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A COMPLETE VARIETY WITH INFINITELY MANY
MAXIMAL QUASI-PROJECTIVE OPEN SUBSETS

Abstract. Let K be an algebraically closed field. For every n > 2 we find an n-dimen-
sional complete variety X, over K, which has infinitely many maximal quasi-projective
open subsets.

1. Main result

Let K be an algebraically closed field and let X be a complete algebraic
variety over K. It is well known that if dim X > 1, then X need not
be a projective variety. We have obvious necessary condition for X to be
projective:

CHEVALLEY CONDITION. For every finite set S C X, there is an affine
open subset U C X such that S C U.

Kleiman [3] proved that if X is a smooth complete variety, then Chevalley
Condition implies projectivity of X. We can change Chevalley Condition in
an equivalent way, assuming that every finite set of points of X is contained
in some open quasi-projective subset of X. Indeed we have more or less
obvious:

PROPOSITION 1.1. Let Y be a quasi-projective variety. Every finite set of
points of Y is contained in some affine open subset of Y.

Proof. We can assume that Y C PV. Taking a general hyperplane section
we can easily reduce the general case to the case when Y is an open subset
of an affine variety X. Let S = {y1,...,ym} be a finite subset of Y. Take
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Z = X\Y. There is a polynomial function f such that f;|z = 0and fi(y;) =1
foralli=1,...,m.Now SCX;CY. u

If X is not projective then we can look for open quasi-projective subsets
in X. We have:

DEFINITION 1.2. ([5]) An open subset U C X is called a maximal quasi-
projective open subset (MQOS) if U is quasi-projective and it is a maximal
open subset of X with this property.

Since algebraic varieties are noetherian spaces it is easy to see that every

point z € X is contained in some maximal quasi-projective open subset of
X. More generally we have:

ProOPOSITION 1.3. Every open affine subset U C X is contained in some
MQOS of X.
Wilodarczyk [5] generalized Kleimans theorem and proved that any

smooth complete variety contains only a finite number of MQOS (in fact
his result is a little-bit more general). In fact we have:

PROPOSITION 1.4. ([5]) Let X be a variety. If X contains only a finite
number of MQOS and if it satisfies the Chevalley Condition, then it is quasi-
projective.

Proof. We use Wlodarczyk’s trick. Suppose X is not quasi-projective. Let

{Ui,...,Up} be the family of all maximal quasi-projective subsets of X.
For every i = 1,...,m take z; ¢ U;. By Chevalley Condition all points
x1,...,Zm are in some open affine subset U. By Proposition 1.3 there is a

MQOS U; such that U C U;. This leads to the contradiction. =

It is interesting, whether results of Kleiman and Wtodarczyk can be
extended to a non-smooth case. Let us recall the following result of Zariski:

THEOREM 1.5. ([6]) Let X be a complete normal surface. Assume that
all singular points of X are contained in some open quasi-projective subset
of X. Then X is projective.

In fact Theorem of Zariski can be easily generalized to a non-complete
version:

COROLLARY 1.6. Let X be a normal surface. Assume that all singular
points of X are contained in some open quasi-projective subset of X. Then
X is quasi-projective.

Proof. By Nagata we can embed X in a complete surface X. We can assume
that this surface is also normal. Resolve all singularities of X which are in
X \ X. Then we obtain a new surface X’ which contains X. All singular
points of this new surface are contained in a quasi-projective open subset.
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Hence by Theore;n 1.5 the surface X is projective. Consequently X as an
open subset of X is quasi-projective. m

COROLLARY 1.7. A normal surface X is quasi-projective if and only if it
satisfies the Chevalley Condition.

Let us note that also the following generalization of Corollary 1.7 is true:

THEOREM 1.8. Let X be a normal surface. Then X has only finitely many
MQOS. In fact the number of MQOS is bounded by 2", where r = #Sing X.

Proof. Let U C X be a MQOS. Let Sing(X) = {z1,...,Zk,Y1,---,Ym}
where all z; belong to U and all y; are not in U. Resolve all singularities
{y1,-..,Ym}- Then we obtain a new surface X’ and a morphism 7 : X’ — X.
All singular points of this new surface are in a quasi-projective open subset.
Hence by Corollary 1.6 the surface X’ is projective. Consequently the set
X\ {v,--»ym} = X’ \ 7 Y({y1,.-.,¥m}) is quasi-projective. But U C
X\{y1,--.,ym} and by the maximality of U we have U = X \ {y1,-..,Ym}-
Consequently we see that the number of MQOS in X is bounded by the
number of subsets of Sing(X). =

Hence the results of Kleiman and Wtlodarczyk hold for normal surfaces.
However, we show that these results cannot be extended to the case of arbi-
trary surface.

We start with the non-projective surface X. If char K # 2 let C denote
the nodal curve in P? given by the equation y?z —z% — 22z = 0. If char K = 2
let C be given by equation y?z + 2% + 222+ zyz = 0. If Po = (0:0: 1)
is the singular point, then C\ Py is isomorphic to the multiplicative group
Gm = (K*,1,-). For each a € K* consider the translation of G,, given by
t — ta. This induces an automorphism of C' which we denote by ¢,.

Now consider C x P!\ {0} and C x P!\ {oo}. We glue their open subsets
C x P!\ {0,00} by the isomorphism ¢ : (P,u) — (¢ (P),u) for P € C and
u € G, = P!\ {0, 00}. Thus we obtain a non-projective complete surface X
(see [2], Ex.7.13). This surface is smooth away from the curve Z = P! given
locally as Fy x K. i

THEOREM 1.9. The surface X contains infinitely many MQOS.

Proof. Since the surface X is non-projective it is enough to prove that it
satisfies the Chevalley Condition (see Proposition 1.4). Let f: X’ — X be
the normalization of X. It is easy to see that X’ can be covered by two
smooth subsets isomorphic to P! x K, hence it is a smooth surface. By
Theorem 1.5 this implies that X’ is a projective surface. In fact it is a ruled
surface with projection 7 : X’ — P!. In particular X’ is a projective vector
bundle P(E) associated to some vector bundle E on P!.
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Now let S C X be a finite set. Take S’ = f~1(S). Since f is a finite
mapping we have that the set S’ is finite. Take a point a € P! which does
not belong to m(S’'). Take U = P! \ {a} & K. Hence §' C 77 1(P! \ {a}) =
7~ Y(U). Since every vector bundle over U is trivial, we have 7~1(U) =
U x P!. Now let Z C X denote the singular curve of X. Then Z = P!
and we have two disjoint sections p; : Z — X' = P(E), 7 = 1,2 induced
by the normalization f. We can assume that over U these sections are
simply p1 : U 3 u — (u,(0: 1)) and p2 : U 3 v — (u,(1 : 0)). Now
the general section p : U 3 u — (u,(z : 1)) is disjoint from the set S’
(and from sections p1(U),p2(U)). Take T' = 77 (a) U py(U)). We have
V'=X'\T =7~ U)\ pz(U) = K2, hence V' is an affine open subset. Note
that S’ C V'

Moreover, T' = f~1(f(I')). Take V = X \ f(I'). Observe that V' =
f~Y(V), this implies that the mapping f : V/ — V is finite. Since V' is
affine, we have that the set V is affine, too (see [1], 1.5, p. 63). However
S C V, hence X satisfies the Chevalley Condition. =

COROLLARY 1.10. For every n > 2 there exists an n-dimensional complete
variety Xy, which has infinitely many mazimal quasi-projective open subsets.

Proof. Take X,, = X x P"~2 where X is the non-projective surface defined
above. Since X, contains closed non-projective subvarieties of type X x {a},
it is non-projective as well. Hence, it is enough to show that X, satisfies
the Chevalley Condition. Let S C X, be a finite set of points. Consider
the projection 7 : X, — X and put S’ = n(S). By the above consideration
there exists an affine open set U in X such that S’ C U. Now S C U x P2
and we conclude by Proposition 1.1. =

REMARK 1.11. Let us note that we also give an example of a smooth
projective variety X’ and a complete variety X, such that there is a finite
surjective mapping 7 : X’ — X and the variety X is not projective. On the
other hand it is well-known that if we assume additionally that X is smooth,
then the variety X has to be projective (see [1}, 4.7).

We finish this note stating:

CONJECTURE. (Bialynicki-Birula) Every normal variety contains only
finitely many MQOS.

2. Appendix

For the convenience of the reader we show that the surface X is non-
projective (we will follow hints from [2]). Recall that C denotes the nodal
curve given in P? by the equation y?z — 3 — 2%z = 0 (for char K = 2 by
y?z+ 28 + 222 + zyz = 0). Consider the parametrization 7 : P! 3 (¢ : s) —
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(4ts(t — s) : 4ts(t + s) : (t — s)3) € P? (in case of char K = 2 consider
(t:s) — (ts(t + s) : ts(at + bs) : (at + bs)3), where a and b are the roots of
z? + 2 + 1 = 0). For simplicity we will consider only the case char K # 2,
we leave the (similar) case char K = 2 to the reader as an exercise.

Except for the points A = (0: 1) and B = (1 : 0) the morphism 7 is an
isomorphism C \ Py & K*. Let ¢ denote the automorphism P! x K* 3 ((t :
s),u) — ((ut : s),u) € P! x K*. Since ¢ coincide on A x K* and B x K*, it
can be lifted to a C x K* automorphism ¢ : (mw((¢: s)),u) — (n((ut : 5)), w).

Notice that X is obtained by gluing C x (P! \ {oo}) with C x (P! \ {0})
along their open subsets C x K* via the isomorphism ¢. Both the projections
C x (P*\ {o0}) — P!\ {cc} and C x (P! \ {0}) — P!\ {0} are proper
morphisms, hence the projection X — P! is a proper morphism, thus X is
a complete algebraic variety.

Let Y = P! x (P!\ {0,00}), Y1 = P! x (P!\ {o0}), Z = C x (P'\ {0, 00})
and Z; = C x (P! \ {00}). The parametrization = naturally extends to
Y — Z and Y7 — Z; which also will be denoted by w. Consider the exact
sequence:

0 — m05y /07 — K*/O7 — K* /7.0y — 0.

Using the global sections functor we obtain a commutative diagram.

Klu,1/u]* Klu,1/u]*
H H
0 — I'(Z,0%) — IN(Z,7.0%) — 0
| ! l
0 — [(Z,K*) — r'z,K") — 0

! ! !

0 — I(Z,m0}/0y) — T(Z,K*/0%) — I(Z,K" /7. 0%)

! | !

[(Z,m 0y /0z) — I(Z,K"/03)/T(Z,K") — I(Z,K* /m.0%)/T(Z,K")
Pic(Z) Pic(Y)
Using the “snake lemma” we obtain the following exact sequence:
0 - Ku,1/u]* — Klu,1/u]* - T'(Z, .03 /O%) — Pic(Z) — Pic(Y).

Moreover, the morphism K[u,l/u]* — K[u,1/u]* is the identity, conse-
quently the morphism Klu,1/u]* — T'(Z,m,0%/0%) is zero. Finally we
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have exact sequence
(2.1) 0 — I(Z, 7.0} /O%) — Pic(Z) — Pic(Y).

Consider the variety Y. Let D = Y; \ Y = P! x {0}. We have an exact
sequence:

ZD — Pic(Y1) — Pic(Y) — 0.

Since D is a principal divisor we have Pic(Y) = Pic(V;) = Pic(P! x K) =
Pic(P!). In fact if # : ¥ — P! is the projection, then every element of
Pic(Y) is of the form 7*(a), where a € Pic(P!) and the mapping Deg
Pic(Y) > 7*a — deg a € Z is an isomorphism. Now we will study the group
I'(Z, .03 /O%) in order to describe Pic(Z) and, eventually, the divisors on
X.

Let us start by identifying the stalks of 7,03 /O% at an arbitrary point
peZ. Forpe Z\{(0:0:1)} x K* the morphism 7 is an isomorphism,
hence the quotient (7,03 /O%)p is in fact {1}. Let p = ((0 : 0 : 1),p),
we can describe the stalk (m.O0%)p as (O3 )(0:1),p) N(OV)1:0)p) = {7 =
'5 : f,9 € K(u)lt,s],deg, , f = deg, g , the coefficients of f and g are
regular at p and the leading terms in ¢ and s do not vanish at p} and

(O%)p = {v € (MmO} )p : 7((0: 1),u) =((1: 0),u)}. Take vy € (mOF)p.

tPtag_1tF " ls+...tapst
We have v = ‘;I;tk+z:_itk—lj+...+g§ssk’ where a4, 3; € K(u),a;(p),Bi(p) €

K, ax(p), Be(p) # 0,a0(p), Bo(p) # 0. Consider § = 92 where ¢p =
—ag/Po and ¢1 = ag/Bx. Since v((0:1),u) =6((0:1),u) and y((1 : 0),u) =
8((1 : 0),u) we have that every element of (7,03 )p/(0%)p is equivalent
to L2 for some o € K(u) regular and non zero at p. Moreover, since

tt‘_";s . tt %s and = O‘f— coincide at points ((0: 1),u) and ((0: 1),u) we have

tt—c;s . tt ﬁ: = ttafs in (W*O;)p/(o*z)

Note that =5 # 1in (mO0y)p/(O%)p for a # B. Indeed, if foaos 3 €
(0%)p then &= ﬁs((O 1),u) =& =32((1:0),u) and consequently a(u)/B(u) =
1. Hence a = 3.

Since we know the stalks of 7,03 /0%, we are in a position to identify
the global sections of this sheaf. Recall that a global section can be identified
with a set {(Us, fi)}, where UU; = Z, f; € T(Ui,m0%) and £ € T(UiN
U;,0%). Outside the line {(0 : 0 : 1)} x K* all sections are equivalent to
1. Let (Un, f1) and (Us, f2) be such that p e U1 NU; N {(0:0: 1)} x K*.
Let fi = 522 and fy = 582, Then 4 = =82 e T(UNV,0%) C (0%)p
and thus a = 8 and f; = fo. Therefore a global section of 7,03 /0% can be
expressed as {(U,1),(V, f)}, where U = Z\ {(0:0:1)} x K*, V is an open

set containing {{(0:0: 1)} x K*} and f = £2* with a € ['(K*, O%.) =
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k ky+ko
{auf :a € K*,k € Z}. We have =912 . = °‘2“ = a2 %s thys we

have an 1somorphxsm of groups I'(Z, .03/ OZ) K *x Z.

Recall that I'(Z, 7,05, /O%) is a subgroup of Pic(Z). A divisor {(U,1),
(V,1225)} is equivalent to {(U, 5t=55), (V, 1)} = {(U, gisd), (V, 1)} =
{, mm) (V,D}.

Consider the divisor D = {(U, 7%;),(V,1)}. Its image in Pic(Y)is D' =
{(K*xK*, 152), (P*\{(1: 1)})XK* )}- Since Deg D’ = 1, it is a generator
of Pic(Y'). Consequently, the last mapping in the exact sequence (2.1) is onto
and we have an isomorphism Pic(Z) 5 {(U,
=", (V,1)} — (a,k,n) € K* X Z X L.

Note, that we can proceed in a similar way with Z;. We have
T(Z1, 0%, /0% ) = {(U,1),(V,522)}, where o € T(K,0%) = K*. Thus
Pic(Z;) = K* x {0} x Z.

Let us now examine the action of ¢* on Pic(Z). We have d)*((m)

T . ( T )k .
(I+a)z+(l-a)y (1+u)z+(1-u)y

— _ t—s __ t—~ — t— —
= ¢ t— ozs) - u%—cfs ~ t-a CH—aTz-{—(l a)y and ¢* Ef—y) = ¢ T2%) -
—t}:‘2_: = t—_22 ’ t—t_u_—slg = ﬁ (1+u‘1)x+(l—u—1)y Identifying PIC(Z) with

K* x Z x Z we can say that the morphism ¢* has the form (a,k,n) —
(a,k —n,n).

Take D € Pic(X). Using the identification Pic(Z;) = K* x {0} x Z we
can say that D|cyp1\{oo}) and D|cx(p1\{o}) Tepresent elements (a,0,n) and
(b,0, k) respectively. Both expressions must coincide on C x (P! \ {0, 00})
via the morphism ¢*, meaning (a,0,n) = ¢*((b,0,k)) = (b,—k,k), thus
a =band n = k = 0. Therefore D|c,p1\(xc}) has to be of the form
{(U, mﬁl—T)y)’(V’l)}' Note that the divisor D|cw (o) is of the form
A — B (A, B € Reg(C x {0})), hence it has degree 0.

Now assume that X is projective. Let D’ € Pic(X) be a general hyper-
plane section. The divisor D’ |Cx{0} is effective and nonzero, thus it has a
positive degree. This is a contradiction.
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