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SOME QUESTIONS ON THE FUKUI NUMERICAL SET 
FOR COMPLEX FUNCTION GERMS 

Abstract. The Fukui numerical set is known as a blow-analytic invariant for real 
analytic function germs. Taking into account the similarity between real blow-analytic 
properties and complex topological ones, we may ask if the Fukui numerical set is a 
topological invariant for complex analytic function germs. In this note we discuss the 
problem and give some related questions. 

1. Introduction 
For K = M or C, let f : (Kn,0) (K,0) be an analytic function germ. 

Take any analytic arc 7 : (K,0) —> (Kn,0). Then f(^(t)) is a convergent 
power series in t. We denote by ord (/(T(Í))) its order in t. Set 

A ( f ) := {ord (/(7(i))) G N U {00}; 7 : (K, 0) - (Kn, 0) C"}. 

In [11] T. Fukui proved that A ( f ) is a blow-analytic invariant in the real case. 
Namely, if analytic functions f,g : (Mn, 0) —> (M, 0) are blow-analytically 
equivalent, then A ( f ) = A(g). We called A ( f ) the Fukui invariant in [16], 
[20], but we call it the Fukui numerical set here. We shall give the definition 
of blow-analytic equivalence in the next section. As mentioned in [12], it is 
well-known that there is a similarity between real blow-analytic properties 
and complex topological ones. Therefore it is natural to ask the following 
question: 

QUESTION 1. Suppose that analytic function germs / , g : (Cn,0) —> (<C,0) 
are topologically equivalent. Then A ( f ) = A(g)? 

Note that the smallest number in A ( f ) is the multiplicity of / . Therefore 
Question 1 is a kind of generalisation of the Zariski conjecture [35]. 

2000 Mathematics Subject Classification: 14B05, 32S15, 57R45. 
Key words and phrases: Fukui nimerical set, topological invariant, blow-analytic 

equivalence, Kuo -Lu tree model, Seifert form, simultaneous resolution. 



286 S. Koike, A. Parusinski 

We discuss the above question in this note. We have a positive answer in 
case n = 2, which shall be shown in §3. On the other hand, it is well-known 
that there are families of 3 variable polynomial functions with isolated sin-
gularities which are /¿-constant but not //-constant. It may be natural to 
ask whether there is a negative example to Question 1 in such families. In 
§4 we analyse those polynomial functions, and see that they are not negative 
examples. In §5 we discuss the above question in case n > 4, relating it to 
some properties of isomorphic Seifert forms. Then we have some questions 
on Fukui numerical sets and Seifert forms. Concerning the aforementioned 
similarity, we pose some questions in §6 on the relation between real analytic 
functions and their complexifications. As a partial result to one of our ques-
tions, we show that if the complexification of a family of two variable real 
analytic function germs is topologically trivial, then the original real family 
is blow-analytically trivial. 

The draft of this paper was written up while the first author was visiting 
Université d'Angers. He would like to thank the institution for its support 
and hospitality. The authors would like to thank also Philippe Du Bois, 
Laurentiu Paunescu and Osamu Saeki for useful communications. 

2. Formulae to compute the Fukui numerical set 
We say that a homeomorphism germ h : (R™,0) —> (Rn ,0) is a blow-

analytic homeomorphism if there exist real modifications // : (M, /j_1(0)) —> 
(Rn ,0), ¡1 : (M, jj,"1 (0)) (Rn ,0) and an analytic isomorphism $ : 
(M,/¿_1(0)) —> (M, /2-1(0)) so that the following diagram is commutative: 

( M ^ - H 0 ) ) A (R«,0) 

(2 .1) 

( M . / r H o ) ) h (Kn, o) 

We say that two real analytic function germs / : (Rn ,0) —>• (R, 0) and 
g : (Rn, 0) —> (R, 0) are blow-analytically equivalent if there exists a blow-
analytic homeomorphism h : (Rn ,0) —> (Rn ,0) such that / = g o h. For 
properties on blow-analyticity, see the surveys [12], [14]. 

We next recall the formulae to compute the Fukui numerical set, given in 
[16]. Let K = R or C. For an analytic function germ / : (Kn ,0) -> (K,0), let 
a : M —> K n be a simplification of / - 1 ( 0 ) , namely, a is a composition of a 
finite number of blowings-up, M is smooth and / o a is normal crossing. We 
denote by Ei, i G J, the irreducible components of ( / o cr)-1(0) in a~l{B£), 
where B£ is a small ball in K n centered at the origin. For each i G J , let 
Ni = mult E i Denote for I C J, Ei = Hie/ Ei and ^ = ^AUiej\/ Er 
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We put 
C := {I; Ej H cr - 1(0) ^ 0}. 

REMARK 2 .1. Taking a suitable a, we can assume that <T_1(0) is the union 
of some of Ei. Then C = {/ ;£/ C a - 1 ( 0 ) } . 

For A, B c N U {oo}, define A + B = {a + b& NU {oo}; a G A,b G B}, 
where we set a + b — oo if a = oo or b = oo. Let us put 

ii/(/) := (iVjjN + • • • + NipN) U {oo}, 

for I = (¿i, • • •, ip) G C. Then we have 

T H E O R E M 2 .2 . ([16]) Let f : ( K " , 0 ) ( K , 0 ) , K = K or C, be an analytic 
function germ and let a be a simplification of f~1(0). Then we have 

Mf) = U 
/GC 

In the real case, taking into consideration the signs, we can introduce 
finer invariants. Let us put 

C+ := {/ G C; Ei fl a " 1 ^ ) n ~P{J)_ + 0}, P ( f ) := {x G M; / o <r(x) > 0}, 
C~ := {/ G C; Ei n a - ^ O ) n JV(/) + 0}, N(f) := {x G M; / o o-(x) < 0}, 

where the overlines denote the closures in M. 
Let A : U —> R " be an analytic arc with A(0) = 0, where U denotes a 

neighbourhood of 0 G M. We call A nonnegative (resp. nonpositive) for f if 
(/ o A)(t) > 0 (resp. < 0) in a positive half neighbourhood [0,8) C U. Then 
we define the Fukui numerical sets with sign by 

A+(f) := {ord (/ o A); A is a nonnegative arc through 0 for /}, 
A-(f) := {ord (/ o A); A is a nonpositive arc through 0 for /}, 

respectively. It is easy to see that these A+(f) and A_{f) are also blow-
analytic invariants. Note that A(f) = A+(f) U A-(f). Then we have the 
following formulae to compute the Fukui numerical sets with sign: 

T H E O R E M 2 .3 . ([16]) Let f : ( R n , 0 ) —> ( R , 0) be an analytic function germ. 
Then we have 

A+(f) = (J Qj(f), AM) = |J n'(/)-
/ec+ iec-

In [20] we proved the Thom-Sebastiani formulae for the Fukui numerical 
sets. On the other hand, we introduced in [21] more refined blow-analytic 
invariants than the above Fukui numerical sets with sign, called the refined 
Fukui invariants with sign. 
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3. The Fukui numerical set is a topological invariant for 2 variable 
functions 
We first recall the notion of the tree model introduced by T.-C. Kuo and 

Y.-C. Lu [23]. Let f(x, y) be a complex analytic function germ of multplicity 
m and mini-regular in x, that is 

m 
f(x,y) = u(x,y)(xm + ]T a ^ y ) ^ ) , 

i=1 
where m = mul to / , u, at are analytic and u(0,0) 0. Let x = A¿(y), i = 
1, . . . , m, be the complex Newton-Puiseux roots of / . We define the contact 
order of X{ and Aj as 

0{Xi, A j) := ord0 (Aj - A j ) ( y ) . 
Let h 6 Q. We say that A,, A j are congruent modulo h+ if 0(A,, A j) > h. 

The tree model T ( f ) of / is defined as follows. First, draw a vertical line 
segment as the main trunk of the tree. Mark m = mult 0 f(x, y) alongside 
the trunk to indicate that m roots are bundled together. 

Let HO := min{0(Aj, Aj)|l < i,j < m}. Then draw a bar, BQ, on top of 
the main trunk. Call h(BO) := HO the height of BQ. 

The roots are divided into equivalence classes modulo KQ. We then rep-
resent each equivalence class by a vertical line segment drawn on top of BQ, 
and call it a trunk. If a trunk consists of s roots we say it has multiplicity s, 
and mark s alongside. 

The same construction is repeated recursively on each trunk, getting pos-
sible more bars and trunks, etc.. The height of each bar and the multiplicity 
of each trunk, are defined likewise. Each trunk has a unique bar on top of 
it. The construction terminates at the stage where the bars have infinite 
heights, that is on top of a trunk that contains a single, maybe multiple, 
root of / . 

Using the tree model, we next positively answer Question 1 in the case 
of analytic functions of two variables. 
THEOREM 3.1. Let f , g : (C2,0) —> (C, 0) be analytic function germs. If f 
and g are topologically equivalent, then A ( f ) — A(g). 
Proof. Let us factor / and g into irreducible components: 

f(x, y) = fx(x, y)ai • • • fm(x, y ) a g ( x , y) = g* (x, y) • • • gb
n

n(x, y). 
By hypothesis, there exists a homeomorphism h : (C2,0) —> (C2,0) such 
that / = g o h, consequently m = n. 

Let h(fjl(0)) = gjl{0), 1 < j < m. Since f j ' s and g/s are irreducible, 
there is a neighbourhood U of 0 in C2 such that each f j (resp. g3) has an 
isolated singularity at 0 6 C2 in U (resp. h(U)). Note that this isolated 
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singularity means any point P € U \ {0} is a regular point of f j . Pick a 
point P € fjl{0) fl U \ {0}. Then there is a neighbourhood W of P with 
W C U such that f j (resp. gj) is regular and /¿'s (resp. s), i ^ j, are units 
in W (resp. h(W)). Therefore there are local analytic diffeomorphisms o\ : 
(C2,0) -> (C 2 ,P) andn : ( C , f ( P ) ) (C,0) such that nofoax{x,y) = xa*. 
Similarly, there are local analytic diffeomorphisms : (C2,0) —> (C2, h(P)) 
and r2 : (C ,g(h(P))) ->• (C,0) such that r2 o g o a2(x,y) = xbi. Since / 
and g are topologically equivalent, xai and xbJ are topologically right-left 
equivalent as function germs: (C2 ,0) —> (C, 0). Therefore we have a,j = bj, 
1 < j < m. 

Taking a linear coordinate change if necessary, we may assume that / 
and g are mini-regular in x. Namely, if /^j and g^ are the initial forms of 
/ and g respectively, then f[k]{x,0) ^ 0 and g^(x, 0) ^ 0. Let 

F{x, y) = fi (x, y)--- fm(x, y), G(x, y) = gi{x, y) • • • gm(x, y). 

By construction, F and G are reduced. Since / and g are topologically 
equivalent, (C 2 ,F" 1 (0 ) ) is topologically equivalent to (C 2 ,G - 1 (0)) . By the 
Zariski theorem ([34]), the Puiseux characteristics of branches and their in-
tersection numbers coincide with those of G. Then it follows from the above 
observation, i.e. a3 = bj, 1 < j < m, that the Puiseux characteristics of 
branches of / and their intersection numbers with counting multiplicities 
coincide also with those of g with counting multiplicities. 

On the other hand, by Theorem V I I I in [16], the Fukui numerical set 
A(f) can be computed using the tree model T(f). Since the tree model 
T(f) is completely determined by the Puiseux characteristics of branches of 
/ and their intersection numbers with counting multiplicities, it follows that 
A(f) = A(g). . 

From the proof of Theorem 3.1, we see that the topological equivalence 
of two variable complex function germs implies the coincidence of their tree 
models. The converse is also valid. Namely, we have 

T H E O R E M 3 . 2 . ([29]) Let f , g : ( C 2 , 0 ) —> (C, 0 ) be analytic function germs. 
Then f and g are topologically equivalent if and only if the tree models of f 
and g coincide. 

On the other hand, we can introduce the notion of the real tree model for 
two variable real analytic function germs. See [21, 22] for the definition of 
it. Firstly K. Kurdyka and L. Paunescu consider the notion of the real part 
of the tree model in [26]. Our real tree model is the extension of theirs, and 
using it we can characterise the blow-analytic equivalence for two variable 
real analytic functions as follows: 
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THEOREM 3.3. ([21]) Let f : (M2,0) (R,0) and g : (M2,0) -> (M,0) be 
real analytic function germs. Then f and g are blow-analytically equivalent 
if and only if the real tree models of f and g are isomorphic. 

As seen as above, the Fukui numerical set is a topological invariant for 
two variable complex analytic functions. Therefore we may ask the following 
question: 

QUESTION 2. If a family of analytic function-germs { f t : (C2,0) —• (C,0)} 
with isolated singularities has a constant Fukui numerical set, then is the 
family { f t } topologically trivial? 

We can construct a negative example as follows: 

EXAMPLE 3.4. Let ft : (C2,0) (C,0), t G C, be a polynomial function 
defined by 

ft(x, y) = ( l - t)x(y2 - x2) + tx(y2 - x3). 

Then for any t € C, ft has an isolated singularity and we have A ( f t ) = 
{3,4,5, • • • }U{oo}. But we can see that fo(x, y) = x(x2 — y2) and fi{x,y) = 
x(y2 — x3) are not topologically equivalent as function germs. 

4. Fukui numerical sets of some special 3 variable functions 
For a positive integer a € N, set N>a = {m G N; m > a}. 

4.1. List of the Fukui numerical sets for the Brieskorn polynomials 
We first make a convention. By the Brieskorn polynomials in 2 variables 

we mean f(x,y) = axp + byq (p < q) where a / 0 and b ^ 0. Since their 
analytic types depend only on the signs of a and b in the real case (resp. on 
whether a and b are non-zero in the complex case), in order to simplify the 
notation, in this note we consider only Brieskorn polynomials of the form 
f{x, y) = ±XP ± y* (resp. f(x, y) = a* + yq). 

Let (p, q) = d where (p,q) denotes gcd {p,q). Then there are pi, q\ E N 
such that p = pid, q = q\d and (pi,Qi) = 1. Set \p,q] = LCM(p,q) = 
p\qid = pqi =p\q. 

Here we recall the list of the Fukui numerical sets for real Brieskorn 
polynomials f{x,y) = ±xp ± yq, (x,y) € M2, p < q, given in [20]. See the 
next page for the list. 

We can easily compute the Fukui numerical sets for complex Brieskorn 
polynomials f(x, y) = xp + yq, (x,y) G C2, p < q as follows: 

(4.1) ^ ( / ) = p N U 9 N U N > M U { o o } . 

We give also the Fukui numerical sets for the product function. 
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f(x,y) FUKUI INVARIANTS 

±xp ± yq, P, Q ODD A(f) = A+(f) = A- ( / ) = PN U <?N U N>(P,,, U (cx)} 

P ODD, Q EVEN A(f) = PN U qN U N ĵp,,] U {00} 

±xp + yq A+(f) = A(f), ( / ) = PN U N>[PIÎ] U {00} 

±xp - y" A.(/) = A(f), A+(f) = PN U N>[P,,] U {00} 

P EVEN, Q ODD A(f ) = PN U QN U N>|P,G] U {00} 

xp±yq A+{f) = A(f), A-{f) = <?N U N>[P,?) U { ( » } 
-xp ± yq A-U) = A{f), A+(f) = 9NUN>[P,,j U {cx>} 

±(XP — yq), P,Q EVEN A(f) = PN U GN U N>[P,„, U {00} 

xp -yq A+(f) = PN U N>LP,,J U {00}, A-{f) = qN U N>[PI,] U {00} 

-xp + yq A+(f) = 9N U N>[P,9] U {00}, A-(f) = PN U N>[PI,J U {00} 

±(xp + yq), P,Q EVEN A(f) = PN U GN U {00} 

x"+yq A + ( / ) = A ( / ) , A _ ( / ) = {OO} 
—xp - yq A-(f) = A(f), A+(f) = {00} 

EXAMPLE 4.1. Let f(x, y) = cxpyq, c ^ 0, be a polynomial function defined 
over K2 or C2 . Then we have 

A(f) = {ap + bq : a,b E N} U {oo}. 

In addition, in the real case we have the following: 

(i) If p or q is odd, then A+{f) = A-(f) = A(f). 
(ii) If p and q are even and c > 0, then A+(f) = A(f) and A-(f) = {oo}. 

(iii) If p and q are even and c < 0, then A~(f) = A(f) and = {oo}. 

4.2. Other formulae for the Fukui numerical sets 
Throughout this section, K denotes R or C. Let g : (Kn ,0) (K,0), 

n > 2, be an analytic function germ of the form: 
N 

(4.2) g(x i ,-- - , xn) = f{xi,x2) + <j>(xi,x2) + ^2xjiJ>j(xi, - • • ,xn), 
j=3 

where f(xi, x2) = ax\ + bxab ^ 0, p < q, and ^ ' ' ^ ( O ) = 0 as a weighted 
[p, g]-jet with respect to the system of weights (qi,Pi), pi and q\ as in Sub-
section 4.1. Here we recall the results for semi-quasi homogeneous functions. 

THEOREM 4.2. Given a system, of weights a = (AI,--- ,AN). Let ft : 
(Kn ,0) —> (K,0), t € I = [0,1], be an analytic family of analytic function 
germs. Suppose that for each t £ I, the weighted initial form of ft with 
respect to a is of the same weighted degree and has an isolated singularity at 
O e P . Then we have 
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(1) In the real case, {ft}tei ts blow-analytically trivial over I. (T. Fukui -
L. Paunescu [13], T. Fukui - E. Yoshinaga [10]) 

(2) In the complex case, {ft}tel topologically trivial over I. (V.I. Arnol'd 
[1], H. King [19], J. Damon - T. Gaffney [8], A. Parusinski [28]) 

It follows from the theorem above that / and f + (j> are blow-analytically 
equivalent (resp. topologically equivalent) in the real case (resp. in the 
complex case) as two variable analytic function germs. Since the Fukui 
numerical sets are blow-analytic invariants for real analytic functions by T. 
Fukui [11] (resp. a topological invariant for two variable complex analytic 
functions by Theorem 3.1), we have A(f) = A(f + <f>), A+(f) = A+(f + <f>) 
and A-(f) = A-(f + <t>) (resp. A(f) = A(f + <f>)). Thus we have 

A S S E R T I O N 4 . 3 . Under the above assumptions on g, we have 

A(g) D A(f), A+(g) D A+(f), A.(g) D A _ ( / ) (resp. A(g) D A(f)) 

in the real case (resp. in the complex case). Here A(f), A+(f) and A-(f) 
(resp. A(f)) are given in the list of Subsection 4.1 (resp. in (4.1)). 

Next let g : (Kn , 0) —> (K, 0), n > 2, be an analytic function germ of form 
(4.2), where f(x\,x2) = cx\x\, c ^ 0 and jm(f>(0) = 0 for some m > p + q. 
Then we have 

A S S E R T I O N 4 . 4 . Under the above assumptions on g, we have 

A(g) D A(f) n N< m , A+(g) D A+{f) n %m, A-(g) D A-(f) n N< m 

(resp. A(g) D A(f)) 

in the real case (resp. in the complex case). Here A(f), A+(f) and A-(f) 
(resp. A(f)) are given in Example 4.1. 

Let g : (K n ,0 ) —> (K, 0), n > 2, be an analytic function germ of form 
(4.2), where f(xi, £2) = ax^ + bxl, ab ± 0, p < q, j^(f>(0) = 0 as a weighted 
[p, <?]-jet with respect to the system of weights (qi,Pi) and j^p'q^~2tpj(0) = 0 
as a normal jet, 3 < j < d. 

P R O P O S I T I O N 4 . 5 . Suppose that ab < 0 , or p or q is odd in the real case 
(resp. suppose that ab ^ 0 in the complex case). Then we have 

A(g) = A(f), A+(g) = A+(f), A-(g) = A-(f) (resp. A(g) = A(f)). 

Proof . We show only the real case, since the complex case follows similarly. 
By the argument of Assertion 4.3, 

A(f + </>) = A(f), A+(f+ <(>) = A+(f), A_(/ + 0) = A_(/). 

Since A(f),A+(f),A-(f) D {\p,q),\p,q) + 1, • • •} U {00} by the table in 
Subsection 4.1 

A(g) C A(f), A+(g) C A+(f), A-(g) C A _ ( / ) . 
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On the other hand, it follows from the fact 
( / + ¿)(Ai(t), A2(t)) = s(Ai(t), A2(i),0, • • • ,0) 

that A(f + (j))c A(g), A+(f + 0) C A+(</) and + 0) C Thus 

¿0?) = A(/), ¿+(5) = A+(f), A-(g) = A - ( f ) . -
COROLLARY 4.6. Let f : (K",0) —> (K,0), n > 2, be an analytic function 
germ of the form: 

n 

f ( x - ,xn) = ax™ + bx™ + ^2xjhj(xi,--- ,zn) 
j=3 

with jm~2lij(0) = 0, j = 3, • • • , n. Suppose that m is odd and ab ^ 0, o r m 
¿s even and ab < 0 in the real case (resp. suppose that ab ^ 0 in the complex 
case). Then we have 

A ( f ) = {m,m + l , m + 2, • • • } U {oo}. 

4.3. Applications to some special examples 
The Briangon-Speder family ([7]) and the Oka family ([27]) are well-

known as families of 3 variable complex polynomial functions which are 
/¿-constant but not //-constant. In this subsection we analyse their Fukui 
numerical sets of those families. 

E X A M P L E 4.7. Let ft : (K3,0) (K,0), t e K, be Briangon-Speder's 
family defined by 

ft(x, y, z) = z5 + tzye + y7x + x15. 
We first compute the Fukui numerical sets in the real case. Regarding z5+x15 

as f(z,x) and tzy5 + y6x as ip(z,x,y), it follows from Assertion 4.3 that 
A(ft), A+(ft), A-(ft) D {5,15,16,17, • • • } U {oo} (t G R). 

We next regard y7x as f(y,x), a;15 as (j)(y,x), z4 + ty6 as ip(y,x,z) and 
m = 14. Then it follows from Assertion 4.4 that 

A(ft), A+(ft), A-(ft) D{8,9, • • • 14} (t e R). 
Thus A ( f t ) , A+(ft), A-(ft) D {5,8,9,10, • • • } U {oo} (t £ R). 

Let 7 = (71,72,73) : (R, 0) —» (R3,0) be an analytic arc: 

7 j ( t ) = a f t + a f t 2 + • • • , 1 < j < 3. 

If 4 1 } ^ 0, then ord ( f t o 7) = 5. If af = 0, then ord( /<o 7 ) > 8. Therefore, 

A ( f t ) = A±(ft) = {5,8,9,10, • • •} U {00} (t G R). 
Using a similar argument, we can compute the Fukui numerical set in 

the complex case as follows: 

A(ft) = {5,8,9,10, • • •} U {00} (t GC). 
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Modifying the Briangon-Speder family, T. Fukui and L. Paunescu con-
structed a family of 3 variable semi-quasi homogeneous functions in [13] 
which is /¿-constant but not / / -constant as a family of complex functions. 
Let us recall the family gt : (K3 ,0) (K,0), t € K, defined by 

gt{x, y, z) = z5 + tzy7 + y8x + x15. 

By the same argument as above, we can easily see that 

A(gt) = A±(gt) = {5,9,10,11, • • • } U {cx)} (t G R) 

in the real case, and 

A(gt) = {5,9,10,11, • • • } U {oo} ( i € C ) 

in the complex case. 

EXAMPLE 4.8. Let ft : (C3 ,0) (C,0), IE C, be Oka's family defined by 

ft(x, y, z) = x8 + ye + ze + tx5z2 + x3yz3 (£ > 16). 

Then we have 
A( / i ) = { 7 , 8 , 9 , - - - } u { o o } (teC). 

Proof . We show only the case t = 16. The other cases follow similarly. 
It is obvious that A(ft) C {7,8,9, • • • } U {oo}. 
Regarding y16 + z16 as f(y,z) and x 7 + txAz2 + x2yx3 as ip(y,z,x), it 

follows from Assertion 4.3 that 

A(ft) D {16,17,18,- • •}U{oo}. 

On the other hand, we can easily see 7,8,9, • • • , 15 € A(ft) as follows: 

• 7 is attained by the arc 7(s) = (s, as, s) for a ^ —t. 
• 8 is attained by the arc 7(s) = (s, s, s2). 
• 9 is attained by the arc 7(s) = (s, —ts — s 2 + s3 , s). 
• 10 is attained by the arc 7(s) = (s2, s, s). 
• 11 is attained by the arc 7(s) = (s2,s2,s). 
• 12 is attained by the arc 7 ( s ) = (s2, as3, s) for a ^ —t. 
• 13 is attained by the arc 7(s) = (s3, s, s). 
• 14 is attained by the arc 7(s) = (s3, s2, s). 
• 15 is attained by the arc 7(s) = (s3,s3, s). 

Thus we have A(ft) = {7,8,9, • • • } U {00} (i G C). • 

5. Seifert forms and topological types of complex funct ions 
Let / : (Cn , 0) —• (C, 0) be an analytic function germ with an isolated sin-

gularity. Then we denote by T ( f ) the Seifert form corresponding to / - 1 ( 0 ) . 
For the definition of the Seifert form, see V. I. Arnol'd, S. M. Guzein-Zard, 
A. N. Varchenko [2] or A. H. Durfee [9]. 
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Let us recall an interesting family of plane curves on C2 constructed by 
P. Du Bois and F. Michel. 

T H E O R E M 5 . 1 . ([6]) Let 

fafiix, y) = ((y2 - X3)2 - - 4 y x ^ ) ( ( x 2 - y5)2 - ya+10 - 4 x y ^ ) , 

where b > 11 and b ^ a + 8. Then the Seifert forms T(fatb) and r(/b_8,a+8) 
are isomorphic, but fa^ and fb-8,a+8 a r e n°t topologieally equivalent as func-
tion germs. 

The following result in higher dimensions is in contrast to the above one 
in the plane curve case. 

THEOREM 5.2. (A. H. Durfee [9], M. Kato [17], H. C. King [18]) Let 
f , g : (C" ,0) —> (C,0), n > 4, be analytic function germs with isolated 
singularities. Suppose that the Seifert forms T(f) and T(g) are isomorphic. 
Then f and g are topologieally equivalent. 

REMARK 5.3. In case n = 3 the same result as Theorem 5.2 does not always 
hold. Considering the suspension of the above Du Bois - Michel functions, 
E. Artal Bartolo constructed 3 variable polynomial functions in [3] so that 
they are not topologieally equivalent but the Seifert forms corresponding to 
their zero-sets are isomorphic. 

On Seifert forms, known is a kind of Thom-Sebastiali type's result. 

THEOREM 5 .4 . (A. G. Gabrielov [15], K. Sakamoto [31]) Let g : ( C M , 0 ) -> 
(C, 0) and h : (Cn ,0) —> (C, 0) be analytic function germs with isolated 
singularities. Define f : ( C m + n , 0 ) (<C,0) by f(x,y) = g(x) + h(y). Then 
T(f) is isomorphic to (-l)mnT{g) ®T{h). 

Suppose that there are two analytic functions /, g : (C2 ,0) —> (C,0) 
with isolated singularities such that A(f) ^ A(g) but T(/) and r(g) are 
isomorphic. Note that / and g are not topologieally equivalent in this case 
(see Theorem 3.1). Let m be a positive integer such that "m € A(f) but 
m A(g)" or "m £ A(g) but m £ A(f)". Define analytic functions F, G : 
(C4 ,0) —• (C, 0) by 

F(x, y, z, w) = f(x, y)+zm+1+wm+\ G(x, y, z, w) = g(x, y)+zm+1+wm+1. 

Then, by construction, A(F) / A(G). On the other hand, it follows from 
Theorem 5.4 that T (F ) is isomorphic to T(G). By Theorem 5.2, we see that 
F and G are topologieally equivalent as function germs. 

The above argument gives rise to the following question naturally: 

QUESTION 3. Are there two analytic functions /, g : (C 2 ,0) -> (C,0) 
with isolated singularities such that A{f) A(g) but T(/) and T(g) are 
isomorphic? 
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In this respect, we analyse the Du Bois - Michel functions fa,b and 
fb-8,a+8 for b > 11 and i / a + 8, mentioned in Theorem 5.1. The res-
olution tree of fbIga+8(0) is obtained from that of f~l(0), by exchanging 
some end parts of two branches of the tree. We note that the multiplicities 
of the exceptional divisors which support the end parts are the same. There-
fore it follows from Theorem 2.2 that A ( f a = -4(/6-8,a+s) unfortunately. 
Taking this fact into consideration, we may ask also the following question: 

Q U E S T I O N 4 . Let / , g : (C™, 0) (C, 0) be analytic functions with isolated 
singularities. Suppose that the Seifert forms corresponding to their zero-sets 
are isomorphic. Then A(f) — A(g)? 

6. Real blow-analiticity and complex topological triviality 
Let I = [a, 6] be a closed interval of R, and let F : Rn x R R be 

a germ of a real analytic function at {0} x I. Therefore we think of F as 
a real analytic function defined over a small neighbourhood of {0} x I in 
R n x R. Suppose that F(0;t) = 0. Let ft : (R",0) -> (R,0), t € J , be the 
analytic function defined by f t ( x ) = F(x;t). Here J is a small open set in 
R containing I . 

Let Fc : Cn x C —• C be the complexification of F. Therefore Fc is a 
complex analytic function defined over a small neighbourhood of {0} x I in 
Cn x C. Let ft>c : (Cn ,0) (C,0), t e I, be the complex analytic function 
defined by ft,c{x) = Fc(x\t). Here I is a small open set in C containing J . 
Therefore / t j c is the complexification of ft for t € J. 

As mentioned in the Introduction, there is a similarity between real blow-
analytic properties and complex topological ones. Therefore we first ask 

Q U E S T I O N 5 . Let I be a closed interval, and let { f t } t e i be a family of 
analytic function germs with algebraically isolated singularities. If { f t } is 
blow-analytically trivial over I, then is { f t , c } topologically trivial over II 

We can easily construct a negative example to this question as follows: 

E X A M P L E 6.1. Let ft : (R2,0) —> (R, 0), t € I, be a family of real polyno-
mial functions with algebraically isolated singularities defined by 

ft(x,y) = (x2 + y2)2 + tx5 + x7, 

where I is a closed interval containing 0, 1 € R. Then it follows from the main 
theorem in [24] that {/ t} is blow-analytically trivial over I. On the other 
hand, it is easy to see that /o,c and fitc are not topologically equivalent. 

We next ask the following opposite question: 

Q U E S T I O N 6. If { f t , c } is topologically trivial over I, then is { f t } blow-
analytically trivial over / ? 
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Concerning this question, we have an affirmative result in case n = 2 
without the assumption of algebraically isolated singularities. More pre-
cisely, we have 
T H E O R E M 6 . 2 . Let I be a closed interval, and let F : R 2 x R —> R with 
F(0; t) = 0 be a germ of a real analytic function at {0} x I in the above 
sense. Suppose that {ft,c}tei ls topologically trivial over I. Then { f t } is 
blow-analytically trivial over I. 
Proof. By assumption, ft,c : (C2,0) —> (C,0), t G I, is topologically trivial 
over I . Let 

Fc(x, y, t) = G\ (x, y, t • • • Gq(x, y, t)e< 
be the decomposition of Fc to irreducible components, and let 

G(x,y,t) = Gi(x,y,t) • ••Gq(x,y,t). 
Then (C2 x / , G_ 1(0)) is topologically trivial over / . For t e / , let gt(x, y) = 
G(x, y, t). Thanks to the triviality above, we may assume that for each t € I, 
gt is reduced and has an isolated singularity at 0 € C2. Let 

9t(x,y) = gt,i{x,y) • • • gt,m{x,y) 
be the decomposition of each gt to irreducible components. Note that m is 
independent of t. 

In the case where m = 1 and 0 G C2 is a regular point of gt for some 
t £ I, 0 G C2 is a regular point of gt for any t G I. Therefore we can regard 
V = G - 1 (0 ) C C2 x I as a desingularised variety through the identity map. 
Otherwise, by B. Teissier [31], there is a simplification of (C2 x I , G_ 1(0)), I I : 
M —> C2 x / , whose restriction to V' gives a strong simultaneous resolution 
of V, where V' is the strict transform of V by II. Let A : C2 x / —> I be the 
canonical projection. 

Let us express II as follows: 
n = n ion 2 o- • - o n r : m = M r M r _i • m 2 Mi -> M0 = c 2 x / , 
where each IL : M t —> Mt-\ is a blow up with smooth centre Ct C Mi-1, 
1 < i < r. We denote by Ei the exceptional set of Pi = IIi o II2 o • • • o Ilj, 
by Vi the strict transform of V by Pi, and by EVi_ 1 the singular set of Vi-1, 
1 < i < r, where Vo = V. Let Di be the exceptional divisor created by a 
blow up 11, with centre Cl, I < i < r. In these notations II = Pr, V' = Vr 

and Ei = Ui<j<i I < i < r. Let £ = Er, and let Po be the identity map. 
By the construction of Hironaka's desingularisation, Ci C Ei-1 U £Vi_i, 
1 < i < r. It follows that C\ = T,V = {0} x / and Cj C E^ 1, 2 < i < r. 
Let ft = n | v : V' V. Then ft-^SF) = £r\V', denoted by £. Since ft 
gives a strong simultaneous resolution of V, A o : S —» I is simple i.e. a 
locally trivial deformation. Using this property, we can show the following: 
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ASSERTION 6 . 3 . For 1 < i < r, Ci is one-dimensional, and each Cj+i is 
contained in V% fl Ei, 1 < i < r — 1. In addition, Ci, 1 < % < r, is not 
contained even locally in (A o i ) — 1 ( i ) for any t e I. 

Proof. C\ = {0} x I is 1-dimensional, and Q , 2 < i < r, is zero-dimensional 
or one-dimensional. Assume that the centre Ci is zero-dimensional for some 
i with 2 < i < r. Let Q be locally P0 G Ei-j. U S V ^ - i . Then Ei f l Vi is 
one-dimensional, and it contains a one-dimensional subset mapped to PQ by 
lit. Let Si = (H o • • • o Ur)-l(P0) n V'. Then Si is not empty, in fact, it is 
one-dimensional. This contradicts the local triviality of A o Therefore 
it follows that Ci is one-dimensional for 1 < i < r. 

Note that Cj+i fl Vl is not empty at each stage. Assume that Cl+\ is not 
contained in Vi C\Ei for some i, 1 < i < r — 1. Since Cl+i is one-dimensional, 
Ci+1 fl Vi is locally one point. Let Po be such a point. Then Vi+\ fl £>¿+1 
is one-dimensional, and it contains a one-dimensional subset in (Po) 
since Cj+i fl Vi = 0 in a punctured neighbourhood of Po- Similarly to the 
above, this contradicts the local triviality of A o Therefore we have 
C i + i CEiCiVi. 

We next assume that there is i, 2 < i < r, such that Ci is locally contained 
in (Ao/%_i)-1(io) for some io G I- As seen above, Ci C E l-\DV l-i . Therefore 
Ei-i n Vi-1 n (A O /3 i_1)-1(t0) is one-dimensional. If Et-x nV 'n (Ao n) _ 1 ( i 0 ) 
is one-dimensional, it contradicts the local triviality of A o also in this 
case. If Ei-i fl V' H (A o I I ) - 1 (io) = 0 or zero-dimensional, then there is, 
by construction, Ej-i, i < j < r, such that Ej-\ fl V' fl (A o II)_1(io) is 
one-dimesional. Repeating this argument, we see that £ fl V' D (A o I I ) - 1 (io) 
is one-dimensional which is a contradiction. Therefore Ci, 1 < i < r, is not 
locally contained in (A o /?j_1)_1(i) for any t € / . • 

The map A : Ci = {0} x / —> I is the canonical projection. Therefore it 
is submersive. In general, we have the following: 

ASSERTION 6 . 4 . For 1 < i < r, the map A o fc-i : Ci —> I is submersive. 
It follows from the construction that A o n ^ : Di —> I is submersive for 
1 < i < r . 

Proof. Assume that A o : Ci —> / is not submersive at Po € Ci. Then 
Di fl Vi has a one-dimensional subset which is mapped by IL onto a neigh-
bourhood of Po in Ci. If Di fl V' has a one-dimensional subset mapped by 
Ilj o • • • o IIr onto a neighbourhood of Po in Ci, it will contradict the local 
triviality of A o If not, there is j > i such that Dj fl V' has a similar 
one-dimensional subset to the above, which is also a contradiction. Therefore 
the submersiveness follows. • 
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A S S E R T I O N 6 . 5 . If Di n Dj, i ^ j , (resp, Di f l V ' ) is not empty, then 

A o III^nDj : Di f\ Dj I (resp. A o II|£>.ny/ : Di fl V' —> I ) is submersive. 

As a map germ at £ n V', A o I I | y : V' I is submersive. 

In addition, at most two of Di, • • • , Dr and V' intersect at any ( 6 5. 

Proof. The first statements follow from the construction of 1 C EiC\Vi, 
0 < i < r — 1, and Assertion 6.4. 

Assume that V', Di and Dj, i ^ j, intersect at £ £ £. Then Di fl V' and 
Dj fl V' intersect at £ G £. This contradicts the local triviality of A o 
We next assume that Di, Dj and Dk, l < i < j < k < r , intersect at £ £ £ 
in M. Therefore £ is not a point of V'. Dj is created by a blow up with 
centre Cj C Di. If Dk is also created by a blow up with centre Ck C Di, the 
two one-dimensional subsets of EVf fl Di intersect at £ £ Cj. If so, we have 
to consider a one-point blow up at £ not a blow up with centre Cj near £ at 
the j-th stage. But our centre is one-dimensional. Therefore this case does 
not happen. If Dk is created by a blow up with centre Ck C Dj, £ was a 
special point in Cj. In this case also we have to consider a one-point blow 
up at £ near £ at the j-th stage. Therefore the last statement follows. • 

Let £ be an arbitrary point of £ such that A o II(£) = t^. Then it follows 
from Assertions 6.4 and 6.5 that there is a local coordinate system, centred 
at (X, Y, T) such that 

G O n ( x , Y, T ) = U ( X , Y, T ) X A Y B 

where T = t — tg (more precisely, this means that A o II(X, Y,T) = t — 
and U(X,Y,T) is a unit near 

Let Fq be the complexification of F(x, y, t) — ft{x, y). Then II gives also 
a simplification of (C2 x / ,F^^O)) , and near 

FC o n ( X , Y, T ) = V ( X , Y, T)XCYD 

where V(X, Y, T) is a unit near 
By Hironaka's construction, II can be chosen invariant under complex 

conjugation. Let n be the restriction of II to the real part of M, and let E 
be the exceptional set of it. Then for any £ 6 E, there is a local coordinate 
sysytem, centred at (X, Y, T) such that 

F o t t ( X , Y, T ) = W{X, Y, T)XUYV 

where T = t — t^ and W(X, Y, T) is a unit near f . Then the blow-analytic 
triviality of {/(} follows from a similar argument to the proof of Theorem 1 
in [25] using Cartan Theorem B. 

This completes the proof of Theorem 6.2. • 
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Taking the above result and the observations seen in subsection 4.3 into 
consideration, we may pose the following question: 

Q U E S T I O N 7 . Let ft : (Cn,0) —> (C, 0), t € I , be a ¡JL-constant family of 
complex analytic function germs with isolated singularities. Here I is an 
open disk in C. Then is the Fukui numerical set A(ft) constant over / ? 

R E M A R K 6.6. We have an affirmative answer to the above question in 
case n — 2. Let F : (C2 x / , {0} x I) —> (C, 0) be a function germ 
defined by F(x,y;t) = f t ( x , y ) . In the two variable case /¿-constancy is 
equivalent to ¿/-constancy. By B. Teissier [32], the latter condition im-
plies the Whitney regularity of the pair (F - 1 (0) \ {0} x / , {0} x I). In 
addition, by [29] or J. Briangon, Ph. Maisonobe and M. Merle [5], the 
Whitney regularity implies the Thom (oir)-regularity of the stratification 
{C2 x I \ F - 1 (0 ) , F _ 1 (0) \ {0} x I, {0} x 1} of C2 x I. Then we can show 
that the family { f t } t e l is topologically trivial over I, using Thorn's 2nd Iso-
topy Lemma. Therefore it follows from Theorem 3.1 that A(ft) is constant 
over I. 
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