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ON ALMOST PSEUDO CONFORMALLY SYMMETRIC
MANIFOLDS

Abstract. The object of the present paper is to study a type of non-conformally
flat semi-Riemannian manifolds called almost pseudo conformally symmetric manifold.
The existence of an almost pseudo conformally symmetric manifold is also shown by a
non-trivial example.

1. Introduction

As is well known, symmetric spaces play an important role in differential
geometry. The study of Riemannian symmetric spaces was initiated in the
late twenties by E. Cartan [5], who, in particular, obtained a classification
of those spaces.

Let (M, g), n = dimM be a semi-Riemannian manifold, i.e. a manifold
M with the metric tensor g with arbitrary signature and let V be the Levi-
Civita connection of (M, g). A semi-Riemannian manifold is called locally
symmetric [5] if VR = 0, where R is the Riemannian curvature tensor of
(M, g). This condition of local symmetry is equivalent to the fact that at
every point P € M, the local geodesic symmetry F'(P) is an isometry [23].
The class of Riemannian symmetric manifolds is very natural generalization
of the class of manifolds of constant curvature.

During the last five decades the notion of locally symmetric manifolds
have been weakened by many authors in several ways to a different extent
such as conformally symmetric manifolds by Chaki and Gupta [7], recurrent
manifolds introduced by A. G. Walker [32], conformally recurrent manifolds
by T. Adati and T. Miyazawa [1], pseudo symmetric manifolds introduced by
M. C. Chaki [6], weakly symmetric manifolds by L. Taméassy and T. Q. Binh
[30], projective symmetric manifolds by G. Soés [29] etc.
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In 1967, R. N. Sen and M. C. Chaki |28] studied certain curvature re-
strictions on a certain kind of conformally flat space of class one and they
obtained the following expression of the covariant derivative of the curvature
tensor :

(1.1) Rl = 2N R, + MR + ARl + MeRE) + ARy

where Ré’jk are the components of the curvature tensor R, Ry, = gth?jk, A
is a non-zero covariant vector and ‘,’ denotes covariant differentiation with
respect to the metric tensor g;;.

Later in 1987, M. C. Chaki [6] called a manifold whose curvature tensor
satisfies (1.1), as a pseudo symmetric manifold. In index free notation this
can be stated as follows:

A non-flat semi-Riemannian manifold (M, g), n > 2 is said to be a
pseudo symmetric manifold [6] if its curvature tensor R satisfies the condition

(1.2) (VxR)Y,Z)W =2A(X)R(Y, Z)W + A(Y)R(X, Z)W
+A(Z)R(Y, X)W + AW)R(Y,Z)X
+9(R(Y, Z)W, X)p,

where A is a non-zero 1-form, p is a vector field defined by

(1.3) 9(X,p) = A(X), forall X

and V denotes the operator of covariant differentiation with respect to the
metric tensor g. The 1-form A is called the associated 1-form of the manifold.
If A =0, then the manifold reduces to a symmetric manifold in the sense
of E. Cartan. An n-dimensional pseudo symmetric manifold is denoted by
(PS)n.

This is to be noted that the notion of pseudo symmetric manifold studied
in particular by R. Deszcz (|3], [16], [17], [18]) is different from that of
M. C. Chaki [6].

The notion of a pseudo conformally symmetric manifold was introduced
by the first author and H. A. Biswas [8]. An n-dimensional non-conformally
flat semi-Riemannian manifold (M, g), n > 3 is called pseudo conformally
symmetric manifold if the conformal curvature tensor C defined by

(14) C(X,Y)Z=R(X,Y)Z

1
— —[9(Y, Z)LX — (X, Z)LY + 5(Y, )X — S(X, Z)Y]
n p—
r
— (Y, 2)X — g(X, Z2)Y],
where R is the curvature tensor of type (1, 3), S is the Ricci tensor, r is the
scalar curvature and L is the symmetric endomorphism corresponding to the
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Ricci tensor S, that is,

(1.5) S(X,Y)=g(LX,Y),

satisfies the condition

(1.6) (VxC)Y, Z)W =2A(X)C(Y,Z)W + A(Y)C(X, 2)W
+A(Z2)CY, X)W + AW)C(Y,Z2)X
+9(C(Y, Z)W, X)P,

for all vector fields X,Y,Z, W € x(M), where A is a non-zero l-form, V

denotes the operator of covariant differentiation with respect to the metric
g and P is a vector field given by

(1.7) 9(X, P) = A(X),

for all X. The 1-form A was called the associated 1-form of the manifold and
such an n-dimensional manifold was denoted by (PCS),. The vector field P
defined by (1.7) was called the basic vector field corresponding to the 1-form
A. If A=0on M then the (PCS), manifold is a conformally symmetric
manifold [7]. For recent results on conformally symmetric manifolds we refer
to [11], [12], [13], [14], [15].

Conformally recurrent manifold was introduced by T. Adati and T. Miya-
zawa [1] in 1967.

A semi-Riemannian manifold (M, g), n > 3 is called conformally recur-
rent if the conformal curvature tensor, defined by (1.4), satisfies the condition

(18) (VxCO)(Y, 2)W = E(X)C(Y, Z)W,
where F is a non-zero l-form. If in particular F = 0, then the manifold
reduces to a conformally symmetric manifold [7].

M. Prvanovi¢ called a non-flat semi-Riemannian manifold (M, g), n > 3

as a conformally quasi-recurrent manifold ([24], [25]) if its conformal curva-
ture tensor satisfies the condition (1.6).

The object of the present paper is to study a type of non-conformally flat
semi-Riemannian manifold (M, g), n > 3 whose conformal curvature tensor
C satisfies the condition

(1.9)  (VxO)Y,Z)W = [A(X) + B(X)|C(Y, Z)W + A(Y)C(X, Z)W
+A(Z)CY, X)W + AW)C(Y, Z)X
+g(C(Y, 2)W, X)P,

where A and B are two non-zero 1-forms, called the associated 1-forms,
defined by

(1.10) 9(X, P) = A(X), g¢(X,Q)= B(X),
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for all vector fields X and V has the meaning already mentioned. Here the
vector field P and @ shall be called the basic vector fields of the manifold
corresponding to the associated 1-forms A and B respectively. Such a mani-
fold shall be called an almost pseudo conformally symmetric manifold and an
n-dimensional manifold of this kind shall be denoted by (APCS),,. Clearly,
every conformally recurrent manifold is a (APCS),,.

If in (1.9) A = B, then the manifold reduces to a pseudo conformally
symmetric manifold defined by (1.6). This justifies the name “almost pseudo
conformally symmetric manifold" and the use of the symbol (APCS),. In
this connection it may be mentioned that in 1989 Tamédssy and Binh [30] in-
troduced weakly symmetric and weakly projectively symmetric Riemannian
manifolds. A semi-Riemannian manifold (M, g) is called weakly symmetric
and denoted by (WS), if there exist 1-forms A, B, D, E and a vector field
P such that

(VxR)(Y, Z)W = A(X)R(Y, Z)W + B(Y)R(X, Z)W + D(Z)R(Y, X)W
+EW)R(Y, Z)X + g(R(Y, Z)W, X)P,

where R is the curvature tensor of (M, g).

On the analogy of (WS),, Tamdssy and Binh [31] introduced the notion
of weakly Ricci symmetric manifolds (W RS),,. A semi-Riemannian manifold
(M, g) is called weakly Ricci symmetric if there exist 1-forms A, B, and D
such that

(VxS)(Y,Z) = A(X)S(Y,Z2) + B(Y)S(X,Z) + D(Z)S(Y, X),

where S is the non-zero Ricci tensor of type (0,2) of the manifold.

In a subsequent paper [9] the first author and S. Bandyopadhyay in-
troduced weakly conformally symmetric manifold. A non-conformally flat
semi-Riemannian manifold (M, g), n > 3 is called weakly conformally sym-
metric if its conformal curvature tensor C satisfies the condition

(1.11)  (VxC)Y, Z)W = A(X)C(Y, Z)W + B(Y)C(X, Z)W
+D(Z)C(Y, X)W + EW)C(Y, Z)X
+g(C(Y, 2)W, X)P,

where A, B, D, E are 1-forms not simultaneously zero and V and P have the
meaning already mentioned. Such a manifold was denoted by (WCS),. It
is to be noted that (APCS),, is not a particular case of (WCS)y.

Also it may be mentioned that in a recent paper [10] the authors studied
a type of non-flat semi-Riemannian manifold (M, g), n > 2 whose curvature
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tensor R of type (1, 3) satisfies the condition

(1.12) (VxR)(Y,Z)W = [A(X) + B(X)|R(Y, Z)W + A(Y)R(X, Z)W
+A(Z)R(Y, X)W + A(W)R(Y, Z)X
+9(R(Y, Z)W, X) P,

where A, B, P and V have the meaning already mentioned. Such a mani-
fold was called an almost pseudo symmetric manifold and was denoted by
(APS)p.

The paper is organized as follows:

In section 2 some properties of an (APCS),, n > 3 have been studied
under certain condition. In the next section it is firstly shown that if the
Ricci tensor vanishes, then (APCS),, n > 3 reduces to a (APS), and the
relation A(R(Y,Z)W) + B(R(Y,Z)W) = 0 holds. It is also proved that
if the vector field @ defined by (1.10) is a parallel vector field in an Ein-
stein (APCS),,, then (APCS),, reduces to an (APS), provided the vector
fields P and @ corresponding to the associated 1-forms A and B are not
co-directional. In section 4 it is shown that if the Weyl conformal curvature
tensor of an (APCS), satisfies Bianchi’s 2nd identity, then the manifold
reduces to a (PCS),. It is also proved that an (APCS), whose confor-
mal curvature tensor satisfies Bianchi’s 2nd identity can be endowed with
a uniquely determined semi-symmetric metric connection with respect to
which the conformal curvature tensor is almost pseudo conformally symmet-
ric. Section 5 consists of the proof of the existence of an (APCS),, n > 3.
Finally, a non-trivial example of an (APCS), has been constructed.

2. (APCS),, satisfying B(C(X,Y)Z) =0
Contracting (1.9) over W we get

(2.1) A(C(Y,Z2)X) =0,
for all vector fields X,Y, Z. Now contracting (1.9) over X we get
(2.2) (divC)(Y, Z)W = 2A(C(Y, Z)W) + B(C(Y, Z)W).

A Riemannian or semi-Riemannian manifold (M, g) is said to be of harmonic
conformal curvature [4] if n > 4 and the condition (divC)}(X,Y)Z = 0
holds. From (2.1) and (2.2) we see that (divC)(X,Y)Z = 0 if and only if
B(C(X,Y)Z) =0. Thus we have the following theorem:

THEOREM 2.1. Every (APCS),, n > 3 is of harmonic conformal curvature
if and only if B(C(X,Y)Z) = 0 holds.

In the rest of this section we assume that in an (APCS),, the relation
(2.3) B(C(X,Y)Z) =0,
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holds. It is known [19] that in a s¢mi-Riemannian manifold (M, g), n > 3

24)  @O)(x¥)Z = (223)(VxS)¥,2) - (V2S)(X,Y)
+ g OCXY)dr(2) = oV, 2)r (X))

where C' denotes the conformal curvature tensor defined in (1.4). Since
B(C(X,Y)Z) = 0 we get from Theorem 2.1 that (divC)(X,Y)Z = 0. Hence
from (2.4) we get

(2.5)  (Vx9(Y,Z2) - (Vz9)(X,Y)
SR S
T om_1nV¥
First suppose that the Ricci tensor is a Codazzi tensor [20], that is,
(VxS)(¥, 2) = (Vz)(X,Y).

Then from (2.5) it follows that r = constant. Converéely, it r = constant
it follows from (2.5) that Ricci tensor is a Codazzi tensor. This leads to the
following theorem:

THEOREM 2.2. In a (APCS),, with B(C(X,Y)Z) = 0, the scalar curvature
is constant if and only if the Ricci tensor is a Codazzi tensor.

If B(C(X,Y)Z) =0, then from (2.4) and Theorem 2.1, we get

Y, Z)dr(X) — g(X,Y)dr(Z)].

(2.6)  |(VxS)(Y,2) - (VzS)(X,Y)

1

+ 2(n—1)

(9(X,Y)dr(Z) — g(Y, Z)dr(X))| =0,

which can be written as
(VxF)Y,Z) - (VzF)(X,Y) =0,
where

(2.7) F(X,Y)=S8(X,Y) - 9(X,Y).

__r
2(n—-1)
Thus we can state the following theorem:
THEOREM 2.3. A (APCS),, n > 3 satisfies (VxF)(Y,Z) = (VzF)(X,Y)
if B(C(X,Y)Z)=0.

REMARK. The above theorem is true for a (PCS),,, n > 3 without assum-
ing B(C(X,Y)Z) = 0, because in a (PCS),, there is only one 1-form A and
the relation divC = 0 holds without any assumption.
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3. Einstein (APCS),, n >3

In this section we assume that an (APCS),, defined by (1.9) is an Einstein
manifold.

We remark that manifolds with vanishing Ricci tensor (i.e. Ricci flat
manifolds) are certain special Einstein manifolds. Let us assume that a
(APCS),, satisfies S(X,Y) = 0, then with the help of (1.4) the equation
(1.9) can be written as

(3.1)  (VxR)(Y,Z)W = [A(X) + B(X)|R(Y, Z)W + A(Y)R(X, Z)W
+A(Z)R(Y, X)W + AW)R(Y, 2)X
+g(R(Y, Z)W, X)P.

Thus the manifold is a (APS),. Making use of Bianchi’s 2nd identity and
S(X,Y) =0, we get

(3.2) (diwR)(X,Y)Z = (Vx8)(Y, Z) — (VyS)(X, Z) = 0,

where ‘div’ denotes divergence. Now contracting (3.1) over X and using
(3.2) and S(X,Y) = 0 we get

(3.3) A(R(Y,Z)W) + B(R(Y,Z)W) = 0.
Thus we can state the following theorem:

THEOREM 3.1. If a (APCS), satisfies S(X,Y) = 0, then the manifold is
a (APS), and the relation (3.3) holds.

In an Einstein manifold the Ricci tensor satisfies
(3.4) S(X,Y) = ~g(X,Y),
from which it follows that
(3.5) dr(X) =0 and (VxS)(Y,Z)=0.
From (VxS)(Y, Z) = 0 we get by contraction
(3.6) (VxL)(Y) =0,

where L is defined by (1.5). By using (1.4), (3.4), (3.5) and (3.6) we get
from (1.9)
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3.7 (VxR)(Y,Z2)W

— [A(X) + B(X) [R(Y, ZW - (@ ZW)Y — (¥, W)Z)]

_r
n(n — 1)

+ A(Y) [R(X, Z2)W — Z,W)X — g(X, W)Z)]

Y (g(
n(n — 1)
n(n —1)

(9(Z, W)Y = g(¥, W)Z)},X)P.

+A(Z) [R(Y, X)W - (g(X, W)Y — g(Y, W)X)]

+ A(W) [R(Y, Z)X — (9(Z, X)Y — g(Y, X)Z)]

+g<[R(Y, )W — ﬁ

Now we suppose that in an Einstein (APCS),, the vector field @ defined
by (1.10) is a parallel vector field (|22], p.-124; [27], p.-322). Then

(3.8) (VxQ) =0,

for all X € x((APCS),). Applying Ricci identity we get
(3.9) R(X,Y)Q =0.

From (3.9) it follows that

(3.10) 'R(X,Y,Z,Q) =0,

where 'R(X,Y, Z,Q) = g(R(X,Y)Z,Q). In virtue of (3.10) we get by con-
traction

(3.11) S(X,Q)=0.

Now by (3.8) and (3.11) we have

(312)  (VxS)(Y,Q) = VxS(Y,Q) — S(VxY,Q) — S(¥,VxQ) = 0.
From (3.7) we get

(3.13) (VxS)(Z,W)

= A(R(X, )W) = -5 10(2, WA — g(X, W)A(2)).
Putting W = @ in (3.13) and applying (3.9), (3.12) and (1.10) we obtain
n(n —1)

If B(Z)A(X) # B(X)A(Z), we get r = 0 and then from (3.7) we see that
the manifold becomes an (APS),. Thus we have the following theorem:

[B(Z)A(X) — B(X)A(Z)] = 0.
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THEOREM 3.2. If the vector field Q) is a parallel vector field in an Finstein
(APCS),, then (APCS)y,, reduces to a (APS),, provided the vector fields P
and Q) corresponding to the associated 1-forms A and B are not codirectional.

4. Semi-symmetric metric connection
It is well known that the conformal curvature tensor satisfies the condi-
tions

(4.1) CX,Y)Z+CY,Z)X +C(Z,X)Y =0,

(4.2) C(X,Y)Z=-C(Y,X)Z.

But, in general, the Weyl conformal curvature tensor C(X,Y)Z does not
satisfy Bianchi’s 2nd identity

(4.3) (VxC)Y, Z)W + (VyCYZ, X)W 4+ (VzCY X, YW = 0.

In this section we suppose that the condition (4.3) holds in the investigated
A(PCS)p. Now by using (4.1), (4.2) and (4.3) we get from (1.9) that

(4.4) GX)C(Y,Z)W +G(Y)C(Z, X)W + G(2)C(X, Y)W =0,
where G(X) = B(X) — A(X) and p is a vector field defined by

(4.5) 9(X,p) = G(z).
Contracting X in (4.4) we get

(4.6) G(CY,Z)W)=0.

Now putting X = p in (4.4) and using (4.6) we have
(4.7) G(p)C(Y,Z)W =0.

Hence either the manifold is conformally flat or G(p) = 0. But by hypothesis
C #0. So G(p) = 0. Then p is a null vector and from the definition of G we
obtain B = A which implies with the help of (1.9) that the manifold reduces
to a (PCS),. Thus we conclude the following theorem:

THEOREM 4.1. If the Weyl conformal curvature tensor of a (APCS),
satisfies Bianchi’s 2nd identity then the manifold reduces to a (PCS)s,.

A linear connection V on a semi-Riemannian manifold (M, g) is said to
be a semi-symmetric metric connection [34] if the torsion tensor T of the
connection V is given by

T(X,Y) = n(Y)X - n(X)Y,

for all X,Y € x(M) and Vg = 0, where 7 is a 1-form on M. If 7 is a 1-form
on M, then its associated vector field V is related by

9(X, V) :W(X),
for all X € x(M).
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If V and V are the semi-symmetric metric connection and the Levi-Civita
connection respectively on a semi-Riemannian manifold (M, g), then for all
X,Y € x(M) we have

(4.8) VxY —VxY =7(Y)X - g(X,Y)V.

We shall denote the tensors determined with respect to V by a tilde
above. For example R(X,Y)Z, S(X,Y), 7 are the curvature tensor of type
(1,3), the Ricci tensor of type (0,2) and the scalar curvature respectively,
while the conformal curvature tensor C of type (1,3) is

C(X,Y)Z = R(X,Y)Z

~ L5 lo(V, 2)EX — (X, )Y + 5(Y, 2)X - §(X, 2)Y]

+ m[g(Y, Z)X - g(X, 2)Y],

where Lis the symmetric endomorphism corresponding to the Ricci tensor
S, that is, S(X,Y) = g(LX,Y) for all X,Y € x(M). It is known [2| that

(4.9) C(X,Y)Z = C(X,Y)Z.
Applying the operator V to (4.9) and using (1.9) and (4.8), we get
(4.10) (VxO)Y,Z2)W = [A(X) + B(X)|C(Y, Z)W
+ [A(Y) - n(V)|C(X, Z2)W
+[A(Z) - n(Z))C(Y, X)W
+ [AW) - =(W)|C(Y, Z2)X
+g(C(Y, Z2)W, X)(P-V)+n(C(Y,Z)W)X
+g(X,Y)C(V,2)W + ¢(X, 2)C(Y, V)W
+ g(X,W)C(Y, Z)V.
Therefore, if we take 7(X) = G(X) = B(X) — A(X) then (4.10) reduces
with the help of (4.6) and (4.9) to
@1 (TxOWZ)W = [AX) + BX)IC(Y, 2)W
+[2A(Y) - B(Y)|C(X,2)W
+[2 A(Z) B(Z)]C(Y, 14
+[24(W) - BW)IC(Y, 2)
+9(C(Y, Z) X)(2P - Q).
Now if we put 24(X)— B(X) = J(X) and 2B( )—A(X)=K(X)in (4.11)
we get

X
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(4.12) (VxC)Y,Z)W = [J(X) + K(X)|C(Y, Z)W + J(Y)C(X, Z)W
+J(Z)C(Y, X)W + J(W)C(Y, Z)X

+9(C(Y, Z)W, X)P,

where P is a vector field defined by g(X, P) = J(X). Thus the conformal
curvature tensor is almost pseudo conformally symmetric with respect to the
semi-symmetric connection V. This leads to the following theorem:

THEOREM 4.2. A (APCS), can be endowed with a uniquely determined
semi-symmetric metric connection with respect to which the conformal cur-
vature tensor is almost pseudo conformally symmetric.

If, in particular, G(X) = A(X) then (4.12) reduces to
(VxCO)Y, Z)W = 3A(X)C(Y, Z)W.
Hence we can state the following:
COROLLARY 1. A (APCS), can be endowed with a unique determined
semi-symmetric metric connection with respect to which the conformal curva-

ture tensor is recurrent if the associated 1-form w(X) of the semi-symmetric
metric connection is equal to the associated 1-form A(X) of the (APCS),.

5. Existence of an (APCS),

Let (M, g), n > 3 be a semi-Riemannian manifold with the fundamental
metric tensor g. The change of the metric

"
(5.1) 9=y,
where 4 is a certain positive function, does not change the angle between
two vectors at a point and is called conformal deformation of the metric.

If u is a positive constant, then the conformal deformation is said to be
homothetic.

If ¥V and V denote the operator of covariant differentiation with respect
to g and g respectively, we have [33]

(5.2) Vx Y = Vx¥ = w(X)Y +w(Y)X — g(X,Y)U
for any vector fields X, Y, where w is a 1-form defined by
(5.3) w=d logp

and U is a vector field defined by

(5.4) 9(X,U) =w(X).

By conformal deformation (5.1), as is well-known we have

*

(5.5) C(X,Y)Z =C(X,Y)Z,
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where the symbol * denotes the quantities of (M, 5) Differentiating (5.5)
covariantly and making use of the relation (5.2) we get

(5.6) (VxC)Y, Z)W = (VxC)(Y, Z)W — 2w(X)C(Y, Z)W
— Ww(Y)C(X, Z)W + w(Z)C(Y, X)W
+w(W)C(Y, Z)X + g(C(Y, Z)W, X)U]
+w(C(Y, Z)W)X + g(X,Y)C(U, Z)W
+9(X,Z)C(Y, U)W + g(X,W)C(Y, Z)U.
Now we assume that M is a conformally recurrent manifold, then
(5.7) (VxC)Y,Z2)W = E(X)C(Y, Z)W,
where E is a non-zero 1-form. From (5.5), (5.6) and (5.7) we get
(5:8) (VxO)Y, 2)W = [B(X) - 20(X)] C (Y, 2)W
—Ww(Y) C (X, 2)W +w(Z) C (Y, X)W
+w(W) C (Y, 2)X +9(C (Y, Z)W, X)U]
+w(C (Y, 2)W)X + g(X,Y) C (U, Z)W

*

+9(X,Z) C (Y, U)W +g(X, W) C (Y, Z)U.

Contracting Y in (5.8) and after some simple calculations we get

(5.9) w(C (X, Z)W) = 0.
Using (5.9) we get from (5.8)

*

(5.10) (VxC)(Y, Z)W = [E(X) — 20(X)] C (Y, Z)W — [w(Y) C (X, Z)W

+w(Z)C (Y, X)W +w(W)C (Y,2)X

*

+9(C (Y, 2)W, X)U).

Now let us suppose that A (X) = —w(X) and B (X) = E(X) —w(X)
for all X. Then (5.10) reduces to

(
Y, X)W+ A (W) C (Y, 2)X
)

which implies that (M, 5) is a (APCS),. Thus we have the following theo-
rem:
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THEOREM 5.1. A conformal deformation of every conformally recurrent
metric is a (APCS),, metric, provided that n > 3.

If the 1-form of recurrence £ = 0 in (5.7), then (M, g) is conformally
symmetric and (5.10) reduces to

(5.12) (VxO)Y, Z)W = —2w(X) C (Y, Z)W — [w(Y) C (X, Z)W
+w(Z) C (Y, X)W +w(W) C (Y, Z)X
+9(C (Y, Z)W, X)U.

Now if we put D (X) = —w(X) for all X then (5.12) implies that (M, 5) is
a (PCS),. Hence we have the following corollary :

COROLLARY 2. A conformal deformation of every conformally symmetric
metric is a (PCS)y, metric, provided that n > 3.

Now we enquire whether a (APCS),, metric under a conformal deforma-
tion becomes a (APCS),, metric or not.

Let us suppose that (M,g) is a (APCS), manifold. Then from (1.9),
(5.5) and (5.6) we get

(5.13) (VxONY, )W = [A(X) + B(X) - 20(X)] C (Y, Z)W + [A(Y)
~w(Y)] € (X, 2)W + [A(Z) - w(2)| C (Y, X)W
+AW) —w(W)] C (Y, 2)X
+g(C (Y, Z)W, X)(P - U) +w(C (Y, Z)W)X
+9(X,Y) C (U, )W +g(X,2) C (Y, U)W
+9(X,W) C (Y, 2)U.
Contracting Y in (5.13) and after some simple calculations we get
(5.14) w(C (X, Z)W) = 0.
Using (5.14) we get from (5.13)
(5.15)  (VxC)(Y, 2)W = [A(X) + B(X) — 22(X)] C (Y, 2)W
HA(Y) - w(Y)] C (X, D)W
HA(Z) - w(2)) C (Y, X)W
HAW) —w(W)] C (Y, 2)X
+¢(C (Y, Z)W, X)(P - U).
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Let us suppose that F (X)=A(X)-w(X) and (*: (X) = B(X)—w(X) for all
X and P is a vector field defined by g(X, 13) =F (X). Then P=P—U and

from (5.15) we see that (M, 5) is a (APCS),. Hence the following theorem
holds.

THEOREM 5.2. A conformal deformation of every (APCS),, metric is a
(APCS),, metric, provided that n > 3.

Next if we put A(X) = w(X) for all X in (5.15) we immediately see

that (M, 5) becomes a conformally recurrent manifold. So we can state the
following corollary:

COROLLARY 3. A conformal deformation of every (APCS), metric is a
conformally recurrent metric, provided that n > 3 and A(X) = w(X) for
all X.

6. Example of an (APCS),

In this section we want to construct an example of an almost pseudo
conformally symmetric manifold.

On coordinate space R” (with coordinates z!, 2?2, ..., z"™) we define a Rie-
mannian space V,,. We calculate the components of the curvature tensor, the
Ricci tensor, the conformal curvature tensor and of its covariant derivatives
and then we verify the relation (1.9).

Let each Latin index runs over 1,2,...,n and each Greek index over
2,3,...,(n —1). We define a Riemannian metric on the R®(n > 4) by the
formula

(6.1) ds® = ¢(dz')? + Kopdz®daP + 2da'da™,

where [K,g| is a symmetric and non-singular matrix consisting of constant
and ¢ is a function of z!,z2,...,z" ! and independent of ™. In the met-
ric considered, the only non-vanishing components of Christoffel symbols,
curvature tensor and Ricci tensor are [26]

2

1 1 1
]‘_‘fl = _5Kaﬁ¢.a7 F?l = §¢.17 ’T’a = §¢.aa
(6.2) 1 1
Riap1 = 5008 B =K ¢ap,

where .’ denotes the partial differentiation with respect to the coordinates
and K°P are the elements of the matrix inverse to [K,g]|.
Here we consider K, as Kronecker symbol é,3 and

¢ = (Maﬁ + 5ag)ma33ﬁe(zl)2,



On almost pseudo conformally symmetric manifolds 883

where M,z are constant and satisfy the relations

Myp =0, for a # 8,
# 0, for a = g3,

n—1
(6.3) > Moo =0.
a=2

This is to be noted that such type of metric with different form of ¢ was
considered by Grycak and Hotlo$ [21]. Now according to our consideration
we have the following relations:

Pap = Z(Maﬁ+5aﬂ)e(xl)2a
n—1
0ap0®? =n—2 and 6*°Mus =) Maa =0.

a=2

Therefore,
59 ap = 2(0°° Map + 6P 56g)el™)" = 2(n — 2)e=)".

Since ¢ op vanishes for a # 3, the only non-zero components for Rp;jx and
R;; in virtue of (6.2) are

1
Rlaal = §¢.aa = (1 + Maa)e(zl)2
and
Ry = %‘i’,aﬂ‘saﬁ = (n—2)e@)’,

By Lemma 1 of [21] we can easily verify that this space is a semisymmetric
space, i.e., Rpijkim = Rpijkm where ¢ denotes covariant differentiation
with respect to the metric tensor g;;, holds for this space.

We recall that a pseudo-Riemannian manifold [semi-Riemannian mani-
fold] (M, g) is said to be Ricci-simple if

rank(S) <1

on M, where S is the Ricci tensor of the manifold. Note that Ricci-simple
manifolds are special quasi-Einstein manifolds. Since the manifolds deter-
mined in this section are non-Ricci flat Ricci-simple manifolds, they are
non-Einstein.

Again from (6.1) we obtain g,; = g;» = 0 for ¢ # 1 which implies g'! = 0.
Hence R = g¥ R;; = g''Ry; = 0. Therefore, V,, will be a space whose scalar
curvature is zero. Hence the only non-zero components of the conformal
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curvature tensor Cp;jy, are

1

(6-4) Claal = Rlaal - m(gaaRn)

=(1+ M(m)e(ﬂvl)2 - ﬁ(n - 2)e(zl)2 = Mype@)’

which never vanish. Now the only non-zero components of C;j m are

(6.5) Claa1 = 206  Myee®)” = 221 Cloa # 0.

Hence V,, is neither conformally flat nor conformally symmetric {7]. We shall
now show that V;, is a (APCS),. Let us consider the associated 1-form as
follows:

(6.6) Ai(w):{x , for i=1

1)2

0, otherwise,
—z!, for i=1
6.7 B;(x) = ’
(6.7) i(2) {O, otherwise,

at any point x € V.
To verify the relation (1.9) it is sufficient to prove the followings:

(68) Claal,l = (3A1 + Bl)Claaly
(6.9) Clial,a = A1Ca101 + A1C1001;
(6.10) Cioil,a = A1C1001 + A1C101a;s

as for the case other than (6.8), (6.9) and (6.10) the components of each
term of (1.9) vanish identically and the relation (1.9) holds trivially. Now
from (6.4), (6.5), (6.6) and (6.7) we get the following relation for the right
hand side (r.h.s.) and the left hand side (1.h.s.) of (6.8)
r.h.s. of (6.8) = (3A1 + Bl)Claal = (3:171 — $1)Claa1
= 2(171010,&1 = Claal,l = [.h.s. Of (6.8).

Now

T.h/.s- Of (6.9) = :El(Ca]_a]_ + C]_aa]_)
= 0 (by skew-symmetric properties of Ch;;p)
= l.h.s. of (6.9).

By similar argument as in (6.9) it can be shown that the relation (6.10) is
also true.

It is to be noted that (1.9) can be satisfied by a number of 1-forms A,
B, namely, by those which fulfil (6.8), (6.9), (6.10). Thus we can state the
following:
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THEOREM 6.1. Let Vo(n > 4) be a Riemannian space with the metric of
the form

ds® = ¢(da')? + bopdzdaP + 2dxtdz™,
¢ = (Map + 6ag)m"mﬁe(”"l)2,

where Myg are constant defined by (6.3), then V,, is an almost pseudo con-
formally symmetric space with zero scalar curvature which is neither confor-
mally flat nor conformally symmetric.
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