
DEMONSTRATIO MATHEMATICA 
Vol. XLIII No 2 2010 

Tadashi Tomaru 

COMPLEX SURFACE SINGULARITIES AND 
DEGENERATIONS OF COMPACT COMPLEX CURVES 

Abstract. Since 15 years ago, I have been studying some relations between com-
plex normal surfaces ([Ttl]-[Tt5]). In this paper, we give a survey of them. After some 
preparations, we describe main results. Especially, we explain a method to embed reso-
lution spaces of normal surface singularities into total spaces of degenerations of compact 
Riemann surfaces. 

0. Introduction 
After M. Artin's work [Art], normal surface singularity theory has been 

researching by many mathematicians (for example, P. Wagreich, H. Laufer, 
O. Riemenschneider, K. Saito, J. Wahl, S. S.T. Yau). On the other hand, 
K. Kodaira [Ko] defined the local one-parameter degeneration family of 
compact complex curves (=pencil of curves) correctly. He classified the 
configurations of singular fibers of such objects in the case of genus one 
(namely, elliptic pencils) and computed the homological monodromy groups 
and the functional invariants associated to the pencils of curves. In [NU], 
Y. Namikawa and K. Ueno studied similar problem for the case of genus two. 
The field of the degenerations of curves has been exploited via the methods of 
algebraic geometric, topology and complex analysis (T. Arakawa, T. Ashik-
aga, Y. Imayoshi, M. Ishizaka, Y. Matsumoto, J. M. Montesinos-Amilibia 
and S. Takamura etc.). 

On the relation between singularities and pencils of curves, there have 
been several important works by several mathematicians (for example, 
V. Kulikov, U. Karras, M. Reid and J. Stevens). However it does not seem 
that their results are well-known. In this decade, the author has been re-
searching the relation between singularities and pencils of curves under the 
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influence from the activity by above Japanese mathematicians. In this paper, 
we give a survey of our results. 

In § 1, we explain the fundamental results on normal surface singularities 
due to M. Artin [Art], P. Wagreich [Wag], H. Laufer [La], S. S.T. Yau [Y], In 
§ 2, for the relation between surface singularities and pencils of curves, we 
survey the results by V. I. Arnold [Arn], V. Kulikov [Ku], U. Karras [Kal,2], 
M. Reid [R] and J. Stevens [Stl,2], In § 3, 4 and 5, we explain our results 
[Ttl-5]. 

1. Fundamental facts on normal surface singularities 
In the following, we review some facts on normal surface singularities 

which relate to pencils of compact complex curves. Let (X, o) be a normal 
complex surface singularity. Let ir: (X, E) —• (X, o) be a resolution of 

r 
singularity, where E = (J E{ is the irreducible decomposition of the excep-

t=l 
tional set E. Let Ox,o be the local ring associated to (X, o) and trix.o the 
maximal ideal. Let h be an element of mx,o, and let E(h o 7r) be the cycle 
on E determined by ho it. 

T 

D E F I N I T I O N 1 . 1 . (1) For a Z-cycle D = J 2 d i E i o n E ( d i e l e t 

¿=i 
j y i _ JJ 

pa(D) := 1 H ——— and call it the arithmetic genus of D. If D is an 
effective divisor (i. e., di ^ 0 for any i ) , we put r e d ( D ) = J 2 

di> o 
r 

(2) For the (Artin's) f u n d a m e n t a l cycle Z g := min{£) = a i E i | Oj > 0 
i=1 

and D E i ^ 0 for any z} (see [Art]), the values of p a { Z E ) and ( Z e ) 2 are 
independent of the choice of a resolution, and so we put them p f ( X , o ) and 
(Zx)2 respectively in this paper. 

(3) The positive cycle M e := m i n { E ( h o n ) | h € rrix,o} on E is called the 
m a x i m a l ideal cycle on E and we have Z e ^ M e (see [Y]). In this paper, M^ 
(resp. Zx) represents the maximal ideal cycle (resp. fundamental cycle) on 
the minimal resolution. 

D E F I N I T I O N 1 . 2 . (1 ) p g ( X , o ) := d i m c H l { X , O j ^ ) (geometric genus). 

(2) p a { X , o ) := m a x { p a { D ) \ D is a Z>0-cycle on E } (arithmetic genus of 

(3) If there exists a holomorphic 2-form on X\0, then we call (X, o) a Goren-
stein singularity. 
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In this paper, we often use the weighted dual graph (=w.d. graph) I a n d 
so explain it. Let E be the exceptional set of a resolution of a singularity 
or the singular fiber of a pencil of curves. The w.d.graph r ^ of E is a 
graph such that each vertex of represents an irreducible component Ej 
weighted by E2 and g(Ej) (=genus), while each edge connecting to E{ and 
Ej, i ^ j, corresponds to point Ei fl Ej. For example, if E2 = —bi and 
g(Ei) = gi > 0 (resp. gt — 0), then E{ corresponds to a vertex that is 
configured as follows: 

(resp. @ ) and O m e a n s 

M 

Though pa(X,o) and pj(X,o) are topological invariants, pg(X,o) is not 
so. The geometric g.enus pg(X,o) is an analytic invariant. Since pg(X,o) is 
sensitive, it is useful on many situations of surface singularity theory. On 
the other hand, pf(X,o) is insensitive. However, pf(X,o) is useful when 
we consider the rough classification of singularities. It seems like that these 
three invariants have different roles in the classification of normal surface 
singularities. We show this by the following example. 

E X A M P L E 1 . 3 . Let (X, o) be a hypersurface singularity defined by x2 + 
y8 + z8i+9. The minimal resolution is given as follows: 

£ - 1 

Then we have Pf{X,o) = 3, pa(X,o) = 2i + 3 and pg(X,o) = 6^ + 6, 
where pa(X,o) is computed by Tomari's formula [Tm2], 

In [Art], M. Artin proved that Pf(X,o) = 0 O pa(X,o) = 0 
pg(X,o) = 0. If ( X , o) satisfies such conditions, he call it a rational singu-
larity. He proved that if (X, o) is a rational singularity, then the embedding 
dimension emb(X,o) is equal to max{3, — + 1} and the multiplicity of 
(A", o) is equal to — l?x. He also classified rational singularities of multiplic-
ity two (i.e., rational double points) as follows: An : x2 + y2 + zn+1(n ^ 
1), Dn : x2 + y2z + zn~l{n ^ 4), E6 : x2 + y3 + z4, E7 : x2 + y3 + yz3, Eg : 
x2 + y3 + z5. 

In [Wag], P. Wagreich proved that 0 ^ pf(X,o) ^ Pa(X,o) ^ P9(X,o) 
and also proved that pf(X,o) = 1 <=> pa(X,o) = 1. If (X, o) satisfies 
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pf (X, o) = 1, (X, o) is called an elliptic singularity or a weak elliptic sin-
gularity. In this paper we use the terminology of "elliptic singularity". 

Let (X,o) be an elliptic singularity, and let (X, E) be a resolution of 
{X, o). In [La], H. Laufer defined a positive cycle Zm¡n on E by Zmm: 
=min{F|pa(£>) <; 0 for any cycle D with 0 < D < F and pa(F) = 1}. 
He proved that the following three conditions are equivalent: (i) Zg = Zm¡n, 
(ii) —KEi = ZEE{ for any component Et of E, (iii) (X, o) is a Gorenstein 
singularity of pg(X, o) = 1. If an elliptic singularity satisfies these conditions, 
he called it a minimally elliptic singularity. He proved that if (X, o) is a min-
imally elliptic singularity, then the embedding dimension emb(X, o) is equal 
to max{3, —l?x}, and the multiplicity of (X, o) is equal to min{2, — Z^-j. He 
also classified minimally elliptic hypersurface singularities (i.e., the multi-
plicity ^ 3). 

In [R], M. Reid also independently studied Gorenstein singularities of 
pg(X, o) = 1. He also classified such hypersurface singularities of multiplicity 
of 2 or 3 and pointed out relations between minimally elliptic singularities 
and elliptic pencils. 

On the other hand, V. I. Arnold [Arn] studied real or complex function 
germs. He introduced the invariant modality /¿(X, o) for hypersurface singu-
larity (X, o) — { / = 0}. He show that ¡ J L ( X , o) = 0 if and only if (X, o) is a 
rational double point. He also classified hypersurface singularities of fi = 1 
or 2, and call singularities of n = 1 (resp. /z = 2) uni-modal (resp.bi-modal) 
singularities. Uni-modal singularities are exhausted as follows: (i) simple el-
liptic singularities xa + yb + zc + txyz : (o,6,c) = (3,3,3), (2,4,4) or (2,3,6), 

(ii) cusp singularities Tp^r (=xp + yq + zr + txyz : - -I 1— < 1), (iii) 14 

exceptional singularities (for example, x2 + y3 + z7 + ayz5,x2 + y3 + z8 + ayz6 

etc.). For bi-modal case, there are 22 types singularities up to one parameter 
deformation. 

Further, V. Kulikov [Ku] showed that uni-modal and bi-modal singular-
ities are obtained through some procedure (see Definition 2.2 of this paper) 
from Kodaira's list [Ko] of pencils of elliptic curves. 

Inspiring by Kulikov's observation, U. Karras [Kal,2] introduced the no-
tion of Kodaira singularities in terms of pencils of curves. He also applied 
it to the deformation theory of surface singularities. Further, J. Stevens 
[Stl, 2] studied a subclass of Kodaira singularities (called Kulikov singular-
ities) and proved some relations between them and deformations of curve 
singularities. 

Moreover, K. Saito [Sa] studied some classes of quasi-homogeneous hy-
persurface elliptic singularities and considered pencils of curves associated 
to those singularities. 



Complex surface singularities. 343 

2. Kodaira singularities and Kulikov singularities 
Here we describe the precise definition of pencils of curves and the defi-

nition of Kodaira (and Kulikov) singularities. 

DEFINITION 2.1. Let S be a non-singular complex surface and A C C 
a small open disc around the origin. If 3»: S —> A is a proper surjective 
holomorphic map and the generic fiber St'- = (t 0) is a smooth 
curve, it is called a quasi-pencil of curves. Further, if the generic fiber St 

is a connected smooth curve of genus g, then we call it a pencil of curves 

or a pencil of curves of genus g. In this situation, we call S0 = $ _ 1 ( o ) the 

singular fiber or the degenerate fiber. 

DEFINITION 2.2. ([Kal], [Stl,2]) Let S —> A be a pencil of curves 
of genus g which has reduced components. Let Pi,-- - , PT € supp(50) be 
non-singular points of S0 (i.e., they are contained in components whose co-
efficients of S0 equal to one and also smooth points of red(S'0)). Let S' S 

be a finite succession of blowing-ups with centers Pi , • • • , Pr. Let X be an 
open neighborhood of the proper transform E C S' of supp(50) by a. By 
contracting E in X, we obtain a normal surface singularity (X,o). Then, 
the contraction map tp: (X, E) —> (X, o) is a resolution of (X, o) and so we 
have the following: 

5 — S'D (X,E) 

A (X,o). 

If a normal surface singularity is isomorphic to a singularity obtained 
in this way, then it is called a Kodaira singularity of genus g (or Kodaira 

singularity associated to Also, if a is just one blowing-up at every center 
Pi (i = 1, • • • , r ) in the above construction, then (X, o) is called a Kulikov 

singularity of genus g (or Kulikov singularity associated to 3>). We can easily 
see that if (X, o) is a Kodaira singularity, the fundamental cycle coincides 
with the maximal ideal cycle on the minimal resolution, (i.e., TLx — M x ) . 

Let T be the w.d.graph of the exceptional set of the minimal good reso-
lution of a normal surface singularity. If there exists a Kodaira singularity 
whose w.d.graph for the minimal good resolution coincides with T, then T 
is called a Kodaira graph. 

PROPOSITION 2.3. ([Kal], 2.7) Let (X,E) be a resolution of a normal 

surface singularity (X, o). Let T be a w.d.graph of E. Then T is a Kodaira 

graph if and only if each irreducible component Ei with EIZE < 0 appears 

with multiplicity one in the fundamental cycle ZE• 
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E X A M P L E 2 . 4 . The following figure gives an example of Kulikov singularity 
of genus 1. 

(elliptic pencil) 

© O - O O t O 
1 1 : 1 (X,o) = {x3+y3 + z3e+1 = 0}. 

In general, we can not always determine from the w.d.graph whether a 
singularity is a Kodaira singularity or not. For example, if we put (X\, o) = 
{z2 + y3 + x1 8 = 0} and (X2,o) = {z2 + y{y4 + x6) = 0}, then they are 
elliptic singularities whose w.d.graphs for minimal resolution coincides with 
each other. We can easily check that (-Xi,o) is a Kulikov singularity from 
4.13 since pe(X\,o,x) = 1 and x is a reduced element. However, (X2,0) is 
not a Kodaira singularity, because Zx2 Those cycles are given as 
follows: 

1 1 1 

Q K K ) 
[ 1 ] 

and 
2 2 1 

Mx2 = Q - O - O 
[1] 

T H E O R E M 2 . 5 . ([Kal], 2.9) Let {X,o) be a rational or minimally elliptic 
singularity with w.¿.graph T. Then (X,o) is a Kodaira singularity if and 
only if T is a Kodaira graph. 

From the definition, we can easily see that the w.d.graph of Kodaira 
singularity is equal to the one of a Kulikov singularity. Therefore, if we find 
a Kodaira singularity which is not Kulikov, we need to discuss the analytic 
type of singularity and it is not so easy. The author considered this problem 
under a special situation. 

T H E O R E M 2 . 6 . ([Tt4], 3 .8) Let (X,o) be a normal surface singularity 
obtained by the contraction of the zero-section of a negative line bundle L on 
a non-singular complex projective curve E. 
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r 
(i) (X, o) is a Kodaira singularity if and only if L ~ — ^ n,Pj (linearly 

i=l 
equivalent), where rij > 0 for any i. 

r 
(ii) (X, o) is a Kulikov singularity if and only if L ~ — Pi, where Pi, - - , 

i=i 
Pd are r mutually distinct points. 

(iii) In the case of (i) (resp. (ii)), (X,o) is a Kodaira (resp. Kulikov) singu-
larity associated to the trivial pencil; it is obtained by taking ni blowing-up at 
Qi := (Pi, 0) €= E x C for i = 1, • • • , r. Moreover we have n\ = • • • = nr — 1 
in the case of (ii). 

Let £ be a non-hyperelliptic curve and let P be any point of E. If 
(X, o) is a normal surface singularity obtained by the contraction of the 
zero-section of the negative line bundle associated to — IP, then (X, o) is a 
Kodaira singularity, but not a Kulikov singularity from 2.6. 

3. Embeddings of resolution spaces into pencils of curves 

If $ : S —> A is a pencil of curves, the intersection matrix of any con-
nected one-dimensional analytic proper subset E in supp(5c) is negative 
definite from Zariski's lemma ([BPV], p. 90). Hence E is contracted to a 
normal surface singularity by Grauert's result ([G], p. 367]). From now on 
we consider the converse problem. We prepare some definitions. 

D E F I N I T I O N 3 . 1 . Let n: (X, E) —> (X, o) be a resolution of a normal sur-
face singularity. Let S —> A be a pencil of curves such that (S, supp(SQ)) 
D (X,E) (i.e., S D X and supp(S0) D E). 
(i) If h G mx,o satisfies h o n = then $ is called a pencil of curves 
extending ho •k or an extension of h on. Namely it implies the following 
diagram: 

(X, o) (X, E) C (S, supp(S0)). 

(3-1) 
/ $ n A 

(ii) Under the situation of (i), if there is no (—1) curve in supp(S0)\E which 
does not intersect E, then we call $ a pencil of curves minimally extending 
h o 7r or a minimal extension of ho IT. 

D E F I N I T I O N 3 . 2 . Let R be a ring and h a non-zero element of R. Then 
h is called a perfect power element if there is an element g G R satisfying 
h = gk for some positive integer k ^ 2. 

The author proved the following. 
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T H E O R E M 3 .3. ([Tt4], 2.4) Let (X,o) be a normal surface singularity and 
h € mx,o- Let ir: (X, E) —> (X, o) be a good resolution such that red((hon) 
is a simple normal crossing divisor on X. Then there exists a quasi-pencil 
of curves 3>: 5 —> A such that $ is a minimal extension of ho TT. Further, if 
h is not a perfect power element, then $ is a pencil of curves. 

We prove Theorem 3.3 by gluing X and resolution spaces of some cyclic 
quotient singularities. Also, we consider h o i r and some holomorphic func-
tions on cyclic quotient singularities. By gluing them, we obtain a pencil of 
curves 3>: S —> A. By computing examples, we explain this. 

E X A M P L E 3 .4 . (1) Let (X,o) = (C2,o) and hx = x2+y29+1 (g ^ 1). Then 
the minimal embedding resolution of the curve singularity defined by h\ = 0 
is given by the left configuration in the following. Also, the pencil of curves 
of genus g constructed as in 2.2 is given by the right configuration: 

2 ••• 2g-2 2g 4g+2 2g+l 2 ••• 2g-2 2g 4g+2 2g+l. 

(2) Let (C, o) be a non-reduced curve singularity defined by x7y5(x — y)4 = 0. 
After one blowing up at the origin of C2, we have the following configuration: 

* 4 

16 1 16 
From — = [[3,2,2,31](= 3 =—) and — = [[4,2,2,2,2]], we have 

7 r, 1 5 

* 4 

C 

7 16 5 1 3 5 7 16 5 4 3 2 1 

Then we can see that its genus is 6 by the adjunction formula. 

R E M A R K 3 .5 . Here we remark that any pencils of curves is birational to 
a pencil of curves which is constructed as in 3.3 (see [Tt4], Theorem 2.7). 
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R E M A R K 3 . 6 . In any dimension, E. Looijenga [Lo, p. 301] proved similar 
results in a different way. Namely, let (X, o) be a normal isolated singularity. 
If h G MX,o is a reduced element, then it defines a one parameter smoothing of 
(X, o). Using formal completion argument presented by M. Artin, Looijenga 
proved that if h G MX,0 is an element that gives a one parameter smoothing 
h: (X, o) —• (C1, o), then there is a flat projective morphism ip: Z —> C1 and 
an embedding 4>: X —> Z satisfying h = tj) o </>. 

4. Pencil genus for normal surface singularities 

In [Tt4], the author introduced an invariant for normal surface singular-
ities by using pencils of curves. 

D E F I N I T I O N 4 .1 . Let (X, o) be a normal surface singularity, and let h G 
mx,o be not a perfect power element. 

(i) We define a holomorphic invariant for (X, o) as follows: 
pe(X,o) := min{the genus of a pencil of curves including a resolution of 
(X,o)} . 
(ii) We also define a holomorphic invariant for a pair of (X, o) and h as 
follows: 
pe(X,o,h) := min{the genus of a pencil of curves extending h o n for a 
resolution 7r of (X, o)}. 
Then, pe(X, o) (resp. pe(X,o,h)) is called the pencil genus of (X, o) (resp. 
a pair of (X, o) and h). 

E X A M P L E 4 . 2 . For rational double points, we can easily see that pe(An) 
= 0 and pe(Dn) = 0. Also, we have pe(Ee) = 1 (£ = 6,7,8) (see [Tt4], 3.12). 

T H E O R E M 4 . 3 . Let (X, O) be a normal surface singularity and let h G MX, 0 

be not a perfect power element. Let n: (X,E) —> (X, o) be a good res-
olution such that red((h o n)^) is simple normal crossing on X. Sup-
pose that $: S —> A is a pencil of curves of genus g extending h o n. If 
g = pe(X,o,h) and $ is a minimal extension of ho n, then any connected 
component of supp(50)\£l is a P1 -chain. Conversely, if any connected com-
ponent of supp(S0)\E is a P1 -chain, then g = pe(X,o,h). Therefore, the 
genus of any pencil of curves constructed from h o n as in Theorem 3.3 is 
equal to pe(X, o, h). 

From 4.3, we have pe(C2, o, x2+y29+x) = g and pe(C2, o, x7y5(x-y)4) = 6. 

E X A M P L E 4 . 4 . Let (X,o) = ({x2 + y3 + z4 = 0},o) (a rational double 
point of type EQ). (X, o) is a double covering over C2 branched along a 
plane curve C := {y3 + z4 = 0}. Let V C2 be the minimal embedded 
resolution of C. Taking the double covering over V branched along a*(C) 



348 T. Tomaru 

(total transform of C) and contracting some (—l)-curves, we can obtain the 
minimal resolution (X,E) (X,o) and the divisor (x o n(cf. Lemmas 
3.1 in [Tt2] or Lemmas 4.3 in [Tt4]). Similarly, we can obtain the divisors 
( y ° n ) x

 a n d i z o i r ) x - Applying Theorem 3.3 for them, the singular fibers 
of the pencils of curves constructed from x,y and 2 are given as follows: 

y • O 2 

O T O O - O - O O O 
1 2 3 4 3 2 1 

From the adjunction formula and Theorem 4.3, we can see that p e ( X , o , x ) 

= 3 , p e ( X , o , y ) = 1 a n d p e ( X , o , z ) = 1 . 

Let (X, o) be a normal surface singularity and h € mx,o be not a perfect 
power element. Let ir: ( X , E ) —> ( X , o ) be a resolution such that r e d ( ( h o 
7r)X) is a simple normal crossing divisor. Let E(h o ir) be the cycle on E 
determined by hon and (ho-n) be the vanishing order of hon on E{. Then 

r r(h) 
E(h o 7r) = J2 vEi(h o 7 T ) E i . L e t A ( h o ir) = £ 7 j C j ("fj € N ) b e t h e n o n -

t=1 j=l 
exceptional part of the divisor ( h o n ) ^ (i.e., A(/JO7T) = (hon)^- — E(h°7r)), 

r(h) 

and let put C = Yh Cj, where Cj is an irreducible component for any j. 
i=i 

Let n i , - - - be positive integers denoted by rij = (h o 7r) if Etj 

intersects Cj. 
THEOREM 4 . 5 . ([Tt4], 2.11) Under the situation above, we have the fol-

lowing: 

P e ( X , O, h) = pa{E(h O 7 r ) ) - E(h O 7 r ) 2 

1 r ( h ) 

- - { ( E ( h O t t ) + E ) ( A ( h O t t ) - C ) + r ( h ) + ^ g c d ( n j , 7 j ) } . 
j=1 

Further, if h is a reduced element, then 

p e ( X , o, h) = P a ( E { h O 7R)) - E(h O TT)2 - r { h ) . 

For the normalization u: C —> C of a curve singularity (C, o), the con-
ductor number <5(C, o) is defined by d i m e { 0 ^ / i > * O c , o ) (cf- [Na]). 

COROLLARY 4 . 6 . (i) Let ( X , o) be a normal surface singularity and h G 
mx,0 o- reduced element. Let 5(h) be the conductor number of a curve singu-
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larity ( I n {h = 0},o). Then 

pe(X,o, h) = 5(h) - r(h) + 1. 

(ii) Let (X,o) = {zn = h(x,y)} be a normal hypersurface singularity. Then 

pe(X, o, z) = pe(C2, o, h) = 5(h) - r(h) + 1 = ^(h)-r(h) + ^ 

where n(h) is the Milnor number of a plane curve singularity ({h = 0},o) C 
(C2,o). 

Since the Milnor number of a curve singularity ({xa + yb — 0},o) is 
(a — 1)(£> — 1), we can easily check the computations of the genus of 4.4 by 
using 4.6. Further we have the following estimate on pe(X,o). 

T H E O R E M 4 . 7 . ([Tt4], 3 . 5 ) Let (X,o) be a normal surface singularity. 
Then 

Pf(X, o) ^ pe(X, o) ^ pa(X, o) + mult(X, o) - r(h). 

Especially, if (X,o) is a rational singularity, then 0 ^ pe(X,o) ^ mult(X, o) 
— 1. Also, if (X,o) is an elliptic singularity (i.e., pf(X,o) = 1), then 
1 ^Pe(X,o) ^ mult(X,o). 

From the definition, we can easily see that if (X, o) is a Kodaira sin-
gularity, then pe(X, o) — pf(X,o). However, the converse is not true. For 
example, any £)n-singularity is not a Kodaira singularity, but it satisfies 
pe(X,o) =pf(X, o). 

D E F I N I T I O N 4 . 8 . If ( X , o) satisfies pe(X,o) = pf(X,o), then ( X , O ) is 
called a weak Kodaira singularity. Further, if pe(X, o) =pf(X,o) = g, then 
(X,o) is called a weak Kodaira singularity of genus g. 

From the definition, any Kodaira singularity is a weak Kodaira singu-
larity. If (X, o) is a rational double point of type EQ, E-J or Eg, then 
Pf(X,o) = 0 < pe(X,o) = 1. Hence they are not weak Kodaira singu-
larity. We can find many weak Kodaira singularities which are not Kodaira. 
In [Tt3], we studied normal surface singularities obtained through some pro-
cedures. But the description is complicated. Hence, in the following, we 
explain singularities which are obtained through a more simpler procedure 
than [Tt3]. For any pencil of curves S —> A, if an irreducible component 
Ai in supp(S'0) satisfies A{ • (supp(50)\yl t) = 1, then it is called an edge 
curve. Also, if an edge curve is a (—l)-curve, then it is called a (—l)-edge 
curve. 

D E F I N I T I O N 4 . 9 . (i) Let S —• A be a non-multiple pencil of curves 
without any (-l)-edge curve. Let S^ = S S^ be blow-ups at non-
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singular points P ^ , • • • , of red(S¡0)). As the next step, let p [ 2 \ • • •, P¿2) 

G Ú a f 1 ^ ) be non-singular points of red(5^1)) and let S™ S ^ 
3=1 

be blow-ups at these points. After continuing this process m times, we 
get 5(°) = § ^ SW 4 1 . . . 4™- S M = S and put o — <j\ o • • • o am. 
Hence we get a new pencil $ = $ o a: S —> A and call this procedure 
a Kulikov process of type I started from • • • , P^ (or I-process started 
f r o m p W , - - - ,Pi

(
1

1)). 

(ii) In I-process of (i), if a component Á^ of supp(50) contains Pj1^ ( j = 
I,-- - , t i ) and A)Cj = a~ lÁká (i.e., this means the strict transform of A]tj 

by a), then we call AiC] a root component of this I-process. Let B\, • • • , Btl 

be connected components of B := supp(50)\supp(cr~150). Each Bj ( j = 
1, • • - , ti) is constructed from all components which are produced by blowing-
ups at infinitesimally near points of pj1^. We call such Bj a branch of 
supp(50) by this I-process. 

(iii) For any component Hf of a branch Bj, let £(Hj^) be the number of 

blow-ups to produce H^ from the root component Aj, and we call it the 
length of Also we define Í(A^) = 0 for any component A^ of the strict 

transform of supp(Sr
0) through A . Further, let CR(H^) = Coef f^ Sa (i.e., ** 3 

coefficient of the root of H^) if A^ is the root of 

D E F I N I T I O N 4 .10 . Let S —> A be a non-multiple pencil of curves 
without any (-l)-edge curve. Let S S be a birational map given by the 
I-process started from Pi, • • • , Pfc. Let A = supp(a :7150) and let F be the 
union of all components in branches by the I-process except for (—l)-edge 
curves. Let X be a small neighborhood of A U F and let ( X , o) be a normal 
surface singularity obtained by contracting A U F in X. We call such ( X , o) 
a singularity obtained from this I-process. If we put G := supp(S l

0)\(AUP), 
then any connected component G¿ of G is (—l)-curve and we call Gi an edge 
curve. 

T H E O R E M 4 .11 . ([Tt3], 2.5) Let <1: S —> A be a non-multiple minimal 
pencil of curves of genus g ^ 1 (i.e., 5 does not contain (—1)). Let (X,o) be 
a normal surface singularity obtained from I-process S S and (X, E) C 
(S, supp(S0)) the associated good resolution, where E = A UP. Then, (X,o) 
is a weak Kodaira singularity of genus g if and only if £(G{) ^ CR(GÍ) for 
any edge curve Gi. 
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E X A M P L E 4 . 1 2 . Let consider a I-process started from two points and 
consider a normal surface singularity (X, o) as follows: 

2 3 4 3 2 1 

(i) pg(X,o) = min Gj is any (—1) edge curve >, where 

(X,o) 

Then Cfl(Gi) = £(G1) = 2, CR{G2) = 3 < £{G2) = 5 and CR{G3) = 3 < 
Z(Gz) — 4. Hence (X, o) is a weak Kodaira elliptic singularity from 4.11. 

The following result generalizes the results by Karras [Ka2] and Stevens 
[St2], 

P R O P O S I T I O N 4 . 1 3 . ([Tt3], 2 . 7 ) Let S —• A be a non-multiple min-
imal pencil of genus 1. Let (X, o) be a normal surface singularity obtained 
by a I-process S S. Then we have the following. 

' e(Gj) • 

.Cf l^OJ 
[a] = max{n 6 Z | n ^ a} for any a G M. Further, if (X, o) is an 
elliptic singularity, then pg(X,o) coincides with the length of the ellip-
tic sequence in the sense of Yau [Y], 

(ii) Suppose that £(Gj) ^ cn(Gj) for any (—1) edge curve Gj. Then, (X,o) 
is a Gorenstein singularity if and only if there is a constant integer k 
such that ¿(Gj) = k • CR(GÌ) for any (—1) edge curve Gj. 

(iii) (X ,o ) is a minimally elliptic singularity (i.e., pg(X,o) = 1 and (X,o) 
is a Gorenstein singularity) if and only if£(Gj) = cjt(Gj) for any (—1) 
edge curve Gj. 

Therefore, if (X, o) is the singularity of 4.12, then it is a non-Gorenstein 
elliptic singularity of pg(X,o) = 1. 
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EXAMPLE 4.14. Let (X, o) be a normal surface singularity obtained as 
follows: 

(X,o) 

where the multiplicity of each component in the figure of the right hand side 
is the coefficient of the fundamental cycle Zx • If n ^ 3, then (X, o) is a weak 

However, it is not a Kodaira 
n 

L 3 J 
Kodaira elliptic singularity of pg{X, o) = 

singularity, because the w.d.graph is not a Kodaira graph from 2.3. 

We have the following characterization of Kodaira or Kulikov singulari-
ties. 

THEOREM 4.15. Let (X,o) be a normal surface singularity. 

(i) (X, o) is a Kodaira singularity if and only if there exists h 6 mx,o which 

is not a perfect power element satisfying pe{X, o, h) — Pf(X, o) and E(ho 

7r) = Ze, where n: (X,E) —> (X,o) is a resolution such that ved(h o 

7r) x is simple normal crossing. 

(ii) (X, o) is a Kulikov singularity if and only if there exists a reduced element 

h € mx,0 with pe{X, o, h) = p/{X, o). 

5. Cyclic covers of surface singularities and pencils of curves 
In [Tt2], the author studied hypersurface Kodaira singularities defined 

by zn = h, where h G C { x , y } and n > 1. Let (X, o) — {zn = h(x,y)} 

be a normal hypersurface singularity, and so h is a reduced element. Let 
fj,(h) (resp. r(h)) be the Milnor number of a curve singularity ({h = 0 } ,o ) 
(resp. the number of irreducible factors of h). Let ir: (V, F) —> (C2 ,o) 

s 
be the minimal embedded resolution of ({h = 0 } ,o ) and F = |J Ft be the 

i=1 
irreducible decomposition. Let Nh(Fi) be the vanishing order of h o a on Fi 

and put Nh = max{A^/l(Fi)|l S i = Then we have the following. 

THEOREM 5.1. ([Tt2], 4.5) (i) Ifn divides ord(h) (=the order ofh), then 

and l2x — —n. (X, o) is a Kodaira singularity of genus 
(n — \){ord{h) — 2) 

(ii) Ifn ^ Nh, then (X,o) is a Kulikov singularity of genus 

and I?x = —r(h). 

fi(h) - r(h) + 1 
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In [Tt4], the author generalized (ii) as the results of cyclic covers of 
singularities. 

D E F I N I T I O N 5 . 2 . Let (Y, o) C {<CN,o) be a normal singularity and I its 
defining ideal in C{yi, • • • , VN}- Further, let h G myi0 be an element and h € 
C{yj , • • • ,y;v} be an element corresponding to h. Let (X, o) ( c (CN+l,o)) 
be a singularity defined by the ideal generated by I and zn — h(y\, • • • ,y/v) 
in C{yi, • • • , yw, z}. Then ( X , o) is called the n-fold cyclic covering of (Y, o) 
defined by zn = h. 

In this section, we assume that h is not a perfect power element. Then 
(X, o) is a normal singularity if and only if h is a reduced element in Oy,o 
([TW], Theorem 3.2). For example, hypersurface singularities defined by 
zn = h(x,y) is a normal n-fold cyclic covering of (C2,o) defined by zn = h 
when h is a reduced element. 

Let (X , o) be a normal surface singularity and let 7r: (X,E) —> ( X , o) be 
r 

a resolution such that r ed( ( / io7r ) i s simple normal crossing. Let E = \J E{ 
i=1 

s 
and supp(A(/io7r)^) = [J Cj be irreducible decompositions, where A(/IO7T)̂  

i=1 
is the proper transform of a divisor {h = 0} through IT. 
D E F I N I T I O N 5 . 3 . Under the situation above, put = vg^h on) for any 
i, bj = vcj{h o 7r) for any j and Nh{7r) = max{lcm(aj, bj)\EiCj ^ 0}. Define 
a positive integer Nh(X, o) as follows: 

(i) Nh(X,o) = min{iV/j(7r) | n is a resolution such that r e d ( h i s simple 
normal crossing}. 

(ii) If gcd(ai, • • • ,ar,bi, - • • , bs) = 1, then h is called a semi-reduced element. 

It is obvious that h is semi-reduced if h is reduced. 

T H E O R E M 5 . 4 . Let (Y,o) c (CN,o) be a normal surface singularity and 
h G ttiy)0 a semi-reduced element. Let (X, o) be the normalization of the 
n-fold cyclic covering of (Y,o) defined by zn = h. If n ^ Nh(Y,o), then 
(X, o) is a weak Kodaira singularity of genus pe (Y, o, h). 

T H E O R E M 5 . 5 . Let (Y, o) be a normal surface singularity and h € M Y 0 

a reduced element. Let (X, o) be the n-fold cyclic covering of (Y, o) defined 
by zn = h. If n ^ Nh(Y,o), then (X, o) is a Kulikov singularity of genus 
6(h) - r(h) + 1 and l?x = -r(h). 

C O R O L L A R Y 5 . 6 . Let (Y,o) = {h(x,y,z) = 0 } C C 3 be a normal hy-
persurface singularity. If x is a reduced element of OY,O, then a hypersur-
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face singularity {X,o) — {h(xn,y,z) = 0 } is 0 Kulikov singularity of genus 

M(/)~r(/) + 1 md ^ = _ r ( / ) i f n ^ NX(Y, o), where f := /i(0, !/,*). 

Also, we obtain 5.1 (ii) as a corollary of 5.5. 
EXAMPLE 5.7. Let (Y, o) be a hypersurface singularity defined by z2 = 
y(x2 + y3) (i.e., Then we have ]3e(y, o, x) = 1 for a reduced element x. 
Let consider a cyclic cover (X,o) defined by un = x (i.e., ({z2 = y(u2n + 
y3)}, oj). Assume n ^ 3. Then (X, o) is a Kulikov singularity of genus 1 
by 5.6. In the following figures, (i) shows the divisor of (x) on the minimal 
resolution of (Y, o) and (ii)-(iv) show the fundamental cycles on resolutions 
of (X, o): 

(i) divisor (x) on Y: (ii) n = 

2 1 2^+1 

1 J D - - —O 
. . . 1 

(iii) n = 3£+l: 
2£+l 

(iv) n = 3^+2: 

IK X 1 • • • 1 

• ^ Q - O - ••• - O -

6. Normal surface singularities with C*-action and C*-pencils of 
curves 

DEFINITION 6.1. Let (X, o) C (CN,o) be a normal surface singularity 
embedded into (CN,0). Let consider a (C*-action on CN as follows: 

t-{x !,••• ,xN) = (tPlx !,••• ,tP»xN), 
where i 6 C* and pi, • • • ,PN are relatively prime positive integers. If (X, o) 

is invariant under the action, we say that (X, o) has a good C*-action. 
If (X, o) is a normal surface singularity with good C*-action, then we 

call it a normal C*-surface singularity. Normal C*-surface singularities form 
a special class in normal surface singularities. However, the class contains 
many important singularities. For example, the class contains all quotient 
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singularities (so all rational double points). Also, every surface singularity 
obtained by the contraction of the zero-section of a holomorphic negative 
line bundle is a normal C*-surface singularity. In this section, we consider 
relations between normal C*-surface singularities and pencils of curves with 
C*-action. 

Let (X, o) be a normal C*-surface singularity. Then there exists a C*-
equivariant resolution it : (X,E) —> (X, o). Namely, there exists a en-
action on X such that it is a C*-equivariant map. 

T H E O R E M 6 . 2 . ([OW]) Let (X,o) be a normal C*-surface singularity. 
Then there always exists a C*-equivariant resolution (X, E) such that the 
w. d.graph of E is star-shaped as follows: 

#1,1 • • • -El,ri 

Eo 
E, m,rm 

where 
d l = 
ei > : = Kl 

bi, 2 -

(bij ^ 2) and b > } ej/dj. / \ 

¿=i 

We call this resolution the minimal good C*-resolution of ( X , o) and call 
E0 the central curve. Every connected component of E\Ea is contracted 
to a cyclic quotient singularity. We call such connected component a cyclic 
branch. Under the C*-action on X, any point of Ea is a O-dimensional orbit 
(i.e., fixed point) and the intersection point of two connected components of 
a cyclic branch is also O-dimensional orbit. If is a component of a cyclic 
branch, then it contains a 1-dimensional orbit. The following figure explains 
such situation: 

I J . 
J** 

where dotted lines are 1-dimensional orbits. 
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T H E O R E M 6 . 3 . ([OW], [F2] and [P]) Let (X,o) be a normal C*-surface 
singularity and let (X,E) its minimal good C*-resolution. Then the analytic 
type is determined by the following three datum: 

(i) analytic type of the central curve E0, 
(ii) analytic type of the normal bundle of E0 in X, 

(iii) intersection points of E0 and all branches. 

D E F I N I T I O N 6 . 4 . For any non-negative integer k, Pinkham-Demazure di-
visor on E0 is defined as follows: 

• , ai 
1=1 

where Ng is the restriction of the conormal bundle associated to the em-
bedding of E0 into X and pi := Ea fl Elt\ for any i. 

T H E O R E M 6 . 5 . ([P]) The affine graded ring Rx associated to (X,o) is 
given by 

oo 
RxcQ)H0(Eo,OEo(DW)tk. 

k=0 
The above representation of R x is called the Pinkham construction (or 

Pinkham-Demazure construction (see [Wat])). In the following, we explain 
it by computing the defining equation of a simple elliptic singularity of type 

E X A M P L E 6 . 6 . Let Ea be an elliptic curve. We choose a point P0 in 
E0. Let ( X , o) be a normal surface singularity obtained by the contraction 
of the zero-section of a negative line bundle [—Pa] (i.e., EQ). Let / be a 
meromorphic function on E0 which has a pole of order —2 at Pa. Let g be 
a derivative of / . The function g has a pole of order —3. By Weierstrass's 
canonical form, we assume a relation g2 + / 3 + 1 = 0. Then we have the 
following: 

H0(Eo,OEo(Po))t: t 
H0(Eo,OEo(2Po))t2 : t2,ft2 

t \ f t \ g t \ 
tA,ftA,gtAJ2tA 

t&, f3t6, f2t6, ft6, gt6, g2t6, fgte. 

If we put z := t, y ft2 and x := gt3, then we have the defining equation 
x2 + y3 + z6 = 0 from g2 + f3 + 1 = 0 and dimcH0(Eo, 0Eo{<oP0)) = 6. 

D E F I N I T I O N 6 . 7 . Let $ : S —> C be a pencils of curves. Assume that 
there exists an effective holomorphic C*-action on S. If we have $ ( i • p) = 

H0(Eo,OEo(3Po))t3 

H0(Eo,OEo(4Po))t* 
H0(Eo,OEo(6Po))t5 
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td$(p) for any i 6 C* and any p 6 5, then we call $ : S —• C a C* -pencil 
of curves. 

Then we have the following, which is a C*-equivariant version of Theorem 
3.3. 
T H E O R E M 6 . 8 . Let (X,o) be a normal C*-surface singularity and Rx 
the affine graded ring associated to (X,o). Let h £ Rx be not a perfect 
power homogeneous element. Let n : (X, E) —> (X, o) be the minimal good 
C*-resolution of (X, o). Then there exists a C* -pencil of curves $ : S —> C 
which satisfies the following C*-equivariant diagram : 

(X,o) IX, E) C i,S',.siipp(S,J). 

n A 

The author [Tt5] proved 6.8 in a different way from 3.3. Let us explain 
the outline. We consider a P1-bundle 7r : S —> E0 on a curve E0 and 
consider a meromorphic function / on S. After taking suitable blowing-ups 
a : S —> S, we consider $ := / o a on S. By taking a suitable open 
subset S in S and the restriction of $ onto S, then we get a C*-pencil of 
curves. By using the slice theorem, we showed that every C*-pencil of curves 
is constructed in this way. From it, we can show the following. 

T H E O R E M 6 . 9 . (i) The singular fiber of any C*-pencil of curves become 
star-shaped after suitable blowing-ups. In the situation, the analytic type of a 
C*-pencil of curves is determined the numerical conditions (i.e., w.d.graph) 
and Pinkham-Demazure data (i.e., the analytic type of the central curve E0 

and Ne0 and intersection points of E0 and branches). 

(ii) For a <C*-pencil of curves $ : S —> A, we have the following: 
oo oo 

0 c • ~ 0 H°(Eo, 0Eo(D{k))tk. 
k=0 fc=0 

E X A M P L E 6 . 1 0 . Let consider an elliptic pencil whose singular fiber has 
the following w.d.graph: 

c x > 6 - o o • 
1 2 3 2 1 

S i n c a J D ( f c ) = 2 f c P o - { f } P i - { f } P 2 - { f } P 3 , w e h a v e i i o ( P 1 , 0 p l ( D « ) ) 

= C$£ if 3|Jb and zero if 3 \ k. 
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