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A COMPLETE VARIETY W I T H INFINITELY M A N Y 
MAXIMAL QUASI-PROJECTIVE OPEN SUBSETS 

Abstract . Let K be an algebraically closed field. For every n > 2 we find an n-dimen-
sional complete variety Xn over K, which has infinitely many maximal quasi-projective 
open subsets. 

1. Main result 
Let K be an algebraically closed field and let X be a complete algebraic 

variety over K. It is well known that if dim X > 1, then X need not 
be a projective variety. We have obvious necessary condition for X to be 
projective: 

CHEVALLEY CONDITION. For every finite set S c X, there is an affine 
open subset U C X such that S C U. 

Kleiman [3] proved that if X is a smooth complete variety, then Chevalley 
Condition implies projectivity of X. We can change Chevalley Condition in 
an equivalent way, assuming that every finite set of points of X is contained 
in some open quasi-projective subset of X. Indeed we have more or less 
obvious: 

PROPOSITION 1 . 1 . Let Y be a quasi-projective variety. Every finite set of 
points ofY is contained in some affine open subset ofY. 

Proof. We can assume that Y C P " . Taking a general hyperplane section 
we can easily reduce the general case to the case when Y is an open subset 
of an affine variety X. Let S = {y i , . . . , ym} be a finite subset of Y. Take 
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Z — X\Y. There is a polynomial function / such that fi\z = 0 and fi(yi) = 1 
for al i i = 1 , . . . , m. Now S C Xf C Y. • 

If X is not projective then we can look for open quasi-projective subsets 
in X. We have: 
D E F I N I T I O N 1 . 2 . ([5]) An open subset U C X is called a maximal quasi-
projective open subset (MQOS) if U is quasi-projective and it is a maximal 
open subset of X with this property. 

Since algebraic varieties are noetherian spaces it is easy to see that every 
point x £ X is contained in some maximal quasi-projective open subset of 
X. More generally we have: 
P R O P O S I T I O N 1 . 3 . Every open affine subset U C X is contained in some 
MQOS of X. 

Wlodarczyk [5] generalized Kleimans theorem and proved that any 
smooth complete variety contains only a finite number of MQOS (in fact 
his result is a little-bit more general). In fact we have: 
P R O P O S I T I O N 1 . 4 . ([5]) Let X be a variety. If X contains only a finite 
number of MQOS and if it satisfies the Chevalley Condition, then it is quasi-
projective. 
Proof. We use Wlodarczyk's trick. Suppose X is not quasi-projective. Let 
{Ui,..., Um} be the family of all maximal quasi-projective subsets of X. 
For every i = 1 , . . . , m take X{ ^ Ui. By Chevalley Condition all points 
xi,..., xm are in some open affine subset U. By Proposition 1.3 there is a 
MQOS Ui such that U C Ui. This leads to the contradiction. • 

It is interesting, whether results of Kleiman and Wlodarczyk can be 
extended to a non-smooth case. Let us recall the following result of Zariski: 
T H E O R E M 1 . 5 . ([6]) Let X be a complete normal surface. Assume that 
all singular points of X are contained in some open quasi-projective subset 
of X. Then X is projective. 

In fact Theorem of Zariski can be easily generalized to a non-complete 
version: 
COROLLARY 1 . 6 . Let X be a normal surface. Assume that all singular 
points of X are contained in some open quasi-projective subset of X. Then 
X is quasi-projective. 
Proof. By Nagata we can embed X in a complete surface X. We can assume 
that this surface is also normal. Resolve all singularities of X which are in 
X \ X. Then we obtain a new surface X which contains X. All singular 
points of this new surface are contained in a quasi-projective open subset. 
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Hence by Theorem 1.5 the surface X' is projective. Consequently X as an 
open subset of X is quasi-projective. • 

C O R O L L A R Y 1 . 7 . A normal surface X is quasi-projective if and only if it 
satisfies the Chevalley Condition. 

Let us note that also the following generalization of Corollary 1.7 is true: 

T H E O R E M 1 . 8 . Let X be a normal surface. Then X has only finitely many 
MQOS. In fact the number of MQOS is bounded by 2T, where r = #Sing X. 

Proof. Let U C X be a MQOS. Let Sing(X) = {xi , . . . ,Xk,yi, • • • ,Vm} 
where all Xj belong to U and all are not in U. Resolve all singularities 
{i/i> • • • > Vm}- Then we obtain a new surface X' and a morphism 7r : X' —• X. 
All singular points of this new surface are in a quasi-projective open subset. 
Hence by Corollary 1.6 the surface X' is projective. Consequently the set 
X \{yi,.. .,ym} = X' \ 7r - 1({yi, . . . ,ym}) is quasi-projective. But U C 
X \ {yi,..., ym} and by the maximality of U we have U = X \ {y\,..., ym}. 
Consequently we see that the number of MQOS in X is bounded by the 
number of subsets of Sing(X). • 

Hence the results of Kleiman and Wlodarczyk hold for normal surfaces. 
However, we show that these results cannot be extended to the case of arbi-
trary surface. 

We start with the non-projective surface X. If char K ^ 2 let C denote 
the nodal curve in P2 given by the equation y2z — x3 — x2z = 0. If char K = 2 
let C be given by equation y2z + x3 + x2z + xyz = 0. If Po = ( 0 : 0 : 1 ) 
is the singular point, then C \ Pq is isomorphic to the multiplicative group 
Gm — (K*, 1, •). For each a € K* consider the translation of Gm given by 
t —> ta. This induces an automorphism of C which we denote by (fia. 

Now consider C x P1 \ {0} and C x P1 \ {oo}. We glue their open subsets 
C x P1 \ {0, oo} by the isomorphism <j>: (P,u) (<j>u(P),u) for P G C and 
U t Lrm = P ^ ^ o o } . Thus we obtain a non-projective complete surface X 
(see [2], Ex.7.13). This surface is smooth away from the curve Z = P1 given 
locally as Po x K. 

T H E O R E M 1 . 9 . The surface X contains infinitely many MQOS. 

Proof. Since the surface X is non-projective it is enough to prove that it 
satisfies the Chevalley Condition (see Proposition 1.4). Let / : X' —> X be 
the normalization of X. It is easy to see that X' can be covered by two 
smooth subsets isomorphic to P1 x K, hence it is a smooth surface. By 
Theorem 1.5 this implies that X' is a projective surface. In fact it is a ruled 
surface with projection ir : X' P1. In particular X' is a projective vector 
bundle P(E) associated to some vector bundle E on P1. 
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Now let 5 C X be a finite set. Take S' = f 1(S). Since / is a finite 
mapping we have that the set S' is finite. Take a point a € P1 which does 
not belong to tt(S1). Take U = P1 \ {a} K. Hence S' C T r ^ P 1 \ {a}) = 

Since every vector bundle over U is trivial, we have 7r_1(i7) = 
U x P1. Now let Z C X denote the singular curve of X. Then Z = P1 

and we have two disjoint sections : Z —> X' = P(E), ¿ = 1,2 induced 
by the normalization / . We can assume that over U these sections are 
simply pi : U 3 u —>• (u, (0 : 1)) and p2 : U 3 u —> (u, (1 : 0)). Now 
the general section px : U 3 u —> (u, (x : 1)) is disjoint from the set S' 
(and from sections pi(U),p2(U)). Take T = 7r^1(a) U px(U)). We have 
V' = X'\r = ir~1(U)\px(U) = K2, hence V' is an affine open subset. Note 
that 5 ' C V. 

Moreover, T = / _ 1 ( / ( r ) ) . Take V = X \ f(T). Observe that V' = 
this implies that the mapping / : V' —> V is finite. Since V' is 

affine, we have that the set V is affine, too (see [1], 1.5, p. 63). However 
S C V, hence X satisfies the Chevalley Condition. • 

COROLLARY 1 . 1 0 . For every n > 2 there exists an n-dimensional complete 
variety Xn, which has infinitely many maximal quasi-projective open subsets. 

Proof. Take XN = X x Pn~2 , where X is the non-projective surface defined 
above. Since XN contains closed non-projective subvarieties of type X x {a}, 
it is non-projective as well. Hence, it is enough to show that XN satisfies 
the Chevalley Condition. Let S C XN be a finite set of points. Consider 
the projection IX : XN —> X and put S' = TT(S). By the above consideration 
there exists an affine open set U in X such that S' C U. Now S C U x Pn~2 

and we conclude by Proposition 1.1. • 

R E M A R K 1 . 1 1 . Let us note that we also give an example of a smooth 
projective variety X' and a complete variety X, such that there is a finite 
surjective mapping N : X' —> X and the variety X is not projective. On the 
other hand it is well-known that if we assume additionally that X is smooth, 
then the variety X has to be projective (see [1], 4.7). 

We finish this note stating: 

C O N J E C T U R E . (Bialynicki-Birula) Every normal variety contains only 
finitely many MQOS. 

2. Appendix 
For the convenience of the reader we show that the surface X is non-

projective (we will follow hints from [2]). Recall that C denotes the nodal 
curve given in P2 by the equation y2z — x3 — x2z = 0 (for char K = 2 by 
y2z + x3 + x2z + xyz = 0). Consider the parametrization n : P1 3 (t : s) —* 
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(4 t s ( t - s) : 4 t s ( t + s) : (t - s)3) G P2 (in case of char K = 2 consider 
(i : s) —> (is(i + s) : ts(at + bs) : (af + 6s)3), where a and b are the roots of 
x2 + x + 1 = 0). For simplicity we will consider only the case char K ^ 2, 
we leave the (similar) case char K — 2 to the reader as an exercise. 

Except for the points A = (0 : 1) and B = (1 : 0) the morphism 7r is an 
isomorphism C \ PQ = K*. Let (F> denote the automorphism P1 x K* B ((t : 
s),u) —> ((ut : s),u) G P1 x K*. Since </> coincide on Ax K* and B x K*, it 
can be lifted to a C x K* automorphism (j) : (n((t: s)),u) —> (n((ut : s)),u). 

Notice that X is obtained by gluing C x (P1 \ {oo}) with C x (P1 \ {0}) 
along their open subsets C x K* via the isomorphism (j). Both the projections 
C x (P1 \ {oo}) -> P1 \ {oo} and C x (P1 \ {0}) P1 \ {0} are proper 
morphisms, hence the projection X —> P1 is a proper morphism, thus X is 
a complete algebraic variety. 

Let F = P1 x (P1 \ {0, oo}), Yi = P1 x (P1 \ {oo}), Z = C x (P1 \ {0, oo}) 
and Z\ = C x (P1 \ {oo}). The parametrization 7r naturally extends to 
Y —> Z and Y\ —> Z\ which also will be denoted by n. Consider the exact 
sequence: 

0 —• 7T*0*Y/0*Z —• K*/0*z —> K.*/it*0*y 0. 
Using the global sections functor we obtain a commutative diagram. 

K[u,\/u\* K{u,l/u]* 

r (z,o*z) — T{Z,K.O*Y) 

1 1 
T{Z,K.') —» r (Z,/C*) 

0 —» T(Z, TTTOY/OZ) — R(Z,IC'/0'Z) —» T{Z,K.'/TV.O'Y) 

1 1 I 
T{Z,-K,O*Y/O*z) —» R{z,K.*/o*z)/r{z,K.*) —> V{Z,ÌCIK.O^)IT{Z,ÌC) 

Pic (z ) P i c ( r ) 

Using the "snake lemma" we obtain the following exact sequence: 

0 K[u, 1 /«]* A"[u, 1/«]* T(Z^0^/0*z) P i c ( Z ) -> Pic(F). 
Moreover, the morphism K[u, 1/u}* —> 1/u]* is the identity, conse-
quently the morphism K[u,l/u]* —> T(Z, is zero. Finally we 
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have exact sequence 

(2.1) o —> r ( z , 7T*ô /o*z) —* Pic(z) —• Pic(y) . 

Consider the variety Y. Let D = Yi \ Y = P1 x {0}. We have an exact 
sequence: 

ZD -> Pic(yi) -» Pic(F) 0. 

Since D is a principal divisor we have Pic(F) = Pic(Yi) = Pic(P1 x K) = 
Pic(P1). In fact if 7r : Y —> P 1 is the projection, then every element of 
Pic(y) is of the form 7r*(a), where a 6 Pic(P1) and the mapping Deg : 
Pic(V) B it*a —> deg a € Z is an isomorphism. Now we will study the group 
r(Z, TT±0*y/0*z) in order to describe Pic(Z) and, eventually, the divisors on 
X . 

Let us start by identifying the stalks of it*0*y/0*z at an arbitrary point 
p € Z. For p E Z \ {(0 : 0 : 1)} x K* the morphism it is an isomorphism, 
hence the quotient {n^Oy fO* z)p is in fact {1}. Let p = ((0 : 0 : l ) ,p) , 
we can describe the stalk as (0y)((O:i),P)) fl(oy)((i:0)j»)) = ( 7 = 
g f,g E K(u)[t,s],degt s f = deg i s g , the coefficients of / and g are 
regular at p and the leading terms in t and s do not vanish at p} and 
(0*z)p = {7 G (K*0*y)p : 7 ( (0 : l ) , u ) = 7 ( ( 1 : 0),«)}. Take 7 G (tt*0*Y)p. 
We have 7 = ^X^.S'-C+TpS' w h e r e G K(u), a^p), @i(p) G 

K,ak(p),pk(p) + 0, ao(p), 0o(p) ^ 0. Consider <5 = where c0 = 
- a o / A ) andc i = ak/(3k. Since 7 ( ( 0 : 1 ),u) = S((0 : 1 ),u) a n d 7 ( ( l : 0),u) = 
<5((1 : 0 ) , u ) we have that every element of ( ^ * O y ) p / ( O z ) p is equivalent 
to tfirf for some a € K{u) regular and non zero at p. Moreover, since 
T T ' a n d iT=f £ coincide at points ((0 : l ) , u ) and ((0 : 1),«) we have 

T ® * T ? = in Or*05Op/(0J)p. 
Note that |Eff ^ 1 in (^0^)p/(0*z)p for a ^ 0. Indeed, if f ^ f G 

(0*z)p then fEff ((0 : 1),«) = fEff ((1 : 0),u) and consequently a (u ) /P(u) = 
1. Hence a = p. 

Since we know the stalks of i r^Oy/O z , we are in a position to identify 
the global sections of this sheaf. Recall that a global section can be identified 
with a set {(£/*,/*)}, where [jUi = Z, /< € r(C/i,7T*0£) and £ G T(Ui n 
Uj,Oz). Outside the line {(0 : 0 : 1)} x K* all sections are equivalent to 
1. Let (C/i, / i ) and (t/2, / 2 ) be such that p € U\ D U2 n {(0 : 0 : 1)} x K*. 
Let h = and / 2 = T h e n £ = G F(C/ n V,0*z) C (<D*Z)P 

and thus a = (3 and fi = f2- Therefore a global section of tt*Oy/Oz can be 
expressed as {(£/, 1), (V, / )} , where U = Z \ {(0 : 0 : 1)} x K*, V is an open 
set containing {{(0 : 0 : 1)} x K*} and / = ^ r with a G Y(K*,0*k.) = 



A complete variety with infinitely many... 283 

{auk : a £ K * , k e Z}. We have t ' a
t ^ l s • = t h u g w e 

have an isomorphism of groups T(Z, ir+Oy/Oz) = K* x Z. 
Recall that T(Z,N*0*Y/<D*Z) is a subgroup of Pic(Z). A divisor {(U, 1), 

( V , * ^ ) } is equivalent to {(U, (V, 1)} = {(U, ¿g fegy) , (V, 1)} = 
{(f7, (l+a)x+(l-a)y)' ^ 

Consider the divisor D = {(i7, (V, 1)}. Its image in Pic(F) is D' = 
: l ) } ) x r , l ) } . SinceDeg D' = 1, it isagenerator 

ofPic(Y). Consequently, the last mapping in the exact sequence (2.1) is onto 
and we have an isomorphism Pic(Z) 3 {(U, (l+a)x°l(l_a)y • ((l+u)x

x
+(^u)y)k ' 

( ^ D , (V, 1)} - (a, k,n) e K* x Z x Z. 
Note, that we can proceed in a similar way with Z\. We have 

T{ZUN*0*YJ0*ZX) = { (C/ , l ) , (V; i=f)} , where a E T{K,0*K) = K*. Thus 
Pic(Zi) K* x {0} x Z. 

Let us now examine the action of <f>* on Pic(Z). We have 

= 4>*{T=k) = = T âs = (l+a)x+(l-a)y a n d ^ ( i ^ ) = = 

= • t ^ - s = ^ * ( M A u - ' ) , - Identifying Pic(Z) with 
K* x Z x Z we can say that the morphism (j>* has the form (a, k, n) —> 
(a, k — n, n). 

Take D E Pic(X). Using the identification Pic(Zi) = K* x {0} x Z we 
can say that ^Icx^V-foo}) and -DlcxiP^-fo}) represent elements (a,0,n) and 
(6,0, A;) respectively. Both expressions must coincide on C x (P1 \ {0, oo}) 
via the morphism </>*, meaning (a,0,n) = <£*((£>, 0, A;)) = (b,—k,k), thus 
a = b and n = k = 0. Therefore -Dlcx^X-foo}) has to be of the form 
m (i+a)x+(i-a)y)' I)}- Note that the divisor .D|cx{o} is the form 
A- B (A,B E Reg(C x {0})), hence it has degree 0. 

Now assume that X is projective. Let D' E Pic(X) be a general hyper-
plane section. The divisor -D'|cx{0} is effective and nonzero, thus it has a 
positive degree. This is a contradiction. 
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