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COMPLEX SURFACE SINGULARITIES AND
DEGENERATIONS OF COMPACT COMPLEX CURVES

Abstract. Since 15 years ago, I have been studying some relations between com-
plex normal surfaces ([Tt1]-[Tt5]). In this paper, we give a survey of them. After some
preparations, we describe main results. Especially, we explain a method to embed reso-
lution spaces of normal surface singularities into total spaces of degenerations of compact
Riemann surfaces.

0. Introduction

After M. Artin’s work [Art], normal surface singularity theory has been
researching by many mathematicians (for example, P. Wagreich, H. Laufer,
O. Riemenschneider, K. Saito, J. Wahl, S. S.T. Yau). On the other hand,
K. Kodaira [{Ko| defined the local one-parameter degeneration family of
compact complex curves (=pencil of curves) correctly. He classified the
configurations of singular fibers of such objects in the case of genus one
(namely, elliptic pencils) and computed the homological monodromy groups
and the functional invariants associated to the pencils of curves. In [NU]J,
Y. Namikawa and K. Ueno studied similar problem for the case of genus two.
The field of the degenerations of curves has been exploited via the methods of
algebraic geometric, topology and complex analysis (T. Arakawa, T. Ashik-
aga, Y. Imayoshi, M. Ishizaka, Y. Matsumoto, J. M. Montesinos-Amilibia
and S. Takamura etc.).

On the relation between singularities and pencils of curves, there have
been several important works by several mathematicians (for example,
V. Kulikov, U. Karras, M. Reid and J. Stevens). However it does not seem
that their results are well-known. In this decade, the author has been re-
searching the relation between singularities and pencils of curves under the
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influence from the activity by above Japanese mathematicians. In this paper,
we give a survey of our results.

In § 1, we explain the fundamental results on normal surface singularities
due to M. Artin [Art], P. Wagreich [Wag], H. Laufer [La], S. S.T. Yau [Y]. In
§ 2, for the relation between surface singularities and pencils of curves, we
survey the results by V. I. Arnold [Arn], V. Kulikov [Ku], U. Karras [Kal,2],
M. Reid [R] and J. Stevens [St1,2]. In § 3, 4 and 5, we explain our results
[Tt1-5].

1. Fundamental facts on normal surface singularities

In the following, we review some facts on normal surface singularities
which relate to pencils of compact complex curves. Let (X, 0) be a normal
complex surface singularity. Let 7: (X, E) — (X,0) be a resolution of

™

singularity, where E = | J E; is the irreducible decomposition of the excep-
i=1

tional set E. Let Ox, be the local ring associated to (X,0) and mx, the

maximal ideal. Let h be an element of myx ,, and let E(h o m) be the cycle

on E determined by ho .

,
DEFINITION 1.1. (1) For a Z-cycle D = Y. d;E; on E (d; € Z), let

=1
D*+ K3D
pa(D) =1+ LS e and call it the arithmetic genus of D. If D is an
effective divisor (i.e.,d; 2 0 for any ), we put red(D) = ) E;.
d; >0

,

(2) For the (Artin’s) fundamental cycle Zg := min{D = }_ a;E;|a; > 0
i=1

and DE; < 0 for any i} (see [Art]), the values of p,(Zg) and (Zg)?* are

independent of the choice of a resolution, and so we put them ps(X,0) and

(Zx)? respectively in this paper.

(3) The positive cycle Mg := min{FE(hon) | h € mx,} on E is called the
mazimal ideal cycle on E and we have Zg < M (see [Y]). In this paper, Mx
(resp. Zx) represents the maximal ideal cycle (resp. fundamental cycle) on
the minimal resolution.

DEFINITION 1.2. (1) p,(X,0) := dimcH!(X, O) (geometric genus).

(2) pa(X,0) := max{py(D)|D is a Zxy-cycle on E} (arithmetic genus of
(X, 0)).

(3) If there exists a holomorphic 2-form on X\0, then we call (X, 0) a Goren-
stein singularity. :



Complex surface singularities. . . 341

In this paper, we often use the weighted dual graph (=w.d.graph) I'g and
so explain it. Let E be the exceptional set of a resolution of a singularity
or the singular fiber of a pencil of curves. The w.d.graph I'g of F is a
graph such that each vertex of I'g represents an irreducible component E;
weighted by EJ2 and g(E;) (=genus), while each edge connecting to E; and
E;, i # j, corresponds to point E; N E;. For example, if Ef = —b; and
g(E;) = gi > 0 (resp. ¢; = 0), then E; corresponds to a vertex that is
configured as follows:

(resp. ) and () means @

[9:]

Though p,(X, 0) and p¢(X,0) are topological invariants, py(X, o) is not
so. The geometric genus py(X, 0) is an analytic invariant. Since py(X, o) is
sensitive, it is useful on many situations of surface singularity theory. On
the other hand, ps(X,o0) is insensitive. However, ps(X,0) is useful when
we consider the rough classification of singularities. It seems like that these
three invariants have different roles in the classification of normal surface
singularities. We show this by the following example.

EXAMPLE 1.3. Let (X,0) be a hypersurface singularity defined by z% +
y® 4 28449, The minimal resolution is given as follows:

-1

Then we have pf(X,0) = 3, pa(X,0) = 2¢+ 3 and py(X,0) = 6+ 6,
where pe(X,0) is computed by Tomari’s formula [Tm?2].

In [Art], M. Artin proved that pf(X,0) = 0 & p,(X,0) = 0 &
pg(X,0) = 0. If (X, 0) satisfies such conditions, he call it a rational singu-
larity. He proved that if (X, 0) is a rational singularity, then the embedding
dimension emb(X, o) is equal to max{3, —Z% + 1} and the multiplicity of
(X, 0) is equal to —Z%. He also classified rational singularities of multiplic-
ity two (i.e., rational double points) as follows: A, : 22 + y2 + 2"*1(n 2
1),Dn: 22 + 9?24+ 2" (n24),Fs: 22+ y° + 24, B7 : 22 + ® + y23, Es
2 +y3 + 25

In [Wag], P. Wagreich proved that 0 < p¢(X,0) < pa(X,0) < pg(X,o0)
and also proved that ps(X,0) = 1 & pe(X,0) = 1. If (X,0) satisfies
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pf(X,0) =1, (X,0) is called an elliptic singularity or a weak elliptic sin-
gularity. In this paper we use the terminology of “elliptic singularity”.

Let (X,0) be an elliptic singularity, and let (X, E) be a resolution of
(X,0). In [La], H. Laufer defined a positive cycle Zyj, on E by Zyi,:
=min{F|pe(D) £ 0 for any cycle D with 0 < D < F and p,(F) = 1}.
He proved that the following three conditions are equivalent: (i) Zg = Zmin,
(i) —KE; = ZgE; for any component E; of E, (iii) (X, o) is a Gorenstein
singularity of py(X, 0) = 1. If an elliptic singularity satisfies these conditions,
he called it a minimally elliptic singularity. He proved that if (X, o) is a min-
imally elliptic singularity, then the embedding dimension emb(X, o) is equal
to max{3, —Z% }, and the multiplicity of (X, o) is equal to min{2, —Z3 }. He
also classified minimally elliptic hypersurface singularities (i.e., the multi-
plicity < 3).

In [R], M. Reid also independently studied Gorenstein singularities of
pg(X,0) = 1. He also classified such hypersurface singularities of multiplicity
of 2 or 3 and pointed out relations between minimally elliptic singularities
and elliptic pencils.

On the other hand, V. I. Arnold [Arn| studied real or complex function
germs. He introduced the invariant modality u(X, o) for hypersurface singu-
larity (X, 0) = {f = 0}. He show that u(X,0) =0 if and only if (X,0) is a
rational double point. He also classified hypersurface singularities of y =1
or 2, and call singularities of u = 1 (resp. p = 2) uni-modal (resp.bi-modal)
singularities. Uni-modal singularities are exhausted as follows: (i) simple el-
liptic singularities 2% +1® 4 2¢ + tzyz : (a,b,¢) = (3,3,3),(2,4,4) or (2,3,6),

1 1 1
(ii) cusp singularities Tp 4 (=2P + y? + 2" + tayz : 5 + p + - < 1), (iii) 14

exceptional singularities (for example, 2+ 3%+ 27 +ay2®, £? + 13 + 28 + ay2®
etc.). For bi-modal case, there are 22 types singularities up to one parameter
deformation.

Further, V. Kulikov [Ku| showed that uni-modal and bi-modal singular-
ities are obtained through some procedure (see Definition 2.2 of this paper)
from Kodaira’s list [Ko] of pencils of elliptic curves.

Inspiring by Kulikov’s observation, U. Karras [Kal,2] introduced the no-
tion of Kodaira singularities in terms of pencils of curves. He also applied
it to the deformation theory of surface singularities. Further, J. Stevens
[St1, 2] studied a subclass of Kodaira singularities (called Kulikov singular-
ities) and proved some relations between them and deformations of curve
singularities.

Moreover, K. Saito [Sa] studied some classes of quasi-homogeneous hy-
persurface elliptic singularities and considered pencils of curves associated
to those singularities.
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2. Kodaira singularities and Kulikov singularities
Here we describe the precise definition of pencils of curves and the defi-
nition of Kodaira (and Kulikov) singularities.

DEFINITION 2.1. Let S be a non-singular complex surface and A ¢ C
a small open disc around the origin. If ®: S — A is a proper surjective
holomorphic map and the generic fiber S;: = ®~1(¢) (¢t # 0) is a smooth
curve, it is called a quasi-pencil of curves. Further, if the generic fiber S;
is a connected smooth curve of genus g, then we call it a pencil of curves
or a pencil of curves of genus g. In this situation, we call S, = ®1(0) the
singular fiber or the degenerate fiber.

DEFINITION 2.2. ([Kal], [St1,2]) Let ®: S — A be a pencil of curves
of genus g which has reduced components. Let Pj,---, P, € supp(S,) be
non-singular points of S, (i.e., they are contained in components whose co-
efficients of S, equal to one and also smooth points of red(S,)). Let S’ 5 S
be a finite succession of blowing-ups with centers Pj,--- , F,. Let X be an
open neighborhood of the proper transform E C S’ of supp(S,) by 0. By
contracting E in X, we obtain a normal surface singularity (X,0). Then,
the contraction map ¢: (X, E) — (X, 0) is a resolution of (X, 0) and so we
have the following:

S S'> (X,E)
<I>/ “’l
A (X,0).

If a normal surface singularity is isomorphic to a singularity obtained
in this way, then it is called a Kodaira singularity of genus g (or Kodaira
singularity associated to ®). Also, if ¢ is just one blowing-up at every center
P; (i =1,---,r) in the above construction, then (X, o) is called a Kulikov
singularity of genus g (or Kulikov singularity associated to ®). We can easily
see that if (X, 0) is a Kodaira singularity, the fundamental cycle coincides
with the maximal ideal cycle on the minimal resolution. (i.e., Zx = Mx).

Let I' be the w.d.graph of the exceptional set of the minimal good reso-
lution of a normal surface singularity. If there exists a Kodaira singularity
whose w.d.graph for the minimal good resolution coincides with I', then T’
is called a Kodaira graph.

PropoOSITION 2.3. ([Kal|, 2.7) Let (X,E) be a resolution of a normal
surface singularity (X,0). Let T be a w.d.graph of E. Then T is a Kodaira
graph if and only if each irreducible component E; with E;Zr < 0 appears
with multiplicity one in the fundamental cycle Zg.
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ExXAMPLE 2.4. The following figure gives an example of Kulikov singularity
of genus 1.

¢
31 ~—
DD O (€2 1)
1 3 1 1 1 1

L (X,0)= {a® +4° + 2% = 0).

In general, we can not always determine from the w.d.graph whether a
singularity is a Kodaira singularity or not. For example, if we put (X1,0) =
{22 + 3 + z'® = 0} and (X3,0) = {22 + y(y* + x%) = 0}, then they are
elliptic singularities whose w.d.graphs for minimal resolution coincides with
each other. We can easily check that (X1,0) is a Kulikov singularity from
4.13 since p(X1,0,z) = 1 and z is a reduced element. However, (X2,0) is
not a Kodaira singularity, because Zx, # My,. Those cycles are given as
follows:

1 1 1 2 2 1
Zx, = %—O—O and  Mx,= (@D-O-O-
1 [1]

THEOREM 2.5. ([Kal], 2.9) Let (X,0) be a rational or minimally elliptic
singularity with w.d.graph I'. Then (X, 0) is a Kodaira singularity if and
only if T is a Kodaira graph.

From the definition, we can easily see that the w.d.graph of Kodaira
singularity is equal to the one of a Kulikov singularity. Therefore, if we find
a Kodaira singularity which is not Kulikov, we need to discuss the analytic
type of singularity and it is not so easy. The author considered this problem
under a special situation.

THEOREM 2.6. ([Tt4], 3.8) Let (X,0) be a normal surface singularity
obtained by the contraction of the zero-section of a negative line bundle L on
a non-singular complezr projective curve E.
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(i) (X,0) is a Kodaira singularity if and only if L ~ — an (linearly
i=1
equivalent), where n; > 0 for any 1.

,
(ii) (X, 0) is a Kulikov singularity if and only if L ~ — > P;, where Py,--- ,
i=1

Py are r mutually distinct points.

(iii) In the case of (1) (resp. (i1)), (X,0) is a Kodaira (resp. Kulikov) singu-
larity associated to the trivial pencil; it is obtained by taking n; blowing-up at
Qi:=(P,00€e ExC fori=1,---,r. Moreover we haven; =---=n, =1
in the case of (ii).

Let E be a non-hyperelliptic curve and let P be any point of F. If
(X,0) is a normal surface singularity obtained by the contraction of the
zero-section of the negative line bundle associated to —2P, then (X, o) is a
Kodaira singularity, but not a Kulikov singularity from 2.6.

3. Embeddings of resolution spaces into pencils of curves

If #: S — A is a pencil of curves, the intersection matrix of any con-
nected one-dimensional analytic proper subset E in supp(S,) is negative
definite from Zariski’s lemma ([BPV], p. 90). Hence E is contracted to a
normal surface singularity by Grauert’s result (|G|, p. 367]). From now on
we consider the converse problem. We prepare some definitions.

DEFINITION 3.1. Let 7: (X, E) — (X, 0) be a resolution of a normal sur-
face singularity. Let ®: S — A be a pencil of curves such that (S, supp(S;))
> (X,E) (ie., S D X and supp(S,) D E).

(i) If h € mx, satisfies hon = ®, then ® is called a pencil of curves
extending h o m or an extension of h o w. Namely it implies the following
diagram:

(X,E) c (8,supp(S,)).

(ii) Under the situation of (i), if there is no (—1) curve in supp(S,)\ E which
does not intersect E, then we call ® a pencil of curves minimally extending
h o7 or a minimal extension of ho .

DEFINITION 3.2. Let R be a ring and h a non-zero element of R. Then
h is called a perfect power element if there is an element g € R satisfying
h = g* for some positive integer k > 2.

The author proved the following,.
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THEOREM 3.3. ([Tt4], 2.4) Let (X,0) be a normal surface singularity and
hemx,. Letw: (X,E) — (X,0) be a good resolution such that red((hor) 3)
is a simple normal crossing divisor on X. Then there exists a quasi-pencil
of curves ®: § — A such that ® is a minimal extension of how. Further, if
h is not a perfect power element, then ® is a pencil of curves.

We prove Theorem 3.3 by gluing X and resolution spaces of some cyclic
quotient singularities. Also, we consider h o 7 and some holomorphic func-
tions on cyclic quotient singularities. By gluing them, we obtain a pencil of
curves ®: S — A. By computing examples, we explain this.

EXAMPLE 3.4. (1) Let (X,0) = (C?,0) and hy = 22 +¢y%911 (3 2 1). Then
the minimal embedding resolution of the curve singularity defined by h; =0
is given by the left configuration in the following. Also, the pencil of curves
of genus g constructed as in 2.2 is given by the right configuration:

* 1
O— " —O0—30 c O
2 2g-2  2g 4g+2 2g+1 ) coe 2g-2 2g 4g+2 2g+1.

(2) Let (C, 0) be a non-reduced curve singularity defined by z7y%(z—y)* = 0.
After one blowing up at the origin of C2, we have the following configuration:

* 4
7
1 7 |4 |5 |
— - % x .
5 16
7 16 )
1 16
From 1—_? =[[3,2,2,3]](=3- 7—) and T = ([4,2,2,2,2]], we have
9 — —1
3

the following:

* 4 :4
3

7 16 5 1 57 16 5 4 3 2 1
Then we can see that its genus is 6 by the adjunction formula.

REMARK 3.5. Here we remark that any pencils of curves is birational to
a pencil of curves which is constructed as in 3.3 (see [Tt4], Theorem 2.7).



Complez surface singularities. . . 347

REMARK 3.6. In any dimension, E. Looijenga [Lo, p. 301} proved similar
results in a different way. Namely, let (X, 0) be a normal isolated singularity.
If h € mx, is areduced element, then it defines a one parameter smoothing of
(X, 0). Using formal completion argument presented by M. Artin, Looijenga
proved that if h € mx , is an element that gives a one parameter smoothing
h: (X,0) — (C!,0), then there is a flat projective morphism v¢: Z — C! and
an embedding ¢: X — Z satisfying h = 9 o ¢.

4. Pencil genus for normal surface singularities

In [Tt4], the author introduced an invariant for normal surface singular-
ities by using pencils of curves.

DEFINITION 4.1. Let (X, 0) be a normal surface singularity, and let h €
myx , be not a perfect power element.

(i) We define a holomorphic invariant for (X, 0) as follows:

pe(X,0) := min{the genus of a pencil of curves including a resolution of
(X,0)}.

(i) We also define a holomorphic invariant for a pair of (X,0) and h as
follows:

pe(X,0,h) := min{the genus of a pencil of curves extending h o w for a
resolution 7 of (X,0)}.

Then, pe(X,0) (resp. pe(X,o0,h)) is called the pencil genus of (X, 0) (resp.
a pair of (X,0) and h).

EXAMPLE 4.2. For rational double points, we can easily see that p.(A4,)
= 0 and p(D,) = 0. Also, we have p.(E¢) =1 (£ =6,7,8) (see [Tt4], 3.12).

THEOREM 4.3. Let (X, 0) be a normal surface singularity and let h € mx ,
be not a perfect power element. Let m: (X,E) — (X,0) be a good res-
olution such that red((h o m)3) is simple normal crossing on X. Sup-
pose that ®: S — A is a pencil of curves of genus g extending h o w. If
g = pe(X,0,h) and ® is a minimal extension of h o w, then any connected
component of supp(S,)\E is a P'-chain. Conversely, if any connected com-
ponent of supp(S,)\E is a P'-chain, then g = p.(X,0,h). Therefore, the
genus of any pencil of curves constructed from how as in Theorem 3.3 is
equal to p.(X,o,h).

From 4.3, we have p.(C2?, 0,22 +4?9%!) = g and p.(C?, 0, z7y>(z —y)*) =6.
EXAMPLE 4.4. Let (X,0) = ({2 + ¥® + z* = 0}, 0) (a rational double
point of type Eg). (X,0) is a double covering over C? branched along a

plane curve C := {y3 + z* = 0}. Let V5 C? be the minimal embedded
resolution of C. Taking the double covering over V branched along o*(C)
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(total transform of C) and contracting some (—1)-curves, we can obtain the
minimal resolution (X, E) 5 (X, 0) and the divisor (z o 7) 5 (cf. Lemmas
3.1 in [Tt2] or Lemmas 4.3 in [Tt4]). Similarly, we can obtain the divisors
(yom)y and (z o 7). Applying Theorem 3.3 for them, the singular fibers
of the pencils of curves constructed from x,y and z are given as follows:

From the adjunction formula and Theorem 4.3, we can see that p.(X, o, z)
= 37 pe(Xa O7y) =1 and pe(X, o, Z) =1.

Let (X, 0) be a normal surface singularity and h € mx , be not a perfect
power element. Let 7: (X, E) — (X, 0) be a resolution such that red((h o
7) %) is a simple normal crossing divisor. Let E(h o 7) be the cycle on E

determined by hon and vg, (how) be the vanishing order of how on E;. Then
r{h)
E(hor) = E vg,(hom)E;. Let A(hom) = Z v;C; (v; € N) be the non-

exceptional part of the divisor (ho7) 3 (i.e. A(ho7r) (hom) g — E(hom)),

r(h)

and let put C = ) Cj, where Cj; is an irreducible component for any j.
j=1

Let ny,---,n.n) be positive integers denoted by n; = VE;, (hom) if E;

intersects C}.
THEOREM 4.5. ([Tt4], 2.11) Under the situation above, we have the fol-
lowing:
Pe(X,0,h) = pa(E(h o)) — E(hom)?
r(h)

1
- 5{(E(h on) + E)(A(how) - C) +r(h) + chd(nj,yj)}.
i=1
Further, if h is a reduced element, then

Pe(X,0,h) = pa(E(h o)) — E(hom)? —r(h).

For the normalization v: C — C of a curve singularity (C, o), the con-
ductor number §(C, o) is defined by dimc(Op/v*Oc,) (cf. [Naj).

COROLLARY 4.6. (i) Let (X,0) be a normal surface singularity and h €
mx o a reduced element. Let 5(h) be the conductor number of a curve singu-
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larity (X N {h = 0},0). Then
pe(X,0,h) = 8(h) —r(h) + 1.
(ii) Let (X,0) = {z"™ = h(z,y)} be a normal hypersurface singularity. Then
(h) —r(h)+1
5 )
whzere u(h) is the Milnor number of a plane curve singularity ({h = 0},0) C
(C4,0).

Since the Milnor number of a curve singularity ({z* 4+ y® = 0},0) is
(a — 1)(b— 1), we can easily check the computations of the genus of 4.4 by
using 4.6. Further we have the following estimate on p.(X, o).

pe(X, 0, z) = pe(C2a0a h) = 5(’1) - T(h) +1= H

THEOREM 4.7. ([Tt4], 3.5) Let (X,0) be a normal surface singularity.
Then

pr(X,0) £ pe(X,0) £ pa(X,0) + mult(X,0) — r(h).

Especially, if (X, 0) is a rational singularity, then 0 < pe(X, 0) < mult(X, o)
— 1. Also, if (X,0) is an elliptic singularity (i.e., ps(X,0) = 1), then
1 £ pe(X,0) £ mult(X, o).

From the definition, we can easily see that if (X,0) is a Kodaira sin-
gularity, then pe(X,0) = ps(X,0). However, the converse is not true. For
example, any D,-singularity is not a Kodaira singularity, but it satisfies
pe(X,0) = py(X,0).

DEFINITION 4.8. If (X,0) satisfies p.(X,0) = ps(X,0), then (X,0) is
called a weak Kodaira singularity. Further, if p.(X,0) = ps(X,0) = g, then
(X, 0) is called a weak Kodaira singularity of genus g.

From the definition, any Kodaira singularity is a weak Kodaira singu-
larity. If (X,0) is a rational double point of type Eg, E7 or Eg, then
pf(X,0) = 0 < pe(X,0) = 1. Hence they are not weak Kodaira singu-
larity. We can find many weak Kodaira singularities which are not Kodaira.
In [Tt3], we studied normal surface singularities obtained through some pro-
cedures. But the description is complicated. Hence, in the following, we
explain singularities which are obtained through a more simpler procedure
than [Tt3]. For any pencil of curves ®: S — A, if an irreducible component
A; in supp(S,) satisfies A; - (supp(S,)\Ai) = 1, then it is called an edge
curve. Also, if an edge curve is a (—1)-curve, then it is called a (—1)-edge
curve.

DEFINITION 4.9. (i) Let ®: § — A be a non-multiple pencil of curves
without any (-1)-edge curve. Let SO = § & S be blow-ups at non-
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smgular points P(l) . ,Pt(ll) of red(SL(,O)). As the next step, let P1(2), ey Pt(22)
€ U ot P( ) be non-singular points of red(S(()l)) and let SOV 22 5(2)

be blow-ups at these points. After continuing this process m times, we
get O =5 2 1) 2 ... 2 6m) — §and put 0 = 0y 0--- 0 o,
Hence we get a new pencil ® = ®o0: S — A and call this procedure
a Kulikov process of type I started from P(l) x (1) (or I-process started

from P ... Py,

(i) In I-process of (i), if a component Ay, of supp(S,) contains Pj(l) (j =
1,--+,t1) and Akj = o*‘lfikj (i.e., this means the strict transform of Akj
by o), then we call Ag; a root component of this I-process. Let By,---, By
be connected components of B := supp(S,)\ supp(c;1S,). Each B; (j =
1,---,t1) is constructed from all components which are produced by blowing-
ups at infinitesimally near points of P;l). We call such B; a branch of
supp(S,) by this I-process.

(iii) For any component H J(.i) of a branch Bj, let /(H ]@) be the number of
blow-ups to produce H J@ from the root component A;, and we call it the
length of H ](.i). Also we define ¢(Ag) = 0 for any component A of the strict
transform of supp(S,) through o. Further, let cR(H](-i)) = CoeffAkj So (i.e.,
coefficient of the root of H ](.i)) if Ay, is the root of H J(Z)

DEFINITION 4.10. Let ®: S — A be a non-multiple pencil of curves
without any (-1)-edge curve. Let S <= S be a birational map given by the
I-process started from Py,---,P;. Let A = supp(o;'S,) and let F be the
union of all components in branches by the I-process except for (—1)-edge
curves. Let X be a small neighborhood of AU F and let (X, 0) be a normal
surface singularity obtained by contracting AU F in X. We call such (X, 0)
a singularity obtained from this I-process. If we put G := supp(S,)\(AU F),
then any connected component G; of G is (—1)-curve and we call G; an edge
curve.

THEOREM 4.11. ([Tt3], 2.5) Let ®: S — A be a non-multiple minimal
pencil of curves of genus g 2 1 (i.e., S does not contain (—1)). Let (X,0) be
a normal surface singularity obtained from I-process § < S and (X,E) C
(S, supp(S,)) the associated good resolution, where E = AUF. Then, (X,0)
is a weak Kodaira singularity of genus g if and only if ¢(G;) 2 cr(G;) for
any edge curve G;.
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EXAMPLE 4.12. Let consider a I-process started from two points and
consider a normal surface singularity (X, o) as follows:

Then Cr(G1) = 4(G1) = 2, Cr(G2) = 3 < £(G) = 5 and Cr(G3) = 3 <
¢(G3) = 4. Hence (X, 0) is a weak Kodaira elliptic singularity from 4.11.

The following result generalizes the results by Karras [Ka2| and Stevens
[St2].

PROPOSITION 4.13. ([Tt3], 2.7) Let ®: § — A be a non-multiple min-
imal pencil of genus 1. Let (X,0) be a normal surface singularity obtained
by a I-process S — S. Then we have the following.

(i) pg(X,0) = min{[ch((Gé:)] | G; is any (—1) edge curve }, where

[a] = max{n € Z | n £ a} for any a € R. Further, if (X,0) is an
elliptic singularity, then pg(X,0) coincides with the length of the ellip-
tic sequence in the sense of Yau [Y].

(ii) Suppose that £(G;) 2 cr(G;) for any (—1) edge curve Gj. Then, (X, o)
s a Gorenstein singularity if and only if there is a constant integer k
such that £(G;) = k - cr(G;) for any (—1) edge curve G;.

(iii) (X,0) is a minimally elliptic singularity (i.e., py(X,0) = 1 end (X, o)
is a Gorenstein singularity) if and only if £(G;) = cr(G;) for any (—1)
edge curve Gj.

Therefore, if (X, 0) is the singularity of 4.12, then it is a non-Gorenstein
elliptic singularity of py(X,0) = 1.
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EXAMPLE 4.14. Let (X,0) be a normal surface singularity obtained as
follows:

where the multiplicity of each component in the figure of the right hand side
is the coefficient of the fundamental cycle Zx. If n 2 3, then (X, o) is a weak

Kodaira elliptic singularity of pe(X,0) = [2 . However, it is not a Kodaira
singularity, because the w.d.graph is not a Kodaira graph from 2.3.

We have the following characterization of Kodaira or Kulikov singulari-
ties.

THEOREM 4.15. Let (X, 0) be a normal surface singularity.

(i) (X,0) is a Kodaira singularity if and only if there exists h € mx , which
is not a perfect power element satisfying p.(X, 0, h) = ps(X,0) and E(ho
7) = Zg, where ©: (X, E) — (X, 0) is a resolution such that red(h o
m) % is simple normal crossing.

(ii) (X,o0) is a Kulikov singularity if and only if there ezists a reduced element
h € my , with pe(X,0,h) = ps(X,0).

5. Cyclic covers of surface singularities and pencils of curves

In [Tt2], the author studied hypersurface Kodaira singularities defined
by 2" = h, where h € C{z,y} and n > 1. Let (X,0) = {2" = h(z,y)}
be a normal hypersurface singularity, and so h is a reduced element. Let
p(h) (resp. 7(h)) be the Milnor number of a curve singularity ({h = 0}, 0)
(resp. the number of irreducible factors of h). Let m: (V,F) — (C2,0)
-]
be the minimal embedded resolution of ({h = 0},0) and F' = |J F; be the
i=1
irreducible decomposition. Let Ny (F;) be the vanishing order of ho o on F;
and put N = max{Ny(F;)|1 £ < s}. Then we have the following.

THEOREM 5.1. ([Tt2], 4.5) (i) If n divides ord(h) (=the order of h), then
(n—1)(ord(h) —2)

(X, 0) is a Kodaira singularity of genus 5 and Z3% = —n.
h)—r(h)+1
(ii) If n 2 Ny, then (X, 0) is a Kulikov singularity of genus wh) ;( )+

and Z3% = —r(h).
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In [Tt4], the author generalized (ii) as the results of cyclic covers of
singularities.

DEFINITION 5.2. Let (Y,0) C (CV,0) be a normal singularity and I its
defining ideal in C{y1, - ,yn}. Further, let A € my, be an element and he
C{y1,- ,yn} be an element corresponding to h. Let (X,0) (C (CN+1,0))
be a singularity defined by the ideal generated by I and 2™ — h(y1,--- ,yN)
in C{y1,--- ,yn,2}. Then (X, o) is called the n-fold cyclic covering of (Y, 0)
defined by z™ = h.

In this section, we assume that h is not a perfect power element. Then
(X, 0) is a normal singularity if and only if h is a reduced element in Oy,
(J]TW], Theorem 3.2). For example, hypersurface singularities defined by
2" = h(z,vy) is a normal n-fold cyclic covering of (C?,0) defined by 2™ = h
when h is a reduced element.

Let (X, 0) be a normal surface singularity and let 7: (X, E) — (X, 0) be

T
a resolution such that red((hom) 3 ) is simple normal crossing. Let E = (J E;
i=1

and supp(A(hom)z) = |J Cj be irreducible decompositions, where A(ho) ¢

is the proper transform of a divisor {h = 0} through 7.

DEFINITION 5.3. Under the situation above, put a; = vg,(h o 7) for any
i, bj = vg;(hom) for any j and Np(m) = max{lem(a;, b;)|E;C; # 0}. Define
a positive integer Nj(X, o) as follows:

(i) Ni(X,0) = min{Ny(7) | m is a resolution such that red(h o) 3 is simple
normal crossing}.

(ii) If ged(ay, - - ,ar, by, - ,bs) = 1, then h is called a semi-reduced element.
It is obvious that h is semi-reduced if h is reduced.

THEOREM 5.4. Let (Y,0) C (CV,0) be a normal surface singularity and
h € my, a semi-reduced element. Let (X,0) be the normalization of the
n-fold cyclic covering of (Y,0) defined by 2™ = h. If n 2 Nu(Y,0), then
(X, 0) is a weak Kodaira singularity of genus pe(Y,o,h).

THEOREM 5.5. Let (Y,0) be a normal surface singularity and h € my,
a reduced element. Let (X,0) be the n-fold cyclic covering of (Y,0) defined
by 2" = h. Ifn 2 Np(Y,0), then (X,0) is a Kulikov singularity of genus
5(h) —r(h) +1 and Z% = —r(h).

COROLLARY 5.6. Let (Y,0) = {h(z,y,2) = 0} C C3 be a normal hy-
persurface singularity. If x is a reduced element of Oy,, then a hypersur-
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face singularity (X, 0) = {h(z",y, 2) = 0} is a Kulikov singularity of genus

B ZHDHY 0ng 23 = —r(f) ifn 2 Na(Y,0), where £ i h(0,3,2)

Also, we obtain 5.1 (ii) as a corollary of 5.5.

ExAMPLE 5.7. Let (Y,0) be a hypersurface singularity defined by 22 =
y(z? + %) (ie., Ds). Then we have p.(Y,0,z) = 1 for a reduced element .
Let consider a cyclic cover (X,0) defined by u™ = z (ie., ({22 = y(u?" +
y°)},0)). Assume n = 3. Then (X,0) is a Kulikov singularity of genus 1
by 5.6. In the following figures, (i) shows the divisor of (z) on the minimal
resolution of (Y, 0) and (ii)-(iv) show the fundamental cycles on resolutions
of (X, o0):

(i) divisor (x) on Y: (i) n = 3¢
2 1 20+1
1 2 3 * '
2 i . =0
O 1 - 1
(iii) n = 30+1: (iv) n = 30+2:
20+1 2¢
T~ /N
g 11 1 11 .. 1
D e U T i
2 1 | AU 11 ... 1

6. Normal surface singularities with C*-action and C*-pencils of
curves

DEFINITION 6.1. Let (X,0) C (CV,0) be a normal surface singularity
embedded into (CV,0). Let consider a C*-action on CV as follows:
t- (151, N ,117N) = (t”lxl, . ,t”N:z:N),
where t € C* and p, - -+ ,pn are relatively prime positive integers. If (X, 0)
is invariant under the action, we say that (X, o) has a good C*-action.

If (X,0) is a normal surface singularity with good C*-action, then we
call it a normal C*-surface singularity. Normal C*-surface singularities form
a special class in normal surface singularities. However, the class contains
many important singularities. For example, the class contains all quotient
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singularities (so all rational double points). Also, every surface singularity
obtained by the contraction of the zero-section of a holomorphic negative
line bundle is a normal C*-surface singularity. In this section, we consider
relations between normal C*-surface singularities and pencils of curves with
C*-action.

Let (X,0) be a normal C*-surface singularity. Then there exists a C*-
equivariant resolution 7 : (X, E) — (X,0). Namely, there exists a C*-
action on X such that 7 is a C*-equivariant map.

THEOREM 6.2. ([OW]) Let (X,0) be a normal C*-surface singularity.
Then there always exists a C*-equivariant resolution (X, E) such that the
w.d.graph of E is star-shaped as follows:

El,T1
. Emf"m
where
i 1 “
P = [[bi,ly s ;bi,ri]] =b;1— 1 (bi,j 2 2) and b > Ze,’/di.
’ b2 — i=1
1
bi,’l‘,’

We call this resolution the minimal good C*-resolution of (X, 0) and call
E, the central curve. Every connected component of E\E, is contracted
to a cyclic quotient singularity. We call such connected component a cyclic
branch. Under the C*-action on X, any point of E, is a 0-dimensional orbit
(i.e., fixed point) and the intersection point of two connected components of
a cyclic branch is also 0-dimensional orbit. If E; ; is a component of a cyclic
branch, then it contains a 1-dimensional orbit. The following figure explains
such situation:

_,L e
: ! i
**’.lk *;****Jﬁ****

|

**
’

cecccsciecsscesnscsncnan

:
:
H ¢
:.Ll;L
**i***{***#***** KRk Rk Rk kR kR ok koK
A :
- .
:

where dotted lines are 1-dimensional orbits.

ceceemacgenenaa,
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THEOREM 6.3. ([OW], [F2] and [P]) Let (X,0) be a normal C*-surface
singularity and let (X, E) its minimal good C*-resolution. Then the analytic
type is determined by the following three datum.

(i) analytic type of the central curve E,, 3
(i1) analytic type of the normal bundle of E, in X,
(iii) intersection points of E, and all branches.

DEFINITION 6.4. For any non-negative integer k, Pinkham-Demazure di-
visor on E, is defined as follows:

. " ke;
DO = kN, - (53,
i=1

where N, is the restriction of the conormal bundle associated to the em-
bedding of E, into X and pi := E, N E; 1 for any 1.

THEOREM 6.5. ([P]) The affine graded ring Rx associated to (X,0) is
given by

oo
x ~ P H°(E,, Op,(DW)t*
k=0
The above representation of Rx is called the Pinkham construction (or
Pinkham-Demazure construction (see [Wat])). In the following, we explain
it by computing the defining equation of a simple elliptic singularity of type
Es.

ExXAMPLE 6.6. Let E, be an elliptic curve. We choose a point P, in
E,. Let (X,0) be a normal surface singularity obtained by the contraction
of the zero-section of a negative line bundle [-P,] (i.e., Eg). Let f be a
meromorphic function on E, which has a pole of order —2 at P,. Let g be
a derivative of f. The function g has a pole of order —3. By Weierstrass’s
canonical form, we assume a relation g2 + f3 4+ 1 = 0. Then we have the
following:

HY(E,,Op,(P,))t : t

HY(E,,Op,(2P))t?: 2, ft?

HO(EO,(’)EO(3P NEE 3, f3, gt3,

HO(E,,Op,(4P,))t* :  t4, ft*, gtt, f2t*

HY(E,,Op,(6P,))t5: 18, 316, f%6, £t gtb, g%t%, fgtS.
If we put z :=t, y := ft? and z := gt3, then we have the defining equation
22 + 9%+ 28 = 0 from g2 + f3 + 1 = 0 and dimcH*(E,, Og,(6P,)) = 6.

DEFINITION 6.7. Let & : S — C be a pencils of curves. Assume that
there exists an effective holomorphic C*-action on S. If we have ®(t - p) =
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t?®(p) for any t € C* and any p € S, then we call ® : § — C a C*-pencil
of curves.

Then we have the following, which is a C*-equivariant version of Theorem
3.3.

THEOREM 6.8. Let (X,0) be a normal C*-surface singularity and Rx
the affine graded ring associated to (X,0). Let h € Rx be not a perfect
power homogeneous element. Let 7 : (X, E) —> (X, 0) be the minimal good
C*-resolution of (X, 0). Then there exists a C*-pencil of curves ® : S — C
which satisfies the following C*-equivariant diagram :

(X,0) (X, E) C (S,supp(S,)).

(6.1) \ . Ve

h

The author [Tt5] proved 6.8 in a different way from 3.3. Let us explain
the outline. We consider a Pl-bundle = : S — E, on a curve E, and
consider a meromorphic function f on §. After taking suitable blowing-ups
o:S — §, we consider ® := foo on S. By taking a suitable open
subset S in S and the restriction of ® onto S, then we get a C*-pencil of
curves. By using the slice theorem, we showed that every C*-pencil of curves
is constructed in this way. From it, we can show the following.

THEOREM 6.9. (i) The singular fiber of any C*-pencil of curves become
star-shaped after suitable blowing-ups. In the situation, the analytic type of a
C*-pencil of curves is determined the numerical conditions (i.e., w.d.graph)
and Pinkham-Demazure data (i.e., the analytic type of the central curve E,
and Ng, and intersection points of E, and branches).

(ii) For a C*-pencil of curves ® : S — A, we have the following:

@C * ~ @HO(EO,OEO(D(’“))t’“
k=0
EXAMPLE 6.10. Let consider an elliptic pencil whose singular fiber has
the following w.d.graph:

[a—y

O—O—
1

2
Since. D) =2k Py — {3k}P1 { }Pz—{ }P3, we have HO(]P’I,OW(D(’“)))
= C®3 if 3|k and zero if 31 k.
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