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SOME QUESTIONS ON THE FUKUI NUMERICAL SET
FOR COMPLEX FUNCTION GERMS

Abstract. The Fukui numerical set is known as a blow-analytic invariant for real
analytic function germs. Taking into account the similarity between real blow-analytic
properties and complex topological ones, we may ask if the Fukui numerical set is a
topological invariant for complex analytic function germs. In this note we discuss the
problem and give some related questions.

1. Introduction

For K=Ror C, let f: (K" 0) — (K,0) be an analytic function germ.
Take any analytic arc v : (K,0) — (K",0). Then f(v(t)) is a convergent
power series in t. We denote by ord (f(v(¢))) its order in t. Set

A(f) = {ord (f(r(1))) € NU {oo}; v : (K, 0) — (K", 0) C*}.

In [11] T. Fukui proved that A(f) is a blow-analytic invariant in the real case.
Namely, if analytic functions f,g : (R",0) — (R,0) are blow-analytically
equivalent, then A(f) = A(g). We called A(f) the Fukui invariant in [16],
[20], but we call it the Fukui numerical set here. We shall give the definition
of blow-analytic equivalence in the next section. As mentioned in [12], it is
well-known that there is a similarity between real blow-analytic properties
and complex topological ones. Therefore it is natural to ask the following
question:

QUESTION 1. Suppose that analytic function germs f, g : (C*,0) — (C,0)
are topologically equivalent. Then A(f) = A(g)?

Note that the smallest number in A(f) is the multiplicity of f. Therefore
Question 1 is a kind of generalisation of the Zariski conjecture [35].
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We discuss the above question in this note. We have a positive answer in
case n = 2, which shall be shown in §3. On the other hand, it is well-known
that there are families of 3 variable polynomial functions with isolated sin-
gularities which are u-constant but not u*-constant. It may be natural to
ask whether there is a negative example to Question 1 in such families. In
84 we analyse those polynomial functions, and see that they are not negative
examples. In §5 we discuss the above question in case n > 4, relating it to
some properties of isomorphic Seifert forms. Then we have some questions
on Fukui numerical sets and Seifert forms. Concerning the aforementioned
similarity, we pose some questions in §6 on the relation between real analytic
functions and their complexifications. As a partial result to one of our ques-
tions, we show that if the complexification of a family of two variable real
analytic function germs is topologically trivial, then the original real family
is blow-analytically trivial.

The draft of this paper was written up while the first author was visiting
Université d’Angers. He would like to thank the institution for its support
and hospitality. The authors would like to thank also Philippe Du Bois,
Laurentiu Paunescu and Osamu Saeki for useful communications.

2. Formulae to compute the Fukui numerical set

We say that a homeomorphism germ A : (R™,0) — (R",0) is a blow-
analytic homeomorphism if there exist real modifications p : (M, u~1(0)) —
(R*,0), i : (M,z"*(0)) — (R*0) and an analytic isomorphism & :
(M, x=1(0)) — (M, i~1(0)) so that the following diagram is commutative:

(M, p~1(0)) & (R",0)

(2.1) @l hl
(3, 571(0)) & (R",0)

We say that two real analytic function germs f : (R",0) — (R,0) and
g : (R™*,0) — (R,0) are blow-analytically equivalent if there exists a blow-
analytic homeomorphism h : (R",0) — (R",0) such that f = go h. For
properties on blow-analyticity, see the surveys [12], [14].

We next recall the formulae to compute the Fukui numerical set, given in
[16]. Let K = R or C. For an analytic function germ f : (K",0) — (K, 0), let
o : M — K" be a simplification of f~1(0), namely, o is a composition of a
finite number of blowings-up, M is smooth and f o ¢ is normal crossing. We
denote by E;, i € J, the irreducible components of (f o 0)~1(0) in 67 1(B,),
where B, is a small ball in K™ centered at the origin. oFor each i € J, let
N; = mult g, foo. Denote for I C J, E; = ();c; E; and Ef = EI\U]-GJ\I E;.
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We put
C:={I; Erno~1(0) # 0}.

REMARK 2.1. Taking a suitable o, we can assume that o~!(0) is the union
of some of E;. Then C = {I; E; C 071(0)}.

For A, BC NU{c0}, define A+ B={a+bec NU{o};a € A,bec B},
where we set a + b = oo if @ = 0o or b = 0o. Let us put
Q(f) == (NyN+ -+ 4+ Ny, N) U {0},
for I = (i1,--+,ip) € C. Then we have

THEOREM 2.2. ([16]) Let f : (K", 0) — (K,0), K =R or C, be an analytic
function germ and let o be a simplification of f~1(0). Then we have

A(f) = J (.

IeC

In the real case, taking into consideration the signs, we can introduce
finer invariants. Let us put

Ct={IeCEina (0)NP(f) 8}, P(f):={z € M;foo(z)>0},
C-:={IeCEna Y (0)NN(f) #0}, N(f):={ze M;foo(zx) <0},
where the overlines denote the closures in M.

Let A : U — R™ be an analytic arc with A(0) = 0, where U denotes a
neighbourhood of 0 € R. We call A nonnegative (resp. nonpositive) for f if

(foA)(t) > 0 (resp. <0) in a positive half neighbourhood [0,8) C U. Then
we define the Fukui numerical sets with sign by

A+ (f) := {ord (f o A); A is a nonnegative arc through 0 for f},
A_(f):= {ord (f o A); A is a nonpositive arc through 0 for f},

respectively. It is easy to see that these A, (f) and A_(f) are also blow-
analytic invariants. Note that A(f) = A4+(f) U A_(f). Then we have the
following formulae to compute the Fukui numerical sets with sign:

THEOREM 2.3. ([16]) Let f : (R™,0) — (R, 0) be an analytic function germ.
Then we have

Ax(H= U un, Aa-(H = U u®.

IeCc+ IeC—

In [20] we proved the Thom-Sebastiani formulae for the Fukui numerical
sets. On the other hand, we introduced in [21] more refined blow-analytic
invariants than the above Fukui numerical sets with sign, called the refined
Fukui invariants with sign.
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3. The Fukui numerical set is a topological invariant for 2 variable
functions
We first recall the notion of the tree model introduced by T.-C. Kuo and
Y.-C. Lu [23]. Let f(z,y) be a complex analytic function germ of multplicity
m and mini-regular in z, that is

f(z,y) = u(z,y)(=™ + Z ai(y)a™ ™),

where m = multo f, u,a; are analytic and u(0,0) # 0. Let z = A\i(y), ¢ =
1,...,m, be the complex Newton-Puiseux roots of f. We define the contact
order of A; and )A; as

O(/\,,, /\J) = OI‘dO ()\1 - )\])(y)
Let h € Q. We say that \;, \; are congruent modulo Rt if O(\;, Aj) > h.

The tree model T'(f) of f is defined as follows. First, draw a vertical line
segment as the main trunk of the tree. Mark m = multg f(z,y) alongside
the trunk to indicate that m roots are bundled together.

Let ho := min{O(\;, A;)|1 < 4,5 < m}. Then draw a bar, By, on top of
the main trunk. Call h{Bg) := hg the height of By.

The roots are divided into equivalence classes modulo hg . We then rep-
resent each equivalence class by a vertical line segment drawn on top of By,
and call it a trunk. If a trunk consists of s roots we say it has multiplicity s,
and mark s alongside.

The same construction is repeated recursively on each trunk, getting pos-
sible more bars and trunks, etc.. The height of each bar and the multiplicity
of each trunk, are defined likewise. Each trunk has a unique bar on top of
it. The construction terminates at the stage where the bars have infinite
heights, that is on top of a trunk that contains a single, maybe multiple,
root of f.

Using the tree model, we next positively answer Question 1 in the case
of analytic functions of two variables.

THEOREM 3.1. Let f, g: (C2,0) — (C,0) be analytic function germs. If f
and g are topologically equivalent, then A(f) = A(g).

Proof. Let us factor f and g into irreducible components:

f(@y) = filz,y)® - fm(,9)™, g(w,y) = 61 (,9) -~ oo (2, y).
By hypothesis, there exists a homeomorphism h : (C%,0) — (C?,0) such
that f = g o h, consequently m = n.

Let h(f]-_l(O)) = gj_l(O), 1 < j < m. Since f;’s and g;’s are irreducible,
there is a neighbourhood U of 0 in C? such that each f; (resp. g;) has an
isolated singularity at 0 € C? in U (resp. h(U)). Note that this isolated
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singularity means any point P € U \ {0} is a regular point of f;. Pick a
point P € fj_l(O) NU \ {0}. Then there is a neighbourhood W of P with
W C U such that f; (resp. g;) is regular and f;’s (resp. g;’s), i # j, are units
in W (resp. h(W)). Therefore there are local analytic diffeomorphisms oy :
(C2,0) — (C%, P)and 7y : (C, f(P)) — (C,0) such that 10 foo1(z,y) = z%.
Similarly, there are local analytic diffeomorphisms a3 : (C2,0) — (C?, h(P))
and 7 : (C,g(h(P))) — (C,0) such that 7 o g o o2(x,y) = z%. Since f
and g are topologically equivalent, % and z% are topologically right-left
equivalent as function germs: (C2,0) — (C,0). Therefore we have a; = b;,
1<j<m.

Taking a linear coordinate change if necessary, we may assume that f
and g are mini-regular in z. Namely, if fj; and gjs are the initial forms of
f and g respectively, then fj)(z,0) # 0 and gf,)(z,0) # 0. Let

F(z,y) = fi(z,y) - fm(z,y), G(z,9) = q1(,9) - - gm(2, ).

By construction, F' and G are reduced. Since f and g are topologically
equivalent, (C2, F~1(0)) is topologically equivalent to (C2,G~1(0)). By the
Zariski theorem ([34]), the Puiseux characteristics of branches and their in-
tersection numbers coincide with those of G. Then it follows from the above
observation, i.e. a; = bj, 1 < j < m, that the Puiseux characteristics of
branches of f and their intersection numbers with counting multiplicities
coincide also with those of ¢ with counting multiplicities.

On the other hand, by Theorem VIII in [16], the Fukui numerical set
A(f) can be computed using the tree model T'(f). Since the tree model
T(f) is completely determined by the Puiseux characteristics of branches of
f and their intersection numbers with counting multiplicities, it follows that

A(f) = Alg). =

From the proof of Theorem 3.1, we see that the topological equivalence
of two variable complex function germs implies the coincidence of their tree
models. The converse is also valid. Namely, we have

THEOREM 3.2. ([29]) Let f, g : (C?,0) — (C,0) be analytic function germs.
Then f and g are topologically equivalent if and only if the tree models of f
and g coincide.

On the other hand, we can introduce the notion of the real tree model for
two variable real analytic function germs. See [21, 22] for the definition of
it. Firstly K. Kurdyka and L. Paunescu consider the notion of the real part
of the tree model in [26]. Our real tree model is the extension of theirs, and
using it we can characterise the blow-analytic equivalence for two variable
real analytic functions as follows:
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THEOREM 3.3. (|21]) Let f : (R?,0) — (R,0) and g : (R?,0) — (R,0) be
real analytic function germs. Then f and g are blow-analytically equivalent
if and only if the real tree models of f and g are isomorphic.

As seen as above, the Fukui numerical set is a topological invariant for
two variable complex analytic functions. Therefore we may ask the following
question:

QUESTION 2. If a family of analytic function-germs {f; : (C2,0) — (C,0)}
with isolated singularities has a constant Fukui numerical set, then is the
family {f:} topologically trivial?

We can construct a negative example as follows:

EXAMPLE 3.4. Let f; : (C2,0) — (C,0), t € C, be a polynomial function
defined by

fule,y) = (1 - a(y? - 2) + ta(y? ~ o).
Then for any ¢t € C, f; has an isolated singularity and we have A(f;) =
{3,4,5,--- }U{oo}. But we can see that fo(z,y) = z(z?—4?) and fi(z,y) =
z(y® — 23) are not topologically equivalent as function germs.

4. Fukui numerical sets of some special 3 variable functions
For a positive integer a € N, set N>, = {m € N;m > a}.

4.1. List of the Fukui numerical sets for the Brieskorn polynomials

We first make a convention. By the Brieskorn polynomials in 2 variables
we mean f(z,y) = azP + by? (p < ¢) where a # 0 and b # 0. Since their
analytic types depend only on the signs of a and b in the real case (resp. on
whether a and b are non-zero in the complex case), in order to simplify the
notation, in this note we consider only Brieskorn polynomials of the form
f(z,y) = aP £y (resp. f(z,y) = zP +y9).

Let (p,q) = d where (p,q) denotes ged(p, ¢). Then there are p;,q1 € N
such that p = pid, ¢ = qid and (p1,q1) = 1. Set [p,q] = LCM(p,q) =
nqd =pg1 = pigq.

Here we recall the list of the Fukui numerical sets for real Brieskorn
polynomials f(z,y) = xzP + 9, (z,y) € R?, p < g, given in [20]. See the
next page for the list.

We can easily compute the Fukui numerical sets for complex Brieskorn
polynomials f(z,y) = 2P + 39, (z,y) € C?, p < q as follows:

(4.1) A(f) = pNUgNUN,, 5 U {o0}.

We give also the Fukui numerical sets for the product function.
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|7(z,y) l Fukui invariants 1
[£2" 9%, p,qodd | A(f)=AL(f) = A-(f) = pPNUGNUN3pp g U {00} ]
p odd, q even A(f} =pNUGNUN>(p g U {0}
+2? 4 y? A+(f) = A(f), A-(f) =pNUN>p q U {oo}
z” —¢f A_(f) = A(f), A+(f) =pNUN; [, g U {00}
p even, q odd A(f) =pNUgNUN>, o U {00}
af £y A+(f) = A(f), A-(f) = gNUN;p q U {00}
—zP £y° A_(f) = A(f), A+(f) = gNUN;p,q U {00}
+(z? —y?), pgeven | A(f) =pNUGNUN5, o U {oo}
zf —y? A+(f) =pNUN5 [, U {oo}, A-_(f) = gNUN>p q U {00}
—zP +yf A+(f) =gNUN5p U {oo}, A—(f) =pNUN>,q U {00}
+(z? +y9), p,gqeven | A(f) =pNUgNU {oo}
z” + 47 A+(f) = A(f), A-(f) = {0}
-z —y? A_(f) = A(f), A+(f) = {00}

EXAMPLE 4.1. Let f(z,y) = czPy?, c # 0, be a polynomial function defined
over R? or C2. Then we have

A(f)={ap+bq:a,be N}U{o0}.
In addition, in the real case we have the following:

(i) If p or ¢ is odd, then A, (f) = A_(f) = A(f).
(i) If p and g are even and ¢ > 0, then A, (f) = A(f) and A_(f) = {o0}.
(iii) If p and g are even and ¢ < 0, then A_(f) = A(f) and A4 (f) = {00}

4.2. Other formulae for the Fukui numerical sets
Throughout this section, K denotes R or C. Let g : (K*,0) — (K,0),
n > 2, be an analytic function germ of the form:

(42) g(xla T ,.Tn) = f(zla:l:?) + ¢($17$2) + ijlb](xl) tee ,xn)’
j=3

where f(z1,72) = azf + bzi, ab# 0, p < ¢, and j[”’q]¢(0) = 0 as a weighted
[p, q]-jet with respect to the system of weights (g1, p1), p1 and ¢; as in Sub-
section 4.1. Here we recall the results for semi-quasi homogeneous functions.

THEOREM 4.2. Given a system of weights o = (a1, - ,an). Let f; :
(K™, 0) — (K,0), t € I =[0,1], be an analytic family of analytic function
germs. Suppose that for each t € I, the weighted initial form of f; with
respect to a is of the same weighted degree and has an isolated singularity at
0 € K*. Then we have
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(1) In the real case, {fi}icr is blow-analytically trivial over I. (T. Fukui -
L. Paunescu [13], T. Fukui - E. Yoshinaga [10])

(2) In the complex case, { fi}:er is topologically trivial over I. (V.I. Arnol’d
[1], H. King [19], J. Damon - T. Gaffney (8], A. Parusiiski [28])

It follows from the theorem above that f and f + ¢ are blow-analytically
equivalent (resp. topologically equivalent) in the real case (resp. in the
complex case) as two variable analytic function germs. Since the Fukui
numerical sets are blow-analytic invariants for real analytic functions by T.
Fukui [11] (resp. a topological invariant for two variable complex analytic
functions by Theorem 3.1), we have A(f) = A(f + @), A+(f) = A+(f + &)
and A_(f) = A_(f + ¢) (resp. A(f) = A(f + ¢)). Thus we have

ASSERTION 4.3. Under the above assumptions on g, we have

A(g) 2 A(f), A+(9) D A+(f), A-(9) D A-(f) (resp. Alg) D A(f))
in the real case (resp. in the compler case). Here A(f), A+(f) and A_(f)
(resp. A(f)) are given in the list of Subsection 4.1 (resp. in (4.1)).

Next let g : (K", 0) — (K,0), n > 2, be an analytic function germ of form
(4.2), where f(z1,z2) = czhzd, ¢ # 0 and j™¢(0) = 0 for some m > p + q.
Then we have

ASSERTION 4.4. Under the above assumptions on g, we have
A(g) O A(f) NNem, Ar(g) D AL(f) NN<m, A-(9) D A_(f) NN

(resp. A(g) D A(f))
in the real case (resp. in the complex case). Here A(f), A+(f) and A_(f)
(resp. A(f)) are given in Example 4.1.

Let g : (K®, 0) — (K,0), n > 2, be an analytic function germ of form
(4.2), where f(x1,22) = azt+bxl, ab # 0, p < g, jP4¢(0) = 0 as a weighted
[p, gl-jet with respect to the system of weights (q1,p;) and jP9=24:(0) = 0
as a normal jet, 3 < j <d.

PROPOSITION 4.5. Suppose that ab < 0, or p or q is odd in the real case
(resp. suppose that ab # 0 in the complexr case). Then we have

A(g) = A(f), Ar(9) = A4(f), A-(9) = A-(f) (resp. A(g) = A(f)):

Proof. We show only the real case, since the complex case follows similarly.
By the argument of Assertion 4.3,

A(f +¢) = A(f), Ar(f+¢) = As(f), A-(F+9) = A-(f)

Since A(f), A+(f),A-(f) D {lp,ql,[p,q) +1,---} U {oo} by the table in
Subsection 4.1

A(g) C A(F), A+(g) € A+(f), A-(9) C A-(F).
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On the other hand, it follows from the fact
(f + &) (Aa(t), X2(t)) = g(M (1), A2(2),0,- -~ ,0)
that A(f + ¢) C A(g), A+(f +¢) C A4(g9) and A_(f + ¢) C A_(g). Thus
A(g) = A(f), A+(g) = A+(f), A-(g9)=A_(f) =

COROLLARY 4.6. Let f: (K", 0) — (K,0), n > 2, be an analytic function
germ of the form:

f(z1,- - ,zpn) = ax* + bzy' + ijhj(:vl, cr L, Tp)
=3
with 7™ 2h;(0) =0, j = 3,--- ,n. Suppose that m is odd and ab # 0, or m
is even and ab < 0 in the real case (resp. suppose that ab # 0 in the complex

case). Then we have
A(f)y={m,m+1,m+2,---}U{oo}.

4.3. Applications to some special examples

The Briangon-Speder family ([7]) and the Oka family ([27]) are well-
known as families of 3 variable complex polynomial functions which are
p-constant but not p*-constant. In this subsection we analyse their Fukui
numerical sets of those families.

ExAMPLE 4.7. Let f; : (K3,0) — (K,0), t € K, be Briancon-Speder’s
family defined by

filz,y,2) = 2° + tzy® + y 'z + 5.
We first compute the Fukui numerical sets in the real case. Regarding 2z°+z!5
as f(z,z) and tzy® + y8x as ¥(z,z,v), it follows from Assertion 4.3 that

A(fe), Ar(f), A—(f)) D {5,15,16,17,---} U{oo} (t € R).

We next regard y’z as f(y,z), z'° as ¢(y,z), 2* + ty® as ¥(y,z,2) and
m = 14. Then it follows from Assertion 4.4 that

A(ft), A+(fi), A-(fr) D {8,9,--14} (t € R).
Thus A(f:), A+(ft), A-(ft) D {5,8,9,10,---} U {oo} (t € R).
Let v = (v1,72,73) : (R,0) — (R3,0) be an analytic arc:

()=o)t + o+ 1<5 <8,
If agl) # 0, then ord (fyoy) = 5. If a:(;l) = 0, then ord (f;o~y) > 8. Therefore,
A(ft) = A:f:(ft) = {5v8a9, 10’ o } U {OO} (t € R)

Using a similar argument, we can compute the Fukui numerical set in
the complex case as follows:

A(f) = {5,8,9,10,--- } U {oo} (¢ € C).
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Modifying the Briangon-Speder family, T. Fukui and L. Paunescu con-
structed a family of 3 variable semi-quasi homogeneous functions in [13]
which is u-constant but not p*-constant as a family of complex functions.
Let us recall the family g : (K3,0) — (K, 0), t € K, defined by

gz, y,2) = 2° + tey” + 38z + 2®
By the same argument as above, we can easily see that
Alg) = As(g) = {5,9,10,11,---} U {o0} (t € R)
in the real case, and
A(g:) = {5,9,10,11,---
in the complex case.
EXAMPLE 4.8. Let f; : (C3,0) — (C,0), t € C, be Oka’s family defined by
fi(z,y, 2) = 2® + yf + 28 + 2522 + 23923 (£ 16).

Then we have

}U{oo} (€ C)

A(f) =17,8,9,--- YU {o0} (t € C).
Proof. We show only the case £ = 16. The other cases follow similarly.
It is obvious that A(f;) C {7,8,9,---} U {o0}.
Regarding 4' + 26 as f(y,2) and z7 + tz*2? + z2yx® as ¥(y, 2, ), it
follows from Assertion 4.3 that
A(fe) D {16,17,18,--

On the other hand, we can easily see 7,8,9,---

-} U {o0}.
, 15 € A(f:) as follows:

e 7 is attained by the arc y(s) =

(s,as,s) for a # —t.

e 8 is attained by the arc y(s) = (s, s, 5?).

e 9 is attained by the arc y(s) = (s, —ts — s + 53, 5).

e 10 is attained by the arc y(s) = (s%, s, s).

e 11 is attained by the arc y(s) = (s?, 5%, s).

e 12 is attained by the arc y(s) = (s 2,as s) for a # —t.
e 13 is attained by the arc v(s) = (s, s, s)

e 14 is attained by the arc y(s) = (53,52, s).

e 15 is attained by the arc v(s) = (s?, 53, 5).

Thus we have A(f;) = {7,8,9,---}U{oo} (t€C).
5. Seifert forms and topological types of complex functions

Let f : (C™,0) — (C,0) be an analytic function germ with an isolated sin-
gularity. Then we denote by I'(f) the Seifert form corresponding to f~1(0).
For the definition of the Seifert form, see V. I. Arnol’d, S. M. Guzein-Zard,
A. N. Varchenko [2] or A. H. Durfee [9].
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Let us recall an interesting family of plane curves on C? constructed by
P. Du Bois and F. Michel.

THEOREM 5.1. ([6]) Let
__,a+10 otl5

Jap(@,y) = (1 = 22 — a0 — a3 )((a® - )2 = 70 — day™),
where b > 11 and b # a + 8. Then the Seifert forms I'(fop) and I'(f—8,0+8)
are isomorphic, but f,p and fo_gq+8 are not topologically equivalent as func-
tion germs.

The following result in higher dimensions is in contrast to the above one
in the plane curve case.

THEOREM 5.2. (A. H. Durfee [9], M. Kato [17], H. C. King [18]) Let
f, g : (C*0) — (C,0), n > 4, be analytic function germs with isolated
singularities. Suppose that the Seifert forms T(f) and T'(g) are isomorphic.
Then f and g are topologically equivalent.

REMARK 5.3. In case n = 3 the same result as Theorem 5.2 does not always
hold. Considering the suspension of the above Du Bois - Michel functions,
E. Artal Bartolo constructed 3 variable polynomial functions in 3] so that
they are not topologically equivalent but the Seifert forms corresponding to
their zero-sets are isomorphic.

On Seifert forms, known is a kind of Thom-Sebastiali type’s result.

THEOREM 5.4. (A. G. Gabrielov [15], K. Sakamoto [31]) Let g : (C™,0) —
(C,0) and h : (C*,0) — (C,0) be analytic function germs with isolated
singularities. Define f : (C™"",0) — (C,0) by f(z,y) = g(z) + h(y). Then
[(f) is isomorphic to (—1)™"I'(g9) @ I'(h).

Suppose that there are two analytic functions f, g : (C%,0) — (C,0)
with isolated singularities such that A(f) # A(g) but I'(f) and I'(g) are
isomorphic. Note that f and g are not topologically equivalent in this case
(see Theorem 3.1). Let m be a positive integer such that “m € A(f) but
m ¢ A(g)” or “m € A(g) but m ¢ A(f)”. Define analytic functions F, G :
(C*,0) — (C,0) by
Then, by construction, A(F) # A(G). On the other hand, it follows from
Theorem 5.4 that I'(F) is isomorphic to I'(G). By Theorem 5.2, we see that

F and G are topologically equivalent as function germs.
The above argument gives rise to the following question naturally:

QUESTION 3. Are there two analytic functions f, g : (C%,0) — (C,0)
with isolated singularities such that A(f) # A(g) but I'(f) and I'(g) are
isomorphic?
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In this respect, we analyse the Du Bois - Michel functions f,; and
fo-8,a+8 for b > 11 and b # a + 8, mentioned in Theorem 5.1. The res-
olution tree of f,” 18’a +8(0) is obtained from that of fa ;(0), by exchanging
some end parts of two branches of the tree. We note that the multiplicities
of the exceptional divisors which support the end parts are the same. There-
fore it follows from Theorem 2.2 that A(f,p) = A(fs—8,e+8) unfortunately.
Taking this fact into consideration, we may ask also the following question:

QUESTION 4. Let f, g: (C",0) — (C,0) be analytic functions with isolated
singularities. Suppose that the Seifert forms corresponding to their zero-sets
are isomorphic. Then A(f) = A(g)?

6. Real blow-analiticity and complex topological triviality

Let I = [a,b] be a closed interval of R, and let F : R® x R — R be
a germ of a real analytic function at {0} x I. Therefore we think of F as
a real analytic function defined over a small neighbourhood of {0} x I in
R™ x R. Suppose that F(0;t) = 0. Let f; : (R*,0) — (R,0), t € J, be the
analytic function defined by fi(z) = F(z;t). Here J is a small open set in
R containing I.

Let F¢ : C* x C — C be the complexification of F'. Therefore Fi is a
complex analytic function defined over a small neighbourhood of {0} x I in
C™ x C. Let fic : (C*0) — (C,0), t € I, be the complex analytic function
defined by f;c(z) = Fc(z;t). Here I is a small open set in C containing J.
Therefore f; ¢ is the complexification of f; for t € J.

As mentioned in the Introduction, there is a similarity between real blow-
analytic properties and complex topological ones. Therefore we first ask

QUESTION 5. Let I be a closed interval, and let {fi}:c; be a family of
analytic function germs with algebraically isolated singularities. If { ft~} is
blow-analytically trivial over I, then is {f;c} topologically trivial over I?

We can easily construct a negative example to this question as follows:

EXAMPLE 6.1. Let f; : (R%,0) — (R,0), t € I, be a family of real polyno-
mial functions with algebraically isolated singularities defined by

fi(z,y) = (2 +y»)? +tz® + 27,
where I is a closed interval containing 0, 1 € R. Then it follows from the main

theorem in [24] that {f;} is blow-analytically trivial over I. On the other
hand, it is easy to see that foc and fic are not topologically equivalent.

We next ask the following opposite question:

QUESTION 6. If {fic} is topologically trivial over I, then is {f;} blow-
analytically trivial over 17
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Concerning this question, we have an affirmative result in case n = 2
without the assumption of algebraically isolated singularities. More pre-
cisely, we have

THEOREM 6.2. Let I be a closed interval, and let F : R?> x R — R with
F(0;t) = 0 be a germ of a real analytic function at {0} x I in the above
sense. Suppose that {fic},cj is topologically trivial over I. Then {f;} is
blow-analytically trivial over I.

Proof. By assumption, f;c : (C2,0) — (C,0), t € I, is topologically trivial
over I. Let
Fo(z,y,t) = Gi(z,y, 1) - - Gy(z, 9, 1)

be the decomposition of F¢ to irreducible components, and let
G(z,y,t) = Gi(z,y,t) - - Gq(z,y,t).

Then (C2 x I, G~1(0)) is topologically trivial over I. For t € I, let g¢(z,y) =
G(z,y,t). Thanks to the triviality above, we may assume that for each t € I,
g; is reduced and has an isolated singularity at 0 € C2. Let

9(z,y) = g1,1(2,9) - - gem (2, Y)
be the decomposition of each g; to irreducible components. Note that m is
independent of ¢.

In the case where m = 1 and 0 € C? is a regular point of g; for some
tel, 0 € C?isa regular point of g; for any ¢ € I. Therefore we can regard
V = G1(0) € C2 x I as a desingularised variety through the _identity ma.p
Otherwise, by B. Teissier [31], there is a simplification of (C? xI,G1(0)), II
M — C2 x I, whose restriction to V' gives a strong simultaneous resolutlon
of V', where V’ is the strict transform of V by II. Let A : C2 x I — I be the
canonical projection.

Let us express II as follows:

IT = ITjollgo- - -oll, : M = My — My_; — --- — My — M; — My = C?x1,

where each II; : M; — M,;_; is a blow up with smooth centre C; C M;_;,
1 € ¢ < r. We denote by FE; the exceptional set of 3; = II; oIl3 0 --- 0o II;,
by V; the strict transform of V' by ;, and by ¥V;_; the singular set of V;_1,
1 <3< r, where Vy = V. Let D; be the exceptional divisor created by a
blow up II; with centre C;, 1 < i < r. In these notations Il = 3., V' = V.
and E; = Ulgjgi D;,1<i<r. Let £ = E;, and let By be the identity map.
By the construction of Hironaka’s desingularisation, C; C FE;_y U XV;_1,
1<i<r. Itfollowsthat01=EV={O}xfandC’ CE_1,2<z<r
Let Il = M|y : V! — V. Then I71(ZV) = £NV’, denoted by £. Since II
gives a strong simultaneous resolution of V', Ao HI R €1 is simple i.e. a
locally trivial deformation. Using this property, we can show the following:
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ASSERTION 6.3. For 1 < i < r, C; is one-dimensional, and each Ci41 is
contained in V, N E;, 1 < i < r—1. In addition, Ciy, 1 <4<, is not
contained even locally in (Ao B;_1)71(t) for anyt € I.

Proof. C; = {0} x I is 1-dimensional, and C;, 2 < i < 7, is zero-dimensional
or one-dimensional. Assume that the centre C; is zero-dimensional for some
i with 2 < ¢ < r. Let C; be locally Py € E; 1 UXV,_1. Then E; NV, is
one-dimensional, and it contains a one-dimensional subset mapped to P, by
;. Let S; = (I 0--- o I.)"}(Py) N V'. Then S; is not empty, in fact, it is
one-dimensional. This contradicts the local triviality of A o 11 g Therefore
it follows that C; is one-dimensional for 1 <7 < r.

Note that C;+1 NV; is not empty at each stage. Assume that Cjy; is not
contained in V;N E; for some i, 1 <4 < r—1. Since C;41 is one-dimensional,
Cit+1 NV is locally one point. Let Py be such a point. Then V;11 N D;41
is one-dimensional, and it contains a one-dimensional subset in II, +11(P0)
since C;y1 N'V; = 0 in a punctured neighbourhood of Py. Similarly to the
above, this contradicts the local triviality of A o II] g- Therefore we have
Cit1 CE;NV,.

We next assume that there is ¢, 2 < ¢ < 7, such that C; is locally contained
in (AoB;~1) "} (to) for some tg € I. Asseen above, C; C E;_1NV;_,. Therefore
E,_1NV,_1N ()\ o ﬂi..l)—l(to) is one-dimensional. If E;_1 N V'n ()\ o] H)_l(to)
is one-dimensional, it contradicts the local triviality of A o f[l z also in this
case. If E; 1NV N (AoIl)~!(ts) = 0 or zero-dimensional, then there is,
by construction, Ej_1, i < j < r, such that E;_1 N V' N (Ao )7 (tp) is
one-dimesional. Repeating this argument, we see that £NV’ N (Ao II) (o)
is one-dimensional which is a contradiction. Therefore C;, 1 <7 < r, is not
locally contained in (Ao B;_1)~1(t) forany t € I. u

The map X : C; = {0} x I — I is the canonical projection. Therefore it
is submersive. In general, we have the following:

ASSERTION 6.4. For 1 <i <, the map Ao fi—1:C; — I is submersive.
It follows from the construction that Ao Il|p, : D; — I is submersive for
1< <.

Proof. Assume that ) o §;_; : C; — I is not submersive at Py € C;. Then
D; N'V; has a one-dimensional subset which is mapped by II; onto a neigh-
bourhood of Py in C;. If D; N V' has a one-dimensional subset mapped by
IL; o - - - o II. onto a neighbourhood of Py in Cj, it will contradict the local
triviality of Ao f[| #- If not, there is j > i such that D; N V' has a similar
one-dimensional subset to the above, which is also a contradiction. Therefore
the submersiveness follows. m '
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ASSERTION 6.5. If D; N\ Dj, i # j, (resp, D; N V') is not empty, then
Aoll|p,np; : DiN Dj — I (resp. AoIl|p,av : DiNV' — I) is submersive.
As a map germ at ENV', Ao M|y : V' — T is submersive.

In addition, at most two of Dy,--- ,D, and V' intersect at any £ € £.

Proof. The first statements follow from the construction of C;11 C E; NV,
0 <i<r—1, and Assertion 6.4.

Assume that V', D; and Dy, i # j, intersect at { € £. Then D; NV’ and
D; NV’ intersect at £ € £. This contradicts the local triviality of Ao fI| &
We next assume that D;, Dj and Dg, 1 <i< j <k <, intersect at £ € £
in M. Therefore ¢ is not a point of V'. Dj is created by a blow up with
centre C; C D;. If Dy is also created by a blow up with centre Cy, C D;, the
two one-dimensional subsets of ¥V; N D; intersect at { € C;. If so, we have
to consider a one-point blow up at £ not a blow up with centre C; near  at
the j-th stage. But our centre is one-dimensional. Therefore this case does
not happen. If Dy is created by a blow up with centre Cy C Dj, £ was a
special point in C};. In this case also we have to consider a one-point blow
up at € near £ at the j-th stage. Therefore the last statement follows. =

Let £ be an arbitrary point of £ such that A o II(§) = t¢. Then it follows
from Assertions 6.4 and 6.5 that there is a local coordinate system, centred
at £, (X,Y,T) such that

GoTl(X,Y,T) = U(X,Y,T)X°Y"
where T =t — t; (more precisely, this means that A o II{X,Y,T) =t — ¢¢)
and U(X,Y,T) is a unit near £.

Let Fg¢ be the complexification of F(z,y,t) = fi(z,y). Then II gives also
a simplification of (C% x I, F*(0)), and near ¢,

Feoll(X,Y,T) = V(X,Y, T)X°Y?

where V(X,Y,T) is a unit near £.

By Hironaka’s construction, II can be chosen invariant under complex
conjugation. Let 7 be the restriction of II to the real part of M, and let E
be the exceptional set of 7. Then for any £ € E, there is a local coordinate
sysytem, centred at £, (X,Y,T) such that

For(X,Y,T) = W(X,Y,T)X"*Y"

where T =t — t; and W(X,Y,T) is a unit near {. Then the blow-analytic
triviality of {f;} follows from a similar argument to the proof of Theorem 1
in [25] using Cartan Theorem B.

This completes the proof of Theorem 6.2. =
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Taking the above result and the observations seen in subsection 4.3 into
consideration, we may pose the following question:

QUESTION 7. Let f; : (C",0) — (C,0), t € I, be a p-constant family of
complex analytic function germs with isolated singularities. Here I is an
open disk in C. Then is the Fukui numerical set A(f;) constant over I7

REMARK 6.6. We have an affirmative answer to the above question in
case n = 2. Let F : (C? x I,{0} x I) — (C,0) be a function germ
defined by F(z,y;t) = fi(z,y). In the two variable case p-constancy is
equivalent to p*-constancy. By B. Teissier [32], the latter condition im-
plies the Whitney regularity of the pair (F~!(0) \ {0} x I,{0} x I). In
addition, by [29] or J. Briangon, Ph. Maisonobe and M. Merle [5], the
Whitney regularity implies the Thom (ag)-regularity of the stratification
{C? x I\ F71(0), F~1(0) \ {0} x I,{0} x I} of C? x I. Then we can show
that the family {f;}scr is topologically trivial over I, using Thom's 2nd Iso-
topy Lemma. Therefore it follows from Theorem 3.1 that A(f;) is constant
over 1.
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