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EXPECTATION IN METRIC SPACES AND 
CHARACTERIZATIONS OF BANACH SPACES 

Abstrac t . We consider different definitions of expectation of random elements taking 
values in metric spaces. All such definitions are valid also in Banach spaces and in this 
case the results coincide with the Bochner integral. There may exist an isometry between 
considered metric space and some Banach space and in this case one can use the Bochner 
integral instead of expectation in metric space. We give some conditions which ensure 
existence of such isometry, for two different definitions of expectation in metric space. 

1. Introduction 
We are dealing with two definitions of expected value of random elements 

taking values in metric space. Both this definitions have the same property 
(which is not so obvious in metric spaces): the expectation of any integrable 
random element is a singleton. This is necessary property for the existence of 
isometry because Bochner integral in any Banach space is always a singleton. 

Let (Í2, A, P) be a non-atomic probability space. Assume that (E, d) is 
a complete metric space. By T we denote the Borel cr-field on E. 

We will use the following terminology concerning random elements: 

• a map X: ÍÍ —» E will be called random element if for any A 6 T 

X - \ A ) e A 

• a random element X will be called simple random element if it takes only 
finite number of values 

• a random element X will be called integrable if a real random variable 
d(u, X) is integrable for some « e E 

• the space of all integrable random elements will be denoted by L^ 
• the space of all square integrable random elements will be denoted by L | . 
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First we introduce the following set called "metric combination" 
n 

A{Ui = Aliii + X2u2 + ... + Anun 

i=1 

which is given recursively in the following way: 
For any finite system of nonnegative constants {Ai, A2, . . . , An} such that 
£ r = i Aj = 1 and for any subset {u\,u2, . . . , u n } of E: 

• if n = 1 then lu\ = {ui } . 
• Let n > 1. Suppose the sets Ya=1 Wi a r e defined for k < n. We define: 

n 

u e AiUi 
i=1 

if and only if there exist non-empty, disjoint and complementary subsets 
7i, I2 of the set of indices { 1 , 2 , . . . , n} and elements 

u1 g  xiui> u 2 6 

¿e/i ie/2 
where A- = As/ Xl je/ j i A? = Aj/ such that 

d K « 1 ) = d(u,u2) = ( ^ A ^ u V 2 ) . 

¿e/i ¿6/2 
REMARK 1. "Metric combination" may be found in [4]. 

Next we give different, known convexity properties of metric spaces: 

• (E, d) is called convex if for any u, v G E and any A G (0,1) there is w £ E 
such that 

w G Xu + (1 — X)v, 

• (E, d) is called strictly convex if for any u, v G E and any A G (0,1) there 
is exactly one element w G E such that 

{w} = Xu + (1 - X)v, 

• (E, d) is called externally convex if for any u,v G E and any A G (0,1) 
there is w G E such that 

tie Xw + ( 1 - X)v. 

Using this basic definitions we will be dealing with two different kinds of 
expectation: 

• convex combination expectation 
• Frechet expectation. 

First definition was given by Teran and Molchanov in [6] the second one is 
due to Frechet [2]. 
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The base for our results is the following known theorem: 

THEOREM 1. (Andalafte et al. [1]) Let (E ,d) be complete, convex and 
externally convex metric space. The space is isometric with a strictly convex 
real Banach space if and only if for any triplet a\, a2, «3 the set \ai ^ 
a singleton in E. 

2. Convex combination expectation 
We will start with some facts concerning convex combination operation 

and definition of expectation given in [6]. 

2.1. Definition of convex combination expectation 
On (E, d) introduce a convex combination operation which for all n > 2, 

numbers Ai, A2,. . . ,An > 0 satisfying Y17=i Ai = an(^ u i > • • - € E 
produces an element of E denoted by [Ajiii]"=1 or [Ajtii; A2U2;...; Xnun]. 
Assume that [lw] = u for every u € E. 

Assume that convex combination operation satisfy the following condi-
tions: 

(i) [Aj«i]f=1 = [A(T(j)U(T(j)]f=1 for any permutation a of 1 , 2 , . . . ,n; 

(ii) [AÎ ]R=I2 = [AIMI; A2U2; . . . ; (An+1 + X n + 2 ) [ x J ^ n + 2 u n + j } 2 j = 1 } -

(iii) for any sequence of numbers A ^ —> A G (0,1); k —• 00 

u; ( l - A « ) v\ —• [Au; (1 — A)v]; k —> 00; 

(iv) V(A G (0,1)) V(ui,u2,v\,v2 G E ; ) 
d([Xui\(1 - A)u2], [Awi; (1 - A)t>2]) < Xd(ui,vi) + (1 - X)d(u2,v2). 

The following properties follow from (i)-(iv) 

1) for every ui,u2,... ,unm G E and Ai , . . . , An, ai,..., am > 0 w i t h ^ " = 1 A j 

2) the convex combination operation is jointly continuous in its 2n argu-
ments. 

The following assumption concerns the limiting behaviour of the convex 
combination operation: 
(v) for each u G E, there exists lim [n_1u]"=1, which will be denoted by Ku. 
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For the ease of reference, a separable, complete metric space E with the con-
vex combination operation satisfying conditions (i)-(v) will be called convex 
combination space. 

Introduce some more terminology which will be useful later on. 

• A point u £ E is called convexely decomposable if 

u = [Aju]"=1 

for all n > 2 and Ai , . . . , An > 0 with \ = 1. 
• Convex combination is called unbiased if Kx = x for all x € E. 
• The metric space (E, d) is called convexifiable if it admits an unbiased 

convex combination. 

Convexification operator K defined by (v) has the following properties: 

(a) the operator K is linear, that is 

= i^Ku^r, 
(b) the image -ftT(E) of E under K coincides with the family of convexely 

decomposable elements of E, 
(c) the operator K is idempotent on E, that is K(Ku) = Ku, 
(d) for any numbers Ai + A2 + A3 = 1; A¿ > 0; i = 1,2,3; 

[Am; A2KV; A3Kv] = [Ai«; (1 - Ax)Kv), 

(e) K is non-expansive with respect to the metric d, that is 

d(Ku;Kv) < d(u,v). 

Now we are ready to give the definition of expectation. 

D E F I N I T I O N 1 . For simple, integrable random element X taking values 
iii, U2, • • •, un with probabilities Ai, A2, • • •, An respectively, define expecta-
tion of X by 

EX^lX^Kui}^. 

R E M A R K 2 . Any integrable random element may be approximated by 
simple random element and this definition may be extended on Ljg. (For 
details see [6]). 

2.2. Characterization 
Now we are in position to state the following result: 

T H E O R E M 2 . Let (E, d) be complete, strictly convex and externally convex 
metric space. 7/E is convexifiable then it is isometric with a strictly convex 
real Banach space. 

Proof. We know that Ku = u for any u € E. 
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Furthermore by property (iv) for any u,v € E and any A € (0 ,1) we 
have: 

d ([Au; (1 - A)u]; u) = d ([An; (1 - A)w]; Ku) 

= d([\Ku; (1 - A)Kv]; [AKu- (1 - A ) # u ] ) 

< (1-A)d(u,v). 

Similarly one can show that d ([Au; (1 — A)u]; v) < Ad(u, v). 
Note that by triangle inequality: 

d(u\ v) <d (u; [Au; (1 - A)v]) + d ([Au; (1 - A)v]; v) 

< (1 — A)d(u; v) + Ad(u, v) = d(u, v). 

So it is clear that 

d([Au; (1 — A)t>] ;v) = Xd(u, v) and d ([Au; (1 — A)u]; u) = (1 — \)d(u, v). 

Now by strict convexity metric combination of two points is also a singleton. 
Thus we have just proved that for any u, v € E 

[Au; (1 - A)v] = Au + (1 - A)v, 

where the right hand side is metric combination operation introduced above. 
Now note that the metric combination of three points ^ui + 5U2 + 5U3 

may consist three different points of the form ^Uj + \{\uj + \uk) for different 
choices of i, j, k £ { 1 ,2 , 3 } . But on the other hand by ii): 

1 2 / 1 1 
3 ^ + 3 2ui + 2Uk) = 

"1 2 1 1 1 1 1 
3 2U j ] 2Uk_ — 3 * ; 3«,-; 3Ufc 

for any choice of i,j, k € {1,2,3}. 
We have just proved that two mentioned operations: convex combination 

and metric combination are actually the same. We can use Theorem 1 to 
finish the proof. • 

3. Fréchet expectation 
3.1. Definition of Fréchet expectation 

Let us consider expectation defined as an element of a metric space (E, d) 
minimizing "variance" i.e. 

E f X = { a e E : Ed2(a,X) = minEd2(u,X)}. 
u£E 

This expectation does not need to be a singleton, it may be a set. There 
are however spaces in which this expectation is always a singleton for any 
square integrable random element. The spaces are known as global NPC 
spaces. Here we recall the definition: 
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DEFINITION 2. (E,d) is called a global NPC space if and only if it is 
a complete metric space with nonpositive curvature in the following sense: 

inf f d2(x,z)q(dx) <~ f f d2(x,y)q(dx)q(dy) 
J E * J E J E 

for all discrete probability measures q on E. 

The following characterization of global NPC spaces is also known: 

PROPOSITION 1. (Sturm [5]) A complete metric space (E, d) is a global 
NPC space if and only if: 

i) it is a geodesic space, that is, any two points 70,71 6 E can be joined by 
a (continuous) curve 7 : [0,1] —> E such that d(70,71) = ld(7) where the 
length of 7 is defined as 

n 
ld(7) := sup{^d(7 i f c , 7 t f e + 1 ) : 0 < t0 < h < ... < tn < l , n € n } , 

k= 1 
ii) and it has nonpositive curvature in the sense of A. D. Alexandrov, which 

means that for every point z, every geodesic t 1—> 74 (parametrized pro-
portionally to arclength, as always) and every t e [0,1], 

d2(z, 7i) < (1 - t)d2(z,io) +td2(z,ll) - t( 1 - i)d2(7o,7i)-

PROPOSITION 2. Note that global NPC space is always strictly convex. 

Proof. The convexity of the space is clear from i) because geodesic joining 
two points u,v G E consists of the points Xu + (1 — X)v. Assume that for 
some points « , « e E there are two geodesic 7 , 7 ' joining this two points but 
by negative curvature property ii) taking z = 7̂  we have: 

d2(7i ,7i) < (1 - i)ri2(7i,70) + td2M,~n) - t{ 1 - t)d2{70,71) 

= (1 - t)t2d2(70,71) + t( 1 - t)2d2(70,71) - 1 ( 1 - t)d2(70,71) = 0. 

This contradiction ends the proof. • 

REMARK 3. Note that for the Frechet expectation the following property: 

(*) EF(X) = EF(EF(X\Y)) 

does not hold in general even for random elements in global NPC space. 
However we know, that if we use this definition for any given Hilbert space 
it coincides with Bochner integral. So condition (*) is true in this case. 

For detailed discussion of Frechet expectation in the global NPC spaces 
see [5]. 
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3.2. Characterization 
We will start with the following easy result: 

L E M M A 1 . Let (E, oí) be a global NPC metric space. Consider random 
element X taking only two values u and v with probabilities A and 1 — A 
respectively. Let 7¿ be a geodesic joining u and v. Then EpX = 

Proof. Suppose that EpX = 7 t for some t G (0,1). Note first that 

d(lt, 7o) = (1 - t)d{7o,7i) = (1 - t)D, 

d(7t,7i) = td( 70,71) = tD, 

where D = d(u,v). And we have 

Ed2(X, EpX^ = P{X = u)d2(EFX, u) + P(X = v)d2{EFX, v) 

= Ad2(7t,7o) + ( l - A ) d 2 ( 7 t , 7 i ) 
= A(1 - tfD2 + (1 - A)t2D2 = D2 (t2 - 2At + A) = f(t). 

The function f(t) reaches its minimum for t = A. So it is true that if we 
assume that EpX £ 7 then EpX = 7>. 

Assume that EpX £ 7 then we can write 
d(EpX, u) = (l-t + a)d(u, v) = (1 - t + a)D, 
d(EpX,v) = td(u,v) = tD, 

where a > 0. So we obtain: 
Ed2(X, EpX) = P(X = u)d2(EFX, u) + P{X = v)d2(EFX, v) 

= A(1 — t + afD2 + (1 - A)t2D2 

= D2 (t2 - 2At + A ) + D 2 (a2A + 2aA(l - i)) 
= f(t) + C(t) = F(t) 

and it is enough to note that C(t) > 0 so minimum can not be obtained 
anywhere besides 7. • 

T H E O R E M 3 . Let Ep be a Fréchet expectation operator defined on externally 
convex, global NPC space (E, d). If the condition EpX = Ep(Ep(X\Y)) 
is satisfied for any square integrable random element X and any random 
element Y taking two values then (E, d) is isometric with some strictly convex 
real Banach space. 

Proof. It is enough to show that for any random variable X taking val-
ues U\,U2, U3 with probabilities Ai, A2, A 3 respectively the following equation 
holds: 

3 

EpX = y^XjUj. 
i=1 

Again the right hand side is understood as metric combination. 
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Put Vi = + izlyuk for i, j, k chosen from the set {1,2,3} and 
define for i = 1,2,3 the random variables 

jui, X = Ui; 
= \ v -L 

[Vj, X ± Ui. 

Note that by the last lemma we have 
EFX = EF(EF(X\Yi)) 

= XiEF(X\X = Ui) + (1 - Xi)EF(X\ + Ui) 

= AiUi + (1 - A i ) v i , 

for i = 1,2,3. But on the other hand by definition of metric combination 
operation we get 3 3 

^iUi = + ~ = E f X 
i=1 i=1 

and EFX is always a singleton in global NPC spaces. 
Thus conditions of Theorem 1 are satisfied and (E, d) is isometric with 

some strictly convex real Banach space. • 
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