

Justyna Walewska

THE SECOND JUMP OF MILNOR NUMBERS

Abstract. Let f_0 be a plane curve singularity. Let $(\mu_0, \mu_1, \dots, \mu_k)$ be all possible Milnor numbers of non-degenerate deformations of f_0 (in decreasing order). We prove that $\mu_2 = \mu_1 - 1$ for f_0 with one segment Newton polygon (μ_1 is given by the Bodin formula).

1. Introduction

Let $f_0 : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ be an isolated singularity (for short a singularity), i.e. f_0 is the germ of a holomorphic function having an isolated critical point at 0. A *deformation* of f_0 is a family $(f_s)_{s \in U}$ of isolated singularities (or smooth germs) analytically dependent on the parameter s in an open neighborhood $U \subset \mathbb{C}$ of $0 \in \mathbb{C}$. The *jump of Milnor numbers of the deformation* $(f_s)_{s \in U}$ is the number

$$\mu(f_0) - \mu(f_s) \quad s \in U \setminus \{0\},$$

where $\mu(f_s)$ is the Milnor number of f_s . This number is well defined because $\mu(f_s)$ is independent of $s \neq 0$ for sufficiently small s . We will denote it by $\lambda((f_s))$. Moreover, by the upper semi-continuity of μ (Proposition II.5.3 in [8], Theorem 2.6 in [2]) it is a non-negative integer. The *jump* $\lambda(f_0)$ (or the first jump) of f_0 is the minimum of the non-zero jumps of the (f_s) over all deformations of f_0 . According to A. Bodin [1] N. A'Campo posed the problem to compute $\lambda(f_0)$. It is still an open problem. S. Gusein-Zade [3] proved that there are singularities f_0 such that $\lambda(f_0) > 1$ and that for irreducible f_0 , $\lambda(f_0) = 1$.

Bodin in [1] considered the following weaker problem: to compute the jump $\lambda'(f_0)$ of f_0 over all non-degenerate deformations of f_0 (i.e. f_s are non-degenerate in the Kouchnirenko sense for $s \neq 0$). Of course, we have always $\lambda(f_0) \leq \lambda'(f_0)$. For $n = 2$ he gave a formula for $\lambda'(f_0)$ for f_0 with the

2000 *Mathematics Subject Classification*: 32S30, 14B07.

Key words and phrases: deformation of singularity, Milnor number, Newton polygon, non-degenerate singularity.

Newton polygon reduced to one segment (in particular for f_0 irreducible; in this case $\lambda'(f_0) = 1$). Much more general problem is to compute all Milnor numbers arising from all deformations of f_0 or at least from all non-degenerate deformations of f_0 . In the last case to each singularity f_0 we may associate a finite strictly decreasing sequence

$$\Lambda'(f_0) = (\mu_0, \mu_1, \dots, \mu_k),$$

of all possible Milnor numbers of non-degenerate deformations of f_0 . We have $\mu_0 = \mu(f_0)$, $\mu_1 = \mu(f_0) - \lambda'(f_0)$, $\mu_k = 0$. This sequence may be curious. We easily check that

1. for $f_0(x, y) = x^8 - y^5$, we have $\Lambda'(f_0) = (28, 27, \dots, 0)$,
2. for $f_0(x, y) = x^8 - y^4$, we have $\Lambda'(f_0) = (21, 18, 17, \dots, 0)$,
3. for $f_0(x, y) = x^7 - y^5$, we have $\Lambda'(f_0) = (24, 23, \dots, 16, 15, 13, 12, \dots, 0)$.

The Bodin formula gives μ_1 for singularities with one segment Newton polygon. The main result of the paper is that for such singularities $\mu_2 = \mu_1 - 1$ i.e. the "second jump" of f_0 is always equal to 1.

2. Non-degenerate singularities

Let $\mathbb{N} = \{0, 1, 2, \dots\}$. Let $f_0(x, y) = \sum_{(i,j) \in \mathbb{N}^2} a_{ij} x^i y^j$, $f_0(0, 0) = 0$ be a singularity. Let $\text{supp}(f_0) := \{(i, j) \in \mathbb{N}^2 : a_{ij} \neq 0\}$. The *Newton diagram* of f_0 is the convex closure of $\bigcup_{(i,j) \in \text{supp}(f_0)} ((i, j) + \mathbb{R}_+^2)$, ($\mathbb{R}_+^2 = \{(x, y) \in \mathbb{R}^2 : x \geq 0 \wedge y \geq 0\}$). We denote it by $\Gamma_+(f_0)$.

The boundary of the Newton diagram $\Gamma_+(f_0)$ is the union of two semi-lines and a finite number of compact, non-parallel segments, which are not contained in these semi-lines. These segments constitute the *Newton polygon of singularity f_0* , which we will denote by $\Gamma(f_0)$. Often we will identify pairs $(i, j) \in \mathbb{N}^2$ with monomials $x^i y^j$. We will call singularity f_0 *convenient* if $\Gamma(f_0)$ has common points with OX and OY axes.

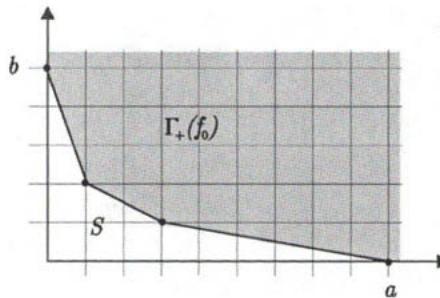
For segment $\gamma \in \Gamma(f_0)$ we define $(f_0)_\gamma := \sum_{(i,j) \in \gamma} a_{ij} x^i y^j$. We call a singularity f_0 *non-degenerate on $\gamma \in \Gamma(f_0)$* (in the Kouchnirenko sense), when the system of equations

$$\frac{\partial(f_0)_\gamma}{\partial x}(x, y) = 0, \quad \frac{\partial(f_0)_\gamma}{\partial y}(x, y) = 0$$

has no solutions in $\mathbb{C}^* \times \mathbb{C}^*$. We call a singularity f_0 *non-degenerate*, when f_0 is non-degenerate on every segment $\gamma \in \Gamma(f_0)$. We notice that if (f_s) is a deformation of f_0 , then for sufficiently small $s \neq 0$, Newton's diagram $\Gamma_+(f_s)$ doesn't depend on s .

Let f_0 be a convenient singularity. By S we denote area of the set bounded by OX and OY axes and the polygon $\Gamma(f_0)$. By a and b we

denote distance between the origin $(0, 0)$ and the common part of Newton polygon $\Gamma_+(f_0)$ with OX and OY axes.



For a convenient singularity f_0 we define its *Newton's number* by

$$\nu(f_0) := 2S - a - b + 1.$$

It is easy to check that $\nu(f_0) \geq 0$.

We will remind a known theorem about non-degenerate singularities that we will use further.

THEOREM 1. (Kouchnirenko [4]) *Assume that a singularity f_0 is convenient. Then*

- $\mu(f_0) \geq \nu(f_0)$,
- if f_0 is non-degenerate, then $\mu(f_0) = \nu(f_0)$.

3. Non-degenerate jump of Milnor numbers of a singularity

Let f_0 be a singularity. A deformation $(f_s)_{s \in U}$ of f_0 is called *non-degenerate* if f_s is non-degenerate for $s \neq 0$. The set of all non-degenerate deformations of the singularity f_0 we will denote $\mathcal{D}^{nd}(f_0)$. *Non-degenerate jump* $\lambda'(f_0)$ of the singularity f_0 is the minimal of non-zero jumps over all non-degenerate deformations f_0 , what means

$$\lambda'(f_0) := \min_{(f_s) \in \mathcal{D}_0^{nd}(f_0)} \lambda((f_s)),$$

where by $\mathcal{D}_0^{nd}(f_0)$ we denote the all non-degenerate deformations (f_s) of f_0 for which $\lambda((f_s)) \neq 0$.

Obviously

PROPOSITION 1. *For each singularity f_0 we have the inequality*

$$\lambda(f_0) \leq \lambda'(f_0).$$

The above inequality may be strict.

EXAMPLE 1. Let $f_0(x, y) = x^4 - y^4$. From Gusein-Zade [3] we have $\lambda(f_0) > 1$. It is easy to check, that $\lambda((f_s)) = 2$ for $f_s(x, y) = x^4 - (y^2 + sx)^2$. Therefore $\lambda(f_0) = 2$. From the next part of the article (see Theorem 3 and Example 2) we have $\lambda'(f_0) = 3$. It realizes non-degenerate deformation $f_s(x, y) = x^4 - y^4 + sx^3$, $s \in \mathbb{C}$. Therefore, in this case $\lambda(f_0) < \lambda'(f_0)$.

4. Formula for non-degenerate jump of a non-degenerate singularity

First we recall definitions and some well known facts about quasi-homogeneous polynomials. Let $f \in \mathbb{C}[X, Y]$ be a non-constant polynomial. We call f *quasi-homogeneous polynomial of degree d* , when there exists $(m, n) \in \mathbb{N}_+^2$ such that, $\text{GCD}(m, n) = 1$ and

$$f(\lambda^m x, \lambda^n y) = \lambda^d f(x, y).$$

We call numbers m and n *weights of variables x and y* . f is a *homogeneous polynomial*, when $m = n = 1$.

PROPERTY 1. *Let f be a quasi-homogeneous polynomial with weights m and n . Then there exists a homogeneous polynomial (a form) ν and numbers $r, s \in \mathbb{N}$ such that*

$$f(x, y) = x^r y^s \nu(x^n, y^m), \quad \nu(0, y) \neq 0, \quad \nu(x, 0) \neq 0.$$

The form ν is called *corresponding to f_0* . Before we give Bodin formula for non-degenerate jump we will recall known properties about non-degenerate singularities. Let f_0 be a singularity and $\Gamma(f_0)$ its Newton polygon.

PROPERTY 2. *For any $\gamma \in \Gamma(f_0)$ polynomial $(f_0)_\gamma$ is quasi-homogeneous.*

PROPERTY 3. *For any $\gamma \in \Gamma(f_0)$ the ends of γ belong to $\text{supp } f_0$. If γ doesn't contain any other point of $\text{supp } f_0$ besides ends, then f_0 is non-degenerate on γ .*

PROPERTY 4. *f_0 is non-degenerate on $\gamma \in \Gamma(f_0) \Leftrightarrow$ the form ν corresponding to $(f_0)_\gamma$ has no multiple factors \Leftrightarrow discriminant $\Delta(\nu)$ of the form ν is not zero.*

One can find Property 3 in [7] (the proof of Property 2.6) and Property 4 in [5].

Let f_0 be a non-degenerate and convenient singularity. We will denote by J the set of all monomials $x^p y^q$, where $p + q \geq 1$, lying in closed domain bounded by axes and Newton diagram $\Gamma_+(f_0)$. Obviously J is a finite set.

LEMMA 1. *For any $x^p y^q \in J$ the deformation $f_s = f_0 + sx^p y^q$, $s \in U$, is non-degenerate.*

Proof. Because $x^p y^q \in J$, so for $s \neq 0$, $\text{supp}(f_s) = \{(p, q)\} \cup \text{supp } f_0$. Therefore Newton diagram f_s is constant for sufficiently small $s \neq 0$. Let γ be a segment of the Newton polygon of f_s , for $s \neq 0$. We will consider cases:

1. $(p, q) \notin \gamma$. Then ends γ lie in $\text{supp } f_0$, γ is segment of Newton polygon of singularity f_0 and $(f_s)_\gamma = (f_0)_\gamma$. Because f_0 is non-degenerate, so f_s is non-degenerate over γ .

2. $(p, q) \in \gamma$ and besides (p, q) there exists the only one point from $\text{supp } f_0$, (which we denote by (k, l)) lying in γ . Then (k, l) and (p, q) are the ends of γ . From Property 3 f_s is non-degenerate on γ .

3. $(p, q) \in \gamma$ and besides (p, q) there exist more than one point of $\text{supp}(f_s)$ lying on γ . We will consider subcases:

(i) $(p, q) \in \Gamma(f_0)$. Consider the discriminant $\Delta(s)$ of the form ν_s corresponding to $(f_s)_\gamma$. The value $\Delta(0)$ is equal to the discriminant of the form corresponding to $(f_0)_\gamma$, so $\Delta(0) \neq 0$ (because f_0 is non-degenerate on γ). Therefore $\Delta(s) \neq 0$ for s from sufficiently small neighborhood of zero. From Property 4, f_s is non-degenerate on γ .

(ii) $(p, q) \notin \Gamma(f_0)$. Then (p, q) is an end of γ . In this case γ is a continuation of a certain segment $\gamma_0 \in \Gamma(f_0)$. Without loss of generality we may assume, that (p, q) is the left end of γ . Let $(f_s)_\gamma(x, y) = (f_0)_\gamma(x, y) + sx^p y^q$. From Property 2 the polynomial $(f_s)_\gamma$ is quasi-homogeneous. We denote by m, n weights of variables x and y and d degree of this polynomial. From Property 1 there exists homogeneous polynomial ν_s and numbers $r, t \in \mathbb{N}_+$ such that

$$(f_s)_\gamma(x, y) = x^r y^t \nu_s(x^n, y^m) \quad \nu_s(0, y) \neq 0, \quad \nu_s(x, 0) \neq 0.$$

Hence and from assumption $\nu_s(x, y)$ has the form

$$\nu_s(x, y) = sy^d + a_1 y^{d-1} x + \dots + a_d x^d, \quad \text{where } a_d \neq 0.$$

Consider the discriminant $\Delta(s)$ of the form ν_s corresponding to $(f_s)_\gamma$. It is easy to check that $\Delta(s) = (d^d a_d^{d-1}) \cdot s^d + \text{terms of a degrees less than } d$. Because $a_d \neq 0$, so $\deg_s \Delta(s) > 0$. It means, that $\Delta(s) \neq 0$ for $s \neq 0$ in a certain neighborhood of zero. From Property 4 f_s is non-degenerate on γ . ■

Lemma 1 says, that for each convenient and non-degenerate singularity f_0 the deformation $f_s = f_0 + sx^p y^q$, $x^p y^q \in J$, $s \in U$, is a non-degenerate deformation of f_0 . We will denote it by $(f_s^{(p, q)})$. In [1] Bodin gave the formula for $\lambda'(f_0)$ in terms of the deformations $(f_s^{(p, q)})$. Since [1] has been published only in preprint form with sketchy proofs, we will give a full proof of the Bodin formula.

THEOREM 2. (Bodin [1]) *If f_0 is a non-degenerate and convenient singularity, then*

$$\lambda'(f_0) = \min_{x^p y^q \in J_0} \lambda((f_s^{(p,q)})),$$

where $J_0 \subset J$ is the set of monomials $x^p y^q$ such that $\lambda((f_s^{(p,q)})) \neq 0$.

Proof. By the definition of $\lambda'(f_0)$ we have to prove the equality

$$\min_{(f_s) \in \mathcal{D}_0^{nd}(f_0)} (\mu(f_0) - \mu(f_s)) = \min_{x^p y^q \in J_0} (\mu(f_0) - \mu(f_s^{(p,q)})).$$

The inequality “ \leq ” is obvious. We will prove the opposite inequality “ \geq ”. Take any non-degenerate deformation $(f_s) \in \mathcal{D}_0^{nd}(f_0)$ of f_0 .

Rearranging terms in f_s , $s \neq 0$, we can rewrite it as follows

$$f_s(x, y) = f_0(x, y) + c_1(s)x^{p_1}y^{q_1} + \dots + c_k(s)x^{p_k}y^{q_k} + R(s, x, y),$$

$c_i \neq 0$, $c_i(0) = 0$, $(p_i, q_i) \in \Gamma(f_s)$, $i = 1, \dots, k$, and $\text{supp}R$ lie above the Newton polygon of f_s . Because $\lambda((f_s)) > 0$, it is easy to prove, that among points (p_i, q_i) , $i = 1, \dots, k$, there exists a point (p_j, q_j) , such that $\lambda((f_0 + c_j(s)x^{p_j}y^{q_j})) > 0$. We will show, that for this j

$$\mu(f_0) - \mu(f_0 + c_j(s)x^{p_j}y^{q_j}) \leq \mu(f_0) - \mu(f_s).$$

It is enough to prove that

$$(\star) \quad \mu(f_0 + c_j(s)x^{p_j}y^{q_j}) \geq \mu(f_s).$$

Let S_1 , S_2 be areas corresponding to deformations $(f_0 + c_j(s)x^{p_j}y^{q_j})$ and (f_s) , respectively. By a_1 , b_1 and a_2 , b_2 we denote the distance between the origin $(0, 0)$ and common part $\Gamma(f_0 + c_j(s)x^{p_j}y^{q_j})$ and $\Gamma(f_s)$ with axes OX and OY , respectively. Because deformations $(f_0 + c_j(s)x^{p_j}y^{q_j})$ and (f_s) are non-degenerate, so by the Kouchnirenko Theorem it is enough to prove, that $2(S_1 - S_2) - (a_1 - a_2) - (b_1 - b_2) \geq 0$.

We will consider possible cases:

1. $a_1 > a_2$, $b_1 > b_2$. We will denote by (m_l, n_l) , $l = 1, \dots, t$, consecutive vertices of the Newton polygon of $\Gamma(f_0 + c_j(s)x^{p_j}y^{q_j})$. From $a_1 > a_2$, $b_1 > b_2$ it follows, that $t \geq 3$. We have, that $(m_1, n_1) = (0, b_1)$ and $(m_t, n_t) = (a_1, 0)$. If we consider now triangles with vertices: $(0, b_1)$, $(0, b_2)$, (m_2, n_2) and $(a_1, 0)$, $(a_2, 0)$, (m_{t-1}, n_{t-1}) , then denoting by h_1 , h_2 ($h_1, h_2 \geq 1$) their heights to bases $(0, b_1)$, $(0, b_2)$ and $(a_1, 0)$, $(a_2, 0)$, respectively, we have

$$\begin{aligned} 2(S_1 - S_2) - (a_1 - a_2) - (b_1 - b_2) \\ \geq 2\left(\frac{1}{2}(a_1 - a_2) \cdot h_2 + \frac{1}{2}(b_1 - b_2) \cdot h_1\right) - (a_1 - a_2) - (b_1 - b_2) \\ = (a_1 - a_2) \cdot (h_2 - 1) + (b_1 - b_2) \cdot (h_1 - 1) \geq 0. \end{aligned}$$

2. $a_1 > a_2, b_1 = b_2$. With the same notations as in the first case we have that

$$2(S_1 - S_2) - (a_1 - a_2) \geq 2 \cdot \frac{1}{2}(a_1 - a_2) \cdot h_2 - (a_1 - a_2) = (a_1 - a_2) \cdot (h_2 - 1) \geq 0.$$

3. When $a_1 = a_2$ and $b_1 > b_2$, we have situation analogical to the second case.

4. If $a_1 = a_2, b_1 = b_2$, then obviously $S_1 \geq S_2$ and then $2(S_1 - S_2) \geq 0$. Therefore in every case we have (\star) . ■

COROLLARY 1. *If f_0, \tilde{f}_0 are non-degenerate and convenient singularities and $\Gamma(f_0) = \Gamma(\tilde{f}_0)$, then $\lambda'(f_0) = \lambda'(\tilde{f}_0)$.*

5. The case of one segment Newton polygon

In some cases we can give exact value of the non-degenerate jump of a singularity. It happens when Newton polygon of f_0 consists of only one segment (particularly when f_0 is an irreducible singularity). We will begin with the simplest case.

THEOREM 3. (Bodin [1]) *Let $f_0(x, y) = x^p - y^q$, $p, q \geq 2$ and $d := \text{GCD}(p, q)$. Without loss of generality we may assume, that $p \geq q$.*

1. *If $1 \leq d < q \leq p$, then $\lambda'(f_0) = d$.*
2. *If $d = q$, then $\lambda'(f_0) = q - 1$.*

Proof. 1. There exist integers a, b such that

$$ap + bq = d.$$

We may assume, that $a > 0, b < 0$ and $a < q$. Let's take monomial $x^{-b}y^{q-a}$. This monomial belongs to J , because $-b > 0, q - a > 0$ and the point $(-b, q - a)$ lies under line $\frac{x}{p} + \frac{y}{q} = 1$ defined by the only segment of the Newton polygon f_0 . Moreover it is an element of J_0 , because the area of the triangle with vertices $(p, 0), (0, q)$ and $(-b, q - a)$ is equal to $\frac{d}{2}$ which implies $\lambda((f_s^{(-b, q-a)})) = d > 0$. Hence

$$\lambda'(f_0) \leq d.$$

To prove the opposite inequality we will take any monomial $x^r y^{q-s} \in J_0$, $r \geq 0, q - s \geq 0$ and $r + (q - s) > 0$. Then the area of triangle with vertices $(p, 0), (0, q), (r, q - s)$ is equal to $\frac{|-sp + rq|}{2}$. Since $x^r y^{q-s} \in J_0$ then $|-sp + rq| > 0$.

Consider cases:

- 1⁰ $r > 0$ and $q - s > 0$. Then by the property of greatest common divisor

$$|-sp + rq| \geq d$$

and hence

$$\lambda((f_s^{(r,q-s)})) \geq d.$$

2⁰ $r = 0$. Then $q - s > 0$ and

$$\lambda((f_s^{(0,q-s)})) = sp - s = s(p - 1) \geq sd \geq d.$$

3⁰ $q - s = 0$. Then $r > 0$ and

$$\lambda((f_s^{(r,0)})) = (p - r)q - (p - r) = (p - r)(q - 1) \geq (p - r)d \geq d.$$

Hence by Theorem 2

$$\lambda'(f_0) \geq d.$$

Together

$$\lambda'(f_0) = d.$$

2. Observe first, that for the point $(p - 1, 0)$ we have

$$\lambda((f_s^{(p-1,0)})) = 2\left(\frac{1}{2} \cdot 1 \cdot q\right) - 1 = q - 1.$$

Therefore $\lambda'(f_0) \leq q - 1$. On the other hand, taking any point of the form $(p - m, 0)$, $m = 2, \dots, p - 1$ we get

$$\lambda((f_s^{(p-m,0)})) = 2\left(\frac{1}{2} \cdot m \cdot q\right) - m = m(q - 1) > q - 1.$$

Similarly for any point of the form $(0, q - m)$, $m = 1, \dots, q - 1$ we get

$\lambda((f_s^{(0,q-m)})) = 2\left(\frac{1}{2} \cdot m \cdot p\right) - m = m(p - 1) \geq q - 1$. Consider now a point

$(-u, q - w) \in J_0$ such that $-u > 0$, $q - w > 0$. Then $\lambda((f_s^{(-u,q-w)})) = | -up - wq | = q \left| \frac{up}{q} + w \right| \geq q > q - 1$. ■

EXAMPLE 2. Let $f_0(x, y) = x^4 - y^4$. From the above theorem $\lambda'(f_0) = 3$. The jump is realized by the deformation $f_s(x, y) = x^4 - y^4 + sx^3$.

Consider now a general case of a singularity which Newton polygon consists of only one segment.

COROLLARY 2. *Let f_0 be a non-degenerate and convenient singularity, with the Newton polygon reduced to only one segment. Then this segment connects points $(p, 0)$ and $(0, q)$ for some $p, q \in \mathbb{N}$, $p, q \geq 2$. Moreover, if $d = \text{GCD}(p, q)$, then:*

1. If $1 \leq d < \min(p, q)$, then $\lambda'(f_0) = d$.
2. If $d = \min(p, q)$, then $\lambda'(f_0) = \min(p, q) - 1$.

Proof. The first part of the corollary is obvious, the second follows from Corollary 1 and Theorem 3. ■

6. The Milnor numbers of non-degenerate deformations of singularities

Let f_0 be a non-degenerate and convenient singularity. Let

$$\Lambda'(f_0) = (\mu_0, \mu_1, \mu_2, \dots, \mu_k)$$

be the strictly decreasing sequence of all possible Milnor numbers of all non-degenerate deformations (f_s) of f_0 . In particular, $\mu_0 = \mu(f_0)$, $\mu_1 = \mu(f_0) - \lambda'(f_0)$, $\mu_k = 0$. From Corollary 2, we have a formula for μ_1 in the case f_0 is a singularity with one segment Newton polygon (in particular for f_0 irreducible). Namely, if the ends of this segment are $(p, 0)$ and $(0, q)$, $p, q \geq 2$, then for $d := \text{GCD}(p, q)$

1. $\mu_1 = \mu_0(f) - d$ if $1 \leq d < \min(p, q)$,
2. $\mu_1 = \mu_0(f) - d + 1$ if $d = \min(p, q)$.

The main theorem of the paper is a formula for μ_2 in the same class of singularities.

We consider first simple singularities of the form $x^p - y^q$. Since the case $p = q = 2$ is trivial (we have $\Lambda'(x^2 - y^2) = (1, 0)$), we will confine to the cases $p > 2$ or $q > 2$.

THEOREM 4. *Let $f_0(x, y) = x^p - y^q$, $p \geq q \geq 2$, $p + q \geq 5$. Then*

$$\mu_2 = \mu_1 - 1.$$

In the proof we will use the following elementary lemma.

LEMMA 2. *Let $p, q \in \mathbb{N}$, $p > q \geq 1$ and $d = \text{GCD}(p, q)$. Assume $d < q$ i.e. $q \nmid p$. Then there exist $a, b \in \mathbb{Z}$ such that*

$$ap + bq = d, \quad 0 < a < \frac{q}{d}.$$

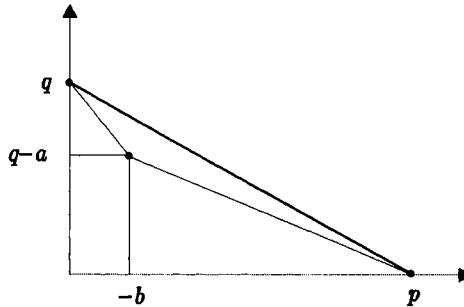
Moreover, a and b are unique and

$$\text{GCD}(a, b) = 1.$$

The proof of Theorem 4. Let's consider cases:

1. $q \mid p$. There exists $n \in \mathbb{N}$ such that $p = nq$. From Corollary 2 $\lambda'(f_0) = q - 1$ and the jump is realized by the point $(p - 1, 0)$ (precisely by the deformation $(f_s^{(p-1,0)})$). Since $p \geq q \geq 2$, $p + q \geq 5$, then $p - 1 > 1$ i.e. $f(x, y) = x^{p-1} - y^q$ is an isolated singularity. The assumption $q \mid p$ implies $\text{GCD}(p - 1, q) = 1$. Then there exists a, b such that $a(p - 1) + bq = 1$, $0 < a < q$. Then the point $(-b, q - a)$ realizes the jump equal to 1 for the function $f(x, y) = x^{p-1} - y^q$. So, the deformation composed of two points $(p - 1, 0)$ and $(-b, q - a)$ (i.e. $f_s(x, y) = f_0(x, y) + sx^{p-1} + sx^{-b}y^{q-a}$) realizes the jump for f_0 equal to $\lambda'(f_0) + 1$.

2. $q \nmid p$. Then $\text{GCD}(p, q) =: d < q$. Let $ap + bq = d$, $0 < a < \frac{q}{d}$, $b < 0$, $\text{GCD}(a, b) = 1$. Then the point $(-b, q - a)$ realizes the jump $\lambda'(f_0) = d$.



Observe that

$$1^0 \text{ GCD}(a, -b) = 1$$

$$2^0 \text{ GCD}(p + b, q - a) = 1$$

1⁰ Follows from Lemma 2. For 2⁰ let $\text{GCD}(p + b, q - a) = r$. We have

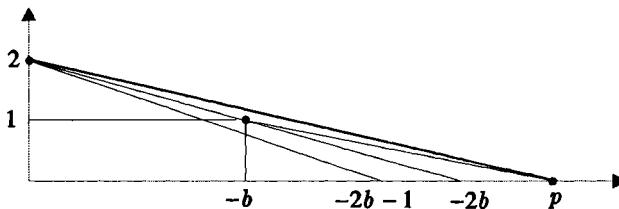
$$a(p + b) + b(q - a) = ap + ab + bq - ab = ap + bq = d.$$

Because $r \mid (p + b)$ and $r \mid (q - a)$, so $r \mid d$. Then $r \mid p$ and $r \mid q$. Since $r \mid (p + b)$, then $r \mid b$ and analogously $r \mid (q - a)$ implies $r \mid a$. Because $\text{GCD}(a, b) = 1$, we obtain $r = 1$.

Consider subcases:

(i) $a = 1$.

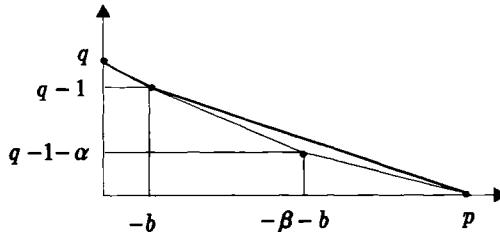
• $q = 2$. Since $q \nmid p$ then p is odd. Then $-b = \frac{p-1}{2}$. Moreover, the point $(-b, 1)$ realizes the jump equal to 1 for the function $f_0(x, y) = x^p - y^2$. Hence $\lambda'(f_0) = 1$.



We easily check that the point $(-2b-1, 0)$ i.e. the deformation $f_s(x, y) = f_0(x, y) + sx^{-2b-1}$ realizes the jump equal to $2 = \lambda'(f_0) + 1$.

• $q > 2$. Because $\text{GCD}(p + b, q - 1) = 1$, so there exist integers α, β such that $\alpha(p + b) + \beta(q - 1) = 1$, $0 < \alpha < q - 1$, $\beta < 0$. The point $(-\beta, q - 1 - \alpha)$ realizes the jump equal to 1 for the function $f(x, y) = x^{p+b} - y^{q-1}$. Since the point $(-b, q - 1)$ gives the first jump equal to d , then

two points $(-b, q-1)$ and $(-\beta-b, q-1-\alpha)$ realize the jump $d+1$ for $f_0(x, y) = x^p - y^q$. In fact it suffices to show that the following broken line $(0, q)(-b, q-1)(-\beta-b, q-1-\alpha)(p, 0)$ is convex (as a graph of a function).



We must show that

$$\frac{-1}{b} \geq \frac{(q-1) - (q-1-\alpha)}{(-b-\beta) - (-b)}$$

i.e.

$$b\alpha - \beta \geq 0.$$

But, we have $p+bq = d$ and $\alpha(p+b) + \beta(q-1) = 1$. Calculating from the first equality $p+b = d-b(q-1)$ and substituting to the second, we get

$$\alpha(d-b(q-1)) + \beta(q-1) = 1.$$

Hence after simple calculations we obtain

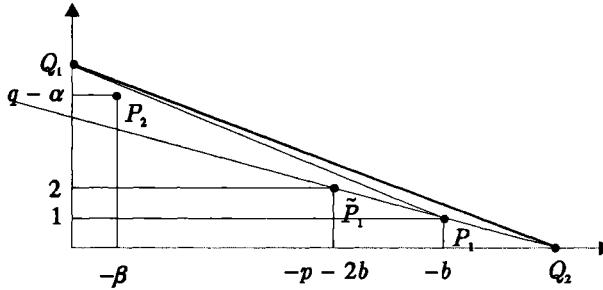
$$\frac{\alpha d - 1}{q-1} = \alpha b - \beta.$$

Because $\alpha d - 1 \geq 0$ and $q-1 > 0$, then $\alpha b - \beta \geq 0$, as desired.

(ii) $b = -1$. Then $a = 1$ (because $p > q$), so we get the case (i).

(iii) $a = q-1$, $q \geq 3$. Let $Q_1 = (0, q)$ and $Q_2 = (p, 0)$. From Theorem 3, $\lambda'(f_0) = d$ and the jump is realized by the point $P_1 = (-b, 1)$. By $\text{GCD}(q-1, -b) = 1$ hence the point $(-\beta, q-\alpha-1)$ with non-zero coordinates realizes the jump equal to 1 for the function $f(x, y) = x^{-b} - y^{q-1}$. We claim that the points $P_1 = (-b, 1)$ and $P_2 = (-\beta, q-\alpha)$ i.e. the deformation $f_s(x, y) = f_0(x, y) + sx^{-b}y + sx^{-\beta}y^{q-\alpha}$ realize the jump equal to $d+1 = \lambda'(f_0)+1$. In fact, it suffices to show that the broken line $\overline{Q_1 P_2 P_1 Q_2}$ is convex i.e. P_2 lies over the line $L_{Q_2 P_1}$. Since $q \geq 3$ then the equality $(q-1)p+bq = d$

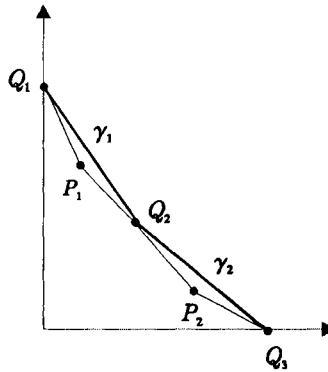
implies that $-p - 2b > 0$. Then the point $\tilde{P}_1 = (-p - 2b, 2)$ lies on $L_{Q_2 P_1}$ and the area of the triangle $Q_1 P_1 \tilde{P}_1$ is equal to $\frac{d}{2}$.



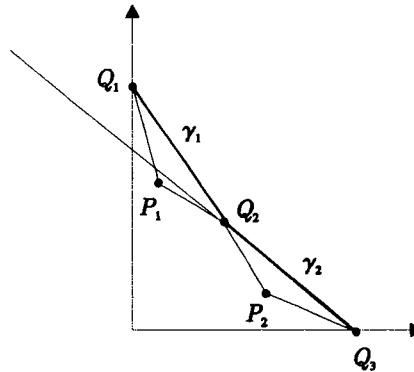
Since P_2 realizes the jump for $x^{-b} - y^{q-1}$ then $\rho(P_2, L_{Q_1 P_1}) \leq \rho(\tilde{P}_1, L_{Q_1 P_1})$. Suppose to the contrary that P_2 lies beneath the line $L_{Q_2 P_1}$. Then P_2 would lie on the right of \tilde{P}_1 i.e. $-\beta \geq -p - 2b$. Moreover, its second coordinate $q - 1 > 1$. The only point which satisfies these conditions is \tilde{P}_1 , which contradicts the supposition.

(iv) $b = -(p - 1)$. The case is impossible (because $p > q$).

(v) $1 < a < q - 1$, $1 < -b < p - 1$. Then $p + b > 1$ and $q - a > 1$. Hence, from 1⁰ and 2⁰ there exist points P_1, P_2 realizing the jumps equal to 1 for the functions $f_1(x, y) = x^{-b} - y^a$ and $f_2(x, y) = x^{p+b} - y^{q-a}$, respectively. Denote $Q_1 = (0, q)$, $Q_2 = (-b, q - a)$, $Q_3 = (p, 0)$ and $\gamma_1 = \overline{Q_1 Q_2}$, $\gamma_2 = \overline{Q_2 Q_3}$.



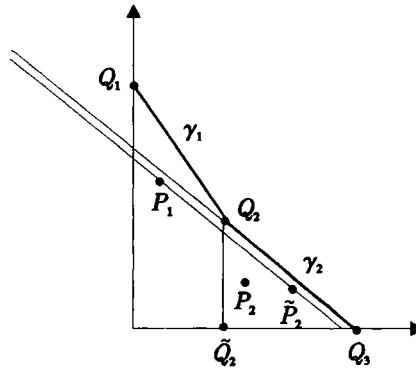
We claim that the broken line $\overline{Q_1 P_1 Q_2 Q_3}$ or $\overline{Q_1 Q_2 P_2 Q_3}$ is convex (in other words, one of the points P_1, P_2 changes the Newton polygon of $f_s^{(-b, q-a)}$ only on segment γ_1 or γ_2). In fact, let $h_i = \rho(P_i, \gamma_i)$ be the distance of P_i to the segment γ_i , $i = 1, 2$. We may assume that $h_1 \leq h_2$ (the case $h_2 \leq h_1$ is analogous). If our claim would be false, then the point P_1 would lie beneath the line L_{γ_2} containing the segment γ_2 .



Hence and from the convexity of $\overline{Q_1Q_2Q_3}$

$$\tilde{h} := \rho(P_1, L_{\gamma_2}) < \rho(P_1, L_{\gamma_1}) = h_1.$$

In consequence $\tilde{h} < h_2$. If we translate the point P_1 of a multiple of the length of segment γ_2 along the direction of the line L_{γ_2} , then we obtain a point \tilde{P}_2 , which will have integers coordinates and lie in a rectangle with one side γ_2 and second of length \tilde{h} . Since always $\tilde{h} < \frac{\sqrt{2}}{2}$, then it is easy to check that \tilde{P}_2 will lie in the triangle $Q_2\tilde{Q}_2Q_3$, where $\tilde{Q}_2 = (-b, 0)$.



But $\rho(\tilde{P}_2, \gamma_2) = \rho(P_1, L_{\gamma_2}) = \tilde{h} < h_2 = \rho(P_2, \gamma_2)$ which contradicts the choice of the point P_2 .

We have proved that $\overline{Q_1P_1Q_2Q_3}$ or $\overline{Q_1Q_2P_2Q_3}$ is convex. In consequence, the points P_1, Q_2 or Q_2, P_2 realize the jump $d + 1 = \lambda'(f_0) + 1$. ■

Summing up, we may formulate the known facts on Milnor numbers associated to a singularity.

COROLLARY 3. *Let f_0 be a non-degenerate and convenient singularity, which Newton polygon is reduced to one segment. If $\Lambda'(f_0) = (\mu_0, \mu_1, \dots, \mu_k)$ is the sequence of Milnor numbers associated to f_0 , then*

1. $\mu_0 = \mu_0(f_0)$,
2. μ_1 is given in Corollary 2,
3. $\mu_2 = \mu_1 - 1$.

References

- [1] A. Bodin, *Jump of Milnor numbers*, preprint arXiv:math. AG/0502052 v2, 2005.
- [2] G.-M. Greuel, C. Lossen, E. Shustin, *Introduction to Singularities and Deformations*, Springer, 2007.
- [3] S. Gusein-Zade, *On singularities from which an A_1 can be split off*, *Funct. Anal. Appl.* 27 (1993), 57–59 (in Russian).
- [4] A. Kouchnirenko, *Polyédres de Newton et nombres de Milnor*, *Invent. Math.* 32 (1976), 1–31.
- [5] A. Lenarcik, *On the Łojasiewicz exponent of the gradient of a holomorphic function*, Thesis, 1996 (in Polish).
- [6] A. Płoski, *Puiseux series, Newton diagrams and holomorphic mappings of \mathbb{C}^2* , Proceedings of the X Workshop on the Theory of Extremal Problems, 1989 (in Polish).
- [7] M. J. Saia, *Pre-weighted homogeneous map germs finite determinancy and topological triviality*, *Nagoya Math. J.* 151 (1998), 209–220.
- [8] J. C. Tougeron, *Idéaux de Fonctions Différentiables*, Springer, 1972.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 UNIVERSITY OF ŁÓDŹ
 S. Banacha 22
 90-238 ŁÓDŹ, POLAND
 E-mail: walewska@math.uni.lodz.pl

Received November 28, 2009.