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EXPECTATION IN METRIC SPACES AND
CHARACTERIZATIONS OF BANACH SPACES

Abstract. We consider different definitions of expectation of random elements taking
values in metric spaces. All such definitions are valid also in Banach spaces and in this
case the results coincide with the Bochner integral. There may exist an isometry between
considered metric space and some Banach space and in this case one can use the Bochner
integral instead of expectation in metric space. We give some conditions which ensure
existence of such isometry, for two different definitions of expectation in metric space.

1. Introduction

We are dealing with two definitions of expected value of random elements
taking values in metric space. Both this definitions have the same property
(which is not so obvious in metric spaces): the expectation of any integrable
random element is a singleton. This is necessary property for the existence of
isometry because Bochner integral in any Banach space is always a singleton.

Let (2, A, P) be a non-atomic probability space. Assume that (E,d) is
a complete metric space. By F we denote the Borel o-field on E.

We will use the following terminology concerning random elements:

a map X: 2 — E will be called random element if for any A € F
X 1A eA

a random element X will be called simple random element if it takes only
finite number of values

e a random element X will be called integrable if a real random variable
d(u, X) is integrable for some u € E

the space of all integrable random elements will be denoted by LI}E

the space of all square integrable random elements will be denoted by L]%.
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First we introduce the following set called “metric combination”

n

Z A = Aqug + Agug + ...+ Aug

i=1
which is given recursively in the following way:
For any finite system of nonnegative constants {A1, A2,...,An} such that
S 1A =1 and for any subset {u1,us,...,u,} of E:
e if n =1 then lu; = {u;}.
e Let n > 1. Suppose the sets Zle wiv; are defined for k < n. We define:

n
u € Z A
=1

if and only if there exist non-empty, disjoint and complementary subsets
I, I, of the set of indices {1,2,...,n} and elements

ul € Z/\,}Ui, u? € Z)\?ui,
iel i€l
where \} = AifDjen Al A=)/ > jer, Aj such that
d(u,ul) = (Z )\i)d(ul, w?),  d(u,u?) = (Z /\i)d(ul, u?).
i€h i€l
REMARK 1. “Metric combination” may be found in [4].
Next we give different, known convexity properties of metric spaces:

e (E,d) is called convex if for any u,v € E and any A € (0,1) there is w € E
such that
w € Au+ (1 — A,

e (E,d) is called strictly convex if for any u,v € E and any A € (0,1) there
is exactly one element w € E such that

{w} =M+ (1 -,
e (E,d) is called externally convex if for any u,v € E and any A € (0,1)
there is w € E such that
u € dw+ (1- M.

Using this basic definitions we will be dealing with two different kinds of
expectation:

e convex combination expectation
e Fréchet expectation.

First definition was given by Teran and Molchanov in [6] the second one is
due to Fréchet [2].
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The base for our results is the following known theorem:

THEOREM 1. (Andalafte et al. [1]) Let (E,d) be complete, conver and
externally conver metric space. The space is isometric with a strictly convez
real Banach space if and only if for any triplet ay, a2, as the set Zf’:l %ai 1s
a singleton in E.

2. Convex combination expectation

We will start with some facts concerning convex combination operation
and definition of expectation given in [6].

2.1. Definition of convex combination expectation
On (E, d) introduce a convezr combination operation which for all n > 2,
numbers A1, Ao, ..., Ap > Osatisfying Y7, A = 1, and all uy, ug,...,un €E
produces an element of E denoted by [Aju;]P, or [Aui;Agug;...; Agun].
Assume that [1u] = u for every u € E.
Assume that convex combination operation satisfy the following condi-
tions:
(i) [Miuilizy = [As(i)Uo(i)lizy for any permutation o of 1,2,...,n;
.. ’\n j
(i) Pewal? = Pawss Az -5 (Antt + Any2) 5528 wnliai s
(iii) for any sequence of numbers A*) — X\ € (0,1); k — oo
ARy, (1 - /\(k)) v} = [Au; (1 = A)v); k — oo;
(iv) V(A €(0,1)) V(u1,uz,v1,v2 € E;)
d([Aug; (1 = Aug], [Avg; (1 = Mvg]) < Ad(ur, v1) + (1 — A)d(uz, v2).

The following properties follow from (i)-(iv)

1) for every ui, ug,...,Unm € Eand A1,..., An,01,..., 0 > Owith > 0 | X;
:Z;nzﬂlj =1,

Plejuglieyicy = aajus i1

2) the convex combination operation is jointly continuous in its 2n argu-
ments.

The following assumption concerns the limiting behaviour of the convex
combination operation:

(v) for each u € E, there exists lim [n~1u|? ;, which will be denoted by Ku.
n—oo
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For the ease of reference, a separable, complete metric space E with the con-
vex combination operation satisfying conditions (i)-(v) will be called convex
combination space.

Introduce some more terminology which will be useful later on.

e A point u € E is called convexely decomposable if
u = [Au]it,

for all n > 2 and Ag,..., A, > 0 with )"\, = 1.

e Convex combination is called unbiased if Kz = x for all z € E.

e The metric space (E,d) is called convexifiable if it admits an unbiased
convex combination.

Convexification operator K defined by (v) has the following properties:
(a) the operator K is linear, that is
K[\jujlie; = Kyl

(b) the image K(E) of E under K coincides with the family of convexely
decomposable elements of E,

(c) the operator K is idempotent on E, that is K(Ku) = Ku,

(d) for any numbers Ay + Adg+A3=1; A, >0; i1 =1,2,3;

[Aw; Ao Kv; AsKv] = [Arw; (1 — A1) K,
(e) K is non-expansive with respect to the metric d, that is
d(Ku; Kv) < d(u,v).
Now we are ready to give the definition of expectation.

DEFINITION 1. For simple, integrable random element X taking values
U1, ue, ..., U, with probabilities A1, Ag, ..., A, respectively, define expecta-
tion of X by

EX = [\, Kuiliy.

REMARK 2. Any integrable random element may be approximated by
simple random element and this definition may be extended on L]}E. (For
details see [6]).

2.2. Characterization ,
Now we are in position to state the following result:

THEOREM 2. Let (E,d) be complete, strictly conver and externally convex
metric space. If E is convezifiable then it is isometric with a strictly convez
real Banach space.

Proof. We know that Ku = u for any u € E.
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Furthermore by property (iv) for any u,v € E and any A € (0,1) we
have:

@ ([Au; (1 - Av];u) = d([u; (1 = A)o]; Ku)
=d ([AKu; (1 = \)Kv]; [AKy; (1 — M) Ku])
< (1 - A)d(u,v).
Similarly one can show that d ([Au; (1 — X)v];v) < Ad(u,v).
Note that by triangle inequality:
d(u;v) < d (u; [du; (1= A)o]) +d ([ (1= A)o]50)
< (1 = AN)d(u;v) + Ad(u,v) = d(u,v).
So it is clear that
d([Mu; (1 = A)v];v) = Md(u,v) and  d([Ay; (1 — A)v];u) = (1 - A)d(u,v).

Now by strict convexity metric combination of two points is also a singleton.
Thus we have just proved that for any u,v € E

[Au; (1= A)v] = du+ (1= A,
where the right hand side is metric combination operation introduced above.
Now note that the metric combination of three points %ul + %ug + %u;;

may consist three different points of the form %uz + %(%u] + Suy,) for different
choices of 7, j, k € {1,2,3}. But on the other hand by ii):

3W T3\ g% T U | T |3l g | QU gUk|| T [3Ui gt 3tk

for any choice of 4, j, k € {1, 2,3}.

We have just proved that two mentioned operations: convex combination
and metric combination are actually the same. We can use Theorem 1 to
finish the proof. m

3. Fréchet expectation
3.1. Definition of Fréchet expectation
Let us consider expectation defined as an element of a metric space (E, d)
minimizing “variance” i.e.
ErX ={acE: Ed*a,X) = mi}EEd2(u,X)}.
ue

This expectation does not need to be a singleton, it may be a set. There
are however spaces in which this expectation is always a singleton for any
square integrable random element. The spaces are known as global NPC
spaces. Here we recall the definition:
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DEFINITION 2. (E,d) is called a global NPC space if and only if it is
a complete metric space with nonpositive curvature in the following sense:

inf/d2(:v 2)q //d2 z,y)q(dz)q(dy)
2€E JEg

for all discrete probability measures g on E.
The following characterization of global NPC spaces is also known:

PROPOSITION 1. (Sturm [5]) A complete metric space (E,d) is a global
NPC space if and only if:

i) it is a geodesic space, that is, any two points vyp,y1 € E can be joined by
a (continuous) curve v : [0,1] — E such that d(vp,v1) = lg(y) where the
length of v is defined as

mn
la(y) == sup{Zd(m,%k“) 0<to<t <..<tp<lne N},
k=1

ii) and it has nonpositive curvature in the sense of A. D. Alexandrov, which
means that for every point z, every geodesic t — 7 (parametrized pro-
portionally to arclength, as always) and every t € [0, 1],

d*(z,7) < (1 = t)d?(z,v) + td*(z, 1) — t(1 — t)d*(y0,71).
PROPOSITION 2. Note that global NPC space is always strictly convez.

Proof. The convexity of the space is clear from i) because geodesic joining
two points u,v € E consists of the points Au + (1 — A)v. Assume that for
some points u,v € E there are two geodesic v,~ joining this two points but
by negative curvature property ii) taking z = 7, we have:
(v}, ) < (1= 1)d* (%, 70) + td* (v, 1) — (1 = £)d*(v0, 1)

= (1 - t)e*d* (v, m) + t(1 — )°d* (70, m1) — t(1 = t)d*(30,71) = 0.
This contradiction ends the proof. =
REMARK 3. Note that for the Fréchet expectation the following property:
(*) Ep(X) = Er(Er(X|Y))

does not hold in general even for random elements in global NPC space.
However we know, that if we use this definition for any given Hilbert space
it coincides with Bochner integral. So condition (x) is true in this case.

For detailed discussion of Fréchet expectation in the global NPC spaces
see [5].
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3.2. Characterization
We will start with the following easy result:

LEMMA 1. Let (E,d) be a global NPC metric space. Consider random
element X taking only two values u and v with probabilities A and 1 — A
respectively. Let v; be a geodesic joining u and v. Then EpX = 7,.

Proof. Suppose that EpX =y, for some t € (0,1). Note first that
d(7t,7) = (1 = t)d(yo,m) = (1 =)D,
d(y, m) = td(0,7m1) = tD,
where D = d(u,v). And we have
Ed*(X,EpX) = P(X =u)d*(EpX,u) + P(X =v)d*(ErX,v)
= Ad*(7,7%0) + (1~ Nd* (%, )
=M1 —1)2D? + (1 = Mt?D? = D? (£ — 2Xt + A) = f(¢).
The function f(t) reaches its minimum for ¢t = A. So it is true that if we

assume that EpX € v then EpX = ~,.
Assume that ErX ¢ v then we can write

d(ErpX,u)=(1~-t+a)d(u,v)=(1-t+a)D,
d(ErpX,v) = td(u,v) = tD,
where a > 0. So we obtain:
Ed*(X,ErX) = P(X = u)d*(EpX,u) + P(X = v)d*(ErX,v)
=X1—-t+a)?D?+ (1 - N2D?
= D? (t* — 2Xxt + A) + D? (a®\ + 2aM\(1 — t))
= f(O) +C(t) = F(t)
and it is enough to note that C(¢) > 0 so minimum can not be obtained
anywhere besides . »

THEOREM 3. Let Er be a Fréchet expectation operator defined on externally
convez, global NPC space (E,d). If the condition ErX = Ep(Ep(X|Y))
is satisfied for any square integrable random element X and any random
element Y taking two values then (E, d) is isometric with some strictly convez
real Banach space.

Proof. It is enough to show that for any random variable X taking val-
ues uj, ug, u3 with probabilities A1, A2, A3 respectively the following equation
holds:

3
EFX = Z /\,ul
i=1

Again the right hand side is understood as metric combination.
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Put v; = %uj + ﬁ%uk for ¢,7,k chosen from the set {1,2,3} and

define for ¢ = 1,2, 3 the random variables

Yilw) =1 X £,

Note that by the last lemma we have

ErX = Ep(Ep(X|Y;))
= MEr(X|X = w) + (1 — M)Ep(X| # w)
= \u; + (1 — /\i)via

for ¢ = 1,2,3. But on the other hand by definition of metric combination
operation we get

3 3
Z)\iui = U{/\lui + (1 - )\i)vi} =FErX
=1 i=1

and FrX is always a singleton in global NPC spaces.

Thus conditions of Theorem 1 are satisfied and (E, d) is isometric with

some strictly convex real Banach space. =

(1]
2l
(3]
4]

(sl
(6]
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