: 

1- (Pi Q) & 7- Then ends 7 lie in supp/o, 7 is segment of Newton polygon 
of singularity fo and ( f s ) 1 = (/o)7- Because fo is non-degenerate, so fs is 
non-degenerate over 7 . 

2. (p, <7) G 7 and besides (p, <7) there exists the only one point from 
supp/o, (which we denote by (k, I)) lying in 7 . Then (k, Z) and (p, <7) are the 
ends of 7 . From Property 3 fs is non-degenerate on 7 . 

3. (p, 9) € 7 and besides (p, <7) there exist more than one point of supp(/s) 
lying on 7 . We will consider subcases: 

(i) (p, q) G r (/ 0 ) . Consider the discriminant A (s ) of the form vs corre-
sponding to (/s)7. The value A(0) is equal to the discriminant of the form 
corresponding to (/o)7, so A (0 ) 0 (because fo is non-degenerate on 7) . 
Therefore A (s ) 0 for s from sufficiently small neighborhood of zero. From 
Property 4, fs is non-degenerate on 7 . 

(ii) (p, q) $ r(fo). Then (p, q) is an end of 7 . In this case 7 is a contin-
uation of a certain segment 70 £ -T(/o)- Without loss of generality we may 
assume, that (p, q) is the left end of 7 . Let (fs)1(x, y) = (/o)7(a;, y) + sxpyq. 

From Property 2 the polynomial (/s)7 is quasi-homogeneous. We denote by 
m, n weights of variables x and y and d degree of this polynomial. From 
Property 1 there exists homogeneous polynomial vs and numbers r, t G N + 

such that 

(.fsUx,y) = xrytus(xn,ym) us(0,y) ± 0 , us(x,0) ± 0 . 

Hence and from assumption us(x,y) has the form 

vs(x, y) = syd + a\yd~lx + ... + adxd, where ad / 0. 

Consider the discriminant A (s ) of the form vs corresponding to (/s)7- It 
is easy to check that A (s ) = (ddaf~1) • sd+ terms of a degrees less than 
d. Because ad / 0, so degs A (s ) > 0. It means, that A ( s ) ^ 0 for s / 0 
in a certain neighborhood of zero. From Property 4 fs is non-degenerate 
on 7 . • 

Lemma 1 says, that for each convenient and non-degenerate singularity 
fo the deformation fs = fo + sxpyq, xpyq e J, s G U, is a non-degenerate 
deformation of fo. We will denote it by (/s(p'9)). In [1] Bodin gave the 
formula for A'(/o) in terms of the deformations (/jp '^). Since [1] has been 
published only in preprint form with sketchy proofs, we will give a full proof 
of the Bodin formula. 
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T H E O R E M 2. (Bodin [1]) If fo is a non-degenerate and convenient singu-

l a r i t y , then 

A'(/0) = A((/ i^))) , 
x P y l e J o 

where Jo C J is the set of monomials x p y q such that A ((/iP '^)) ^ 0. 

Proof. By the definition of X ' ( f o ) we have to prove the equality 

min ( M / o ) - / * ( / . ) ) = min (M/o) - M P ' q ) ) ) -
( f s ) e T > % d ( f 0 ) x P y « € J o 

The inequality " < " is obvious. We will prove the opposite inequality ">" . 
Take any non-degenerate deformation ( f s ) 6 T > Q d ( f o ) of f g . 

Rearranging terms in f s , s ^ 0, we can rewrite it as follows 

f s ( x , y) = / o ( : r , y) + c ^ x ^ y ^ + . . . + c k ( s ) x P k y q k + R { s , x , y ) , 

Ci / 0, Cj(0) = 0, ( P i , q i ) £ r ( f s ) , i = l , . . . , k , and suppil lie above the 
Newton polygon of f s . Because A((/ s)) > 0, it is easy to prove, that among 
points ( P i , q i ) , i = 1 , . . . , k , there exists a point ( P j , q j ) , such that A((/o + 
C j { s ) x p i y q i ) ) > 0. We will show, that for this j 

M ) - M / o + C j ( s ) x ^ y ^ ) < M / 0 ) - tifs). 

It is enough to prove that 

Let S i , S 2 be areas corresponding to deformations ( f o + c ] ( s ) x P ] y Q ] ) and 
( f s ) , respectively. By ai, b\ and <22, ¿2 we denote the distance beetwen the 
origin (0,0) and common part r ( f o + C j ( s ) x p i y q i ) and r ( f s ) with axes O X 

and O Y , respectively. Because deformations ( f o + C j ( s ) x p i y q i ) and ( f s ) are 
non-degenerate, so by the Kouchnirenko Theorem it is enough to prove, that 
2(Si - S 2 ) - (ai - a 2 ) - ( h - b2) > 0. 

We will consider possible cases: 
1. ai > a2, b\ > b2. We will denote by (mi, ni), I = 1 , . . . , t , consecutive 

vertices of the Newton polygon of r ( f o + C j ( s ) x p i y q j ) . From ai > a 2 , £>1 > b2 

it follows, that t > 3. We have, that (m\,n\) = (0, by) and ( m t , n t ) = (ai,0). 
If we consider now triangles with vertices: (0, 61), (0, b2), (m2, n2) and (ai, 0), 
( a 2 , 0 ) , ( m t ~ i , n t - i ) , then denoting by h i , h2 ( h i , h2 > 1) their heights to 
bases (0, 61), (0,62) and ( a i , 0), ( a 2 , 0 ) , respectively, we have 

2(S i - S 2 ) - ( a x - a 2 ) - (61 - 62) 

> 2 ( i ( o i - a 2 ) - h 2 + l - ( b 

= (ai - o2) • ( h 2 - 1) + ( h - b2) • (hi - 1) > 0. 

> 2(^(ai - a2) • h2 + ^(61 - b2) • hi) - (01 - a 2 ) - (h - b2) 
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2. oi > a2, b\ = b2. With the same notations as in the first case we have 
that 

2 ( 5 1 - 5 2 ) - ( 0 1 - 0 2 ) > 2 ^ ( a i - a 2 ) - / i 2 - ( a i - 0 2 ) = (01 -a2)-(h2-l) > 0. 

3. When a\ = a2 and 61 >62, we have situation analogical to the second 
case. 

4. If ai = a2, bi = b2, then obviously Si > S2 and then 2(Si — S2) > 0. 
Therefore in every case we have (•). • 

C O R O L L A R Y 1 . If fo, fo are non-degenerate and convenient singularities 
and r ( / 0 ) = r(f0), then A'(/0) - A'(/0). 

5. The case of one segment Newton polygon 
In some cases we can give exact value of the non-degenerate jump of 

a singularity. It happens when Newton polygon of fo consists of only one 
segment (particularly when fo is an irreducible singularity). We will begin 
with the simplest case. 
T H E O R E M 3 . (Bodin [1]) Let fo(x,y) = xv - yq, p,q > 2 and d := 
GCD(p, q). Without loss of generality we may assume, that p > q. 

1. If 1 < d < q < p, then A'(/0) = d. 

2. Ifd = q, then X'(f0)=q-l. 
Proof. 1. There exist integers a, b such that 

ap + bq = d. 
We may assume, that a > 0, b < 0 and a < q. Let's take monomial x~byq~a. 
This monomial belongs to J , because — b > 0 , q — a > 0 and the point 

x y 
(—b,q — a) lies under line —I— = 1 defined by the only segment of the p q 
Newton polygon fo. Moreover it is an element of Jo, because the area of the 

triangle with vertices (p, 0), (0, q) and (—b,q — a) is equal to - which implies 
A ((f{

s~b'9~a))) = d> 0. Hence 

A'(/o) < d. 
To prove the opposite inequality we will take any monomial xryq~s 6 Jo, 

r>0, q-s>0 and r + (q — s) > 0. Then the area of triangle with 
— SJ) TO] 

vertices (p,0), (0,q), (r,q — s) is equal to Since xRYQ~S G Jq 
¿1 

then | — sp + rq\ > 0. 
Consider cases: 
1° r > 0 and q — s > 0. Then by the property of greatest common divisor 

| — sp + rq\ > d 
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and hence 

A((/jr'9-s))) > d. 

2° r = 0. Then q - s > 0 and 

A((/(°.9-«))) = Sp - s = s(p - 1) > sd > d. 

3° q - s = 0. Then r > 0 and 

A((/i r '0 ) ) ) = (P - r ) 9 - (p - r ) = (p - r ) (g - 1) > (p - r)d > d. 

Hence by Theorem 2 
A'(/o) > d. 

Together 

A'(/o) = d. 

2. Observe first, that for the point (p — 1,0) we have 

A « / ^ ) ) = 2 ( 1 - 1 . , ) 1 = 5 - 1 . 

Therefore X'(fo) < <? — 1. On the other hand, taking any point of the form 
(p — m, 0), m — 2 , . . . ,p — 1 we get 

A ( ( / (p-m,0) ) } = • m • ̂  - m = m(g - 1) > g - 1. 

Similarly for any point of the form (0,q — m), m = l,...,q — 1 we get 

A({fs°'q m^)) = 2 ( - - m- p) — m — m(p — 1) > q — 1. Consider now a point 
At 

( - « , ? - w) G Jo such that - « > 0, g - to > 0. Then \((f^~u'9~w))) = 

| — up — wq\ = q 
up 

\-w > $ > 9 - 1 . 
Q 

EXAMPLE 2. Let fo(x,y) = x 4 - Y4. From the above theorem A ' ( / o ) = 3. 
The jump is realized by the deformation fs(x, y) = x4 — y4 + sx3. 

Consider now a general case of a singularity which Newton polygon con-
sists of only one segment. 

COROLLARY 2. Let fo be a non-degenerate and convenient singularity, 

with the Newton polygon reduced to only one segment. Then this segment 

connects points (p, 0) and (0,q) for some p, q E N, p, q > 2. Moreover, if 

d = GCD (p,q), then: 

1. If 1 < d < min(p, q), then A ' ( / o ) = d. 

2. If d = min(p, q), then X'(fo) = — 1-

Proof. The first part of the corollary is obvious, the second follows from 
Corollary 1 and Theorem 3. • 
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6. The Milnor numbers of non-degenerate deformations of singu-
larities 
Let /o be a non-degenerate and convenient singularity. Let 

A'(fo) = {[¿0, ¡¿I, H2: • • • j Hk) 

be the strictly decreasing sequence of all possible Milnor numbers of all 
non-degenerate deformations ( f s ) of /o- In particular, /io = n(fo), Hi = 

H(fo) — A'(/o), Hk = 0. From Corollary 2, we have a formula for hi in the 
case /o is a singularity with one segment Newton polygon (in particular for 
/o irreducible). Namely, if the ends of this segment are (p, 0) and (0, q), 
p,q> 2, then for d := GCD(p, q) 

1. hi = no(f) - d if 1 < d < mm(p,q), 
2. hi = Ho(/) - d + 1 if d = min(p, q). 

The main theorem of the paper is a formula for H2 in the same class of 
singularities. 

We consider first simple singularities of the form xp — yq. Since the case 
p = q = 2 is trivial (we have A'(x2 — y2) = (1,0)), we will confine to the 
cases p > 2 or q > 2. 

T H E O R E M 4 . Let fo(x, y) = xp - yq, p > q > 2, p + q > 5. Then 

H2 = Hi ~ 1-
In the proof we will use the following elementary lemma. 

L E M M A 2 . Let p, p > q> 1 and d = GCD(p, q). Assume d < q i.e. 
q\p. Then there exist a,b € Z such that 

ap + bq = d, 0 < a < 
d 

Moreover, a and b are unique and 

GCD(a, b) = 1. 

The proof of Theorem 4. Let's consider cases: 
1. q | p. There exists n € N such that p ~ nq. From Corollary 2 

A ' ( / 0 ) = q — 1 and the jump is realized by the point (p — 1 ,0) (precisely by 
the deformation (/iP_1 '°^)). Since p > q > 2, p + q > 5, then p — 1 > 1 
i.e. f(x,y) = xp~l — yq is an isolated singularity. The assumption q \ p 
implies GCD(p— 1, q) = 1. Then there exists a, b such that a(p — 1) + bq = 1, 
0 < a < q. Then the point (—b,q — a) realizes the jump equal to 1 for the 
function f(x,y) = xp~l - yq. So, the deformation composed of two points 
(p—1,0) and (—b,q — a) (i.e. fs(x,y) = fo(x,y) + 4-sx~byq~a) realizes 
the jump for /o equal to X'(fo) + 1. 
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2. q \ p. Then GCD(p, q) =: d < q. Let ap + bq = d, 0 < a < b < 0, 
GCD(a,b) = 1. Then the point (—b,q — a) realizes the jump A'(/o) = d. 

Observe that 
1° GCD(a, —b) = 1 
2° GCD(p + b,q-a) = 1 
1° Follows from Lemma 2. For 2° let GCD(p + b, q - a) = r. We have 

a(p + b) + b(q — a) = ap + ab + bq — ab = ap + bq = d. 

Because r | (p + b) and r \ (q — a), so r \ d. Then r | p and r | q. Since 
r | (p + b), then r | b and analogously r \ (q — a) implies r | a. Because 
GCD(a, b) = 1, we obtain r = 1. 

Consider subcases: 

(i) a = 1. 

• q = 2. Since q \ p then p is odd. Then — 6 = Moreover, the 
point (—6,1) realizes the jump equal to 1 for the function fo(x, y) = xp — y2. 
Hence A'(/0) = 1. 

We easily check that the point (—2b— 1,0) i.e. the deformation fs(x, y) = 
fo(x,y) + realizes the jump equal to 2 = X'(fo) + 1-

• q > 2. Because GCD(p + b,q — 1) = 1, so there exist integers a, ¡3 
such that a(p + b) + @(q - 1) = 1, 0 < a < q - 1, ¡3 < 0. The point 
(—fi,q — 1 — a) realizes the jump equal to 1 for the function f(x,y) = 
xp+h — yq~l• Since the point (—6, q — 1) gives the first jump equal to d, then 
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two points (—6, q — 1) and (—¡3 — b, q — 1 — a) realize the jump d + 1 for 
/ 0 (x , y) = xp — yq. In fact it suffices to show that the following broken line 
(0, q)(—b, q — !)(—/? — b,q — 1 — a)(p, 0) is convex (as a graph of a function). 

We must show that 

- 1 ( g - l ) - ( g - l - q ) 
b ~ ( - b - P ) - ( - b ) 

i.e. 

ba-/3> 0 . 

But, we have p + bq = d and a(p + b) + ¡3(q — 1) = 1. Calculating from 
the first equality p + b = d — b(q — 1) and substituting to the second, we 
get 

a ( d - & ( 9 - l ) ) + / ? ( g - l ) = l . 

Hence after simple calculations we obtain 

a d ~ 1 u a — = ab- ¡3. 
q - 1 

Because ad — 1 > 0 and q — 1 > 0, then ab — (3 > 0, as desired. 
(ii) b = — 1. Then a = 1 (because p > q), so we get the case (i). 
(iii) a = q — 1, q > 3. Let Q\ = (0, q) and Q2 = (p, 0). From Theorem 3, 

A'(/0) = d and the jump is realized by the point Pi = (—6,1). By 1° 
GCD(g—1, —6) = 1 hence the point (—(3, q — a—1) with non-zero coordinates 
realizes the jump equal to 1 for the function f(x, y) = x~b — yq~l. We claim 
that the points Pi = (—6,1) and P2 = (—(3, q — a) i.e. the deformation 
fs(x,y) = fo(x,y) + sx~by + sx~^yq~a realize t h e j u m p equal t o d + 1 = 
A'(/o)+l . In fact, it suffices to show that the broken line Q1P2P1Q2 is convex 
i.e. P2 lies over the line LQ2P1 . Since q > 3 then the equality (q—l)p+bq = d 
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implies that —p — 2b> 0. Then the point Pi = (— p — 2b, 2) lies on LQ2Px 

and the area of the triangle Q\P\P\ is equal to 

Since P2 realizes the jump for x~h—yq~1 then p(P2, Lq1p1 ) < p{PI,Lq1pí). 
Suppose to the contrary that P2 lies beneath the line LQ2P1 . Then P2 would 
lie on the right of P\ i.e. — (3 > —p — 26. Moreover, its second coordinate 
q — 1 > 1. The only point which satisfies these conditions is Pi, which 
contradicts the supposition. 

(iv) b = —(p— 1). The case is imposible (because p> q). 
(v) 1 < a < q — 1, 1 < — b < p— 1. Then p + b > 1 and q — a> 1. Hence, 

from Io and 2° there exist points P\, P2 realizing the jumps equal to 1 for the 
functions fi(x,y) = x~b—ya and /^(x,y) = xp+b—yq~a, respectively. Denote 
Ql = (0, q), Q2 = (~b, q - a), Q3 = (p, 0) and 71 = Q1Q2, 72 = Q2Q3-

We claim that the broken line Q1P1Q2Q3 or Q1Q2P2Q3 is convex (in 
other words, one of the points P\, P2 changes the Newton polygon of /j b'9 ^ 
only on segment 71 or 72). In fact, let hi = p(Pj, 7 )̂ be the distance of Pi to 
the segment i = 1,2. We may assume that h\ < /12 (the case /12 < h\ is 
analogous). If our claim would be false, then the point Pi would lie beneath 
the line L12 containing the segment 72. 
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Hence and from the convexity of Q1Q2Q3 

h := p(P\,L12) < p ( P i , L 7 1 ) = h\. 

In consequence h < If we translate the point P\ of a multiple of the 

length of segment 72 along the direction of the line Ll2, then we obtain a 

point P2, which will have integers coordinates and lie in a rectangle with one 

side 72 and second of lenght h. Since always h < then it is easy to check 

that P2 will lie in the triangle Q2Q2Q3, where Q2 = (—6,0). 

But p(P2,72) = p{P\, L12) = h < h,2 = p(P2,72) which contradicts the 

choice of the point P2. 

We have proved that Q1P1Q2Q3 or Q1Q2P2Q3 is convex. In consequence, 

the points Pi, Q2 or Q2, P2 realize the jump d+1 = \'(fo) + 1. • 

Summing up, we may formulate the known facts on Milnor numbers 
associated to a singularity. 
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C O R O L L A R Y 3. Let fo be a non-degenerate and convenient singularity, 

which Newton polygon is reduced to one segment. I f A ' ( f o ) = (/¿o, Mil • • • > Mfc) 

is the sequence of Milnor numbers associated to fo, then 

1. hq = no(fo), 

2. /¿i is given in Corollary 2, 

3. ¿¿2 = Hi ~ 1. 
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