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CONTACT HORIZONTALLY CONFORMAL SUBMERSIONS 

Abstract. Using the notion of horizontally conformai submersion, we generalize the 
contact metric submersions and obtain classification theorems for this submersion when 
the total manifold has some special almost contact structures. 

1. Introduction 
Let ( M , g M ) and ( B , g B ) be Riemannian manifolds and F : M —> B be 

a smooth submersion. Then F is called a Riemannian submersion if 

gM(X,Y)=gB(F*X,F*Y) 

for every X, Y G T((A;erF*)-L), where * is symbol for the tangent map. The 
theory of Riemannian submersions was initiated by O'Neill in [12] and it 
has been used widely in differential geometry to investigate the geometry of 
manifolds. In [7] (see also, [5], [6] and [8]), Chinea introduced almost contact 
metric submersion between two almost contact manifolds with compatible 
metrics as a Riemannian submersion which is in addition an almost contact 
map. Then he showed that various properties of the total space are pre-
served. For Riemannian submersions between various manifolds, see: [5], [9] 
and [14]. 

On the other hand, as a generalization of Riemannian submersions, hor-
izontally conformai submersions are defined as follows [1]: suppose that 
(M,gM) and ( B , g B ) are Riemannian manifolds and F : M —> B is a 
smooth submersion, then F is called a horizontally conformai submersion, if 
there is a positive function A such that 

(1-1) \2gM(X,Y)=gB(F*X,F*Y) 
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for every X, Y G r((kerF*)-1) , where gM and gB are the Riemannian metrics 
of M and B, respectively. It is obvious that every Riemannian submersion 
is a particular horizontally conformai submersion with A = 1. We note that 
horizontally conformai submersions are special horizontally conformai maps 
which were introduced independently by Fuglede [10] and Ishihara [11]. We 
also note that a horizontally conformai submersion F : M —> B is said to 
be horizontally homothetic if the gradient of its dilation A is vertical, i.e., 

(1.2) H(gradX) = 0 

at p G M, where H is the projection on the horizontal space ( k e r . A 
vector field X on M is said to be projectable if there exists a vector field X' 
on B such that F*Xp = for all p G M. In this case X' and X are 
called F— related. As it is well known, the vector field X is called a basic 
vector field. 

In this paper, we consider horizontally conformai submersion between 
almost contact metric manifolds and show that vertical kerF* and horizontal 
(kerF*)1- spaces of a contact horizontally conformai submersion are invariant 
with respect to the almost contact structure of the total manifold M. Also 
we obtain that if M is a normal almost contact metric manifold and B 
is an almost metric manifold, then B is also normal if and only if F is a 
special horizontally homothetic map. Moreover, we investigate the contact 
character of the base manifold when the total manifold is almost Sasakian, 
cosymplectic or Kenmotsu. 

We have seen from above results that the geometry of contact horizontally 
conformai submersions is quite different from the geometry of almost contact 
metric submersions. For example, if M is a Sasakian manifold and B is an 
almost contact metric manifold, then the almost contact metric submersion 
F : M —> B implies that B is also a Sasakian manifold. But in the 
contact horizontally conformai situation, this is not true even for additional 
condition. 

2. Preliminaries 

In this section, we give brief information for almost contact manifolds. 
Our main reference is Blair's book [2], We also mention the second funda-
mental form of a map only as much as we need to carry out our work on 
contact horizontally conformai submersions. 

An odd dimensional Riemannian manifold (M, g) is called almost contact 
metric manifold if there is a (1,1) tensor field <j>, a vector field called the 
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characteristic vector field and its 1-form 77 such that 
(2.1) 4>2{X) = - X + r]{X)i 
(2.2) r/(0 = 1 
(2.3) 9(<f>X,<t>Y) = g(X,Y) - r,(X)V(Y) 

for X,Y € T(TM). It follows that = 0 and 77 o <j) = 0. An almost 
contact metric manifold M is said to have a normal contact structure if 
N(f)+ d-q®^ = 0, where N^ is the Nijenhuis tensor field of (p and it is defined 
by 
(2.4) Nt(X, Y) = [<j>X, <f>Y] - [X, y ] - </>[X, <f>Y] - ^ X , Y] 

for X,Y £ T(TM). The Sasakian form of an almost contact metric manifold 
is given by Y) = g(X,(f>Y). An almost contact metric manifold M 
is called almost cosymplectic if <¿77 = 0 and d<& = 0. A normal almost 
cosymplectic manifold is called cosymplectic. Let M be an almost contact 
metric manifold, if $ = drj, then M is called a contact metric manifold. A 
normal contact metric manifold is called a Sasakian manifold. Equivalently 
an almost contact metric manifold is a Sasakian manifold if and only if 

(2.5) (Vx<l>)Y = g(X,Y)S- rj(Y)X. 

Moreover, a c—Sasakian manifold [9], c € R, is an almost contact metric 
manifold which is normal and satisfies drj = c$. An almost contact metric 
manifold is c— Sasakian if and only if the following formula holds 
(2.6) (Vx0)Y = c{g(X, Y)£ - v(Y)X}. 

Besides Sasakian manifolds, another well known almost contact metric man-
ifolds are Kenmotsu manifolds and they are characterized by the following 
tensor equation 
(2.7) (Vx</»)F = g(<f>X, Y)£ - t](Y)4>X. 

As a generalization of Sasakian and Kenmotsu manifolds, an almost contact 
metric manifold M is called trans-Sasakian manifold of type (a, (3) ([3], [13]) 
if and only if 
(2.8) ( ' V x c f i ) Y = a{g(X, - n{Y)X} + ¡3{g(<t>X, Y)£ - v(Y)<pX}-

From (2.8), it is easy to see that a trans-Sasakian manifold is Sasakian, c— 
Sasakian or Kenmotsu according as (3 = 0, a = 1; or (j = 0, a = c; or a = 0, 
(3 = 1, respectively. 

Finally, we recall the second fundamental form of a map [1]. Let (M,gM) 
and (B,gB) be Riemannian manifolds and suppose that F : M •—> B is 
a smooth mapping between them. Then the differential F* of F can be 
viewed a section of the bundle Hom(TM, F~lTB) —> M, where F~lTB 
is the pullback bundle which has fibres ( F ~ l T B ) p = Tp^B,p € M. 
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Hom(TM,F~lTB) has a connection V induced from the Levi-Civita con-
nection V M and the pullback connection. Then the second fundamental 
form of F is given by 

(2.9) (VF*)(X, Y) = VF
xF*Y - F ^ x Y ) 

for X, Y € T(TM), where V F is the pullback connection along F. It is 
known that the second fundamental form is symmetric. 

3. Contact horizontally conformai submersions 
In this section, we consider contact horizontally conformai submersion 

between almost contact metric manifolds and check the contact structure of 
the base manifold when the total manifold has a special contact structure. 
First recall that a submersion F ( or a map) between almost contact mani-
folds (M,<£m,£m,T7m) and (B,<F>B,£B,r)B) is called the {4>M,(PB)~ holomor-
phic if 

(3.1) F*o<t>M=4>BoF*. 
It is easy to see [4] that belongs to horizontal distribution (kerF*)1- when 
F is a submersion. 

D E F I N I T I O N 1. Let M 2 m + 1 and B2n+1 be manifolds carrying the al-
most contact metric structures (<PM,£M,r]M,gM) and (<j>B,£B,TiB,gB), re-
spectively. A (4>m, 4>B)~ holomorphic horizontally conformai submersion 
F : M 2 m + 1 —> B2n+1 is called contact horizontally conformai submersion 
if the following is satisfied: 

(3-2) 

It is clear that every contact submersion is a special contact horizontally 
conformai submersion with A = 1. 

R E M A R K 1 . We note that contact horizontally conformai submersions were 
already studied in [4] by Burel under the name of semi-conformal (4>M,<j>B) — 
holomorphic submersion. He investigates the harmonicity of this map in 
that paper. Our objective is to obtain classification theorems when the total 
space has some geometric structures. For the notations, we follow [1] and [9]. 

Let kerF*p be the kernel space of F* and denote its orthogonal comple-
mentary space in TpM by (kerF*)1- at p G M. Then one can observe that 
vertical distribution kerF» is <pM — invariant, see [4], Then invariant kerF* 
implies that gM(ct>MX,V) = -gM{X,<j>MV) = 0 for X G T^kerF^) and 
V G T(kerF^). This shows that (kerF*)1- is also invariant and any fibre of 
the contact horizontally conformai submersion is an invariant submanifold. 
Thus, we have the following result. 
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P R O P O S I T I O N 3 . 1 . Let F be a contact horizontally conformal submersion 
between almost contact metric manifolds. Then the distribution kerF* and 
(kerF»)-*- are invariant with respect to the almost contact structure of the 
total manifold and the fibres of F are invariant submanifolds. 

For any submersion F : M —> B between Riemannian manifolds, the 
restriction of the differential F*p to the horizontal space (kerF^p)1- maps 
that space isomorphically on to T F ^ B . Denote its inverse by", then for any 
vector Z £ is called the horizontal lift of Z. If Z is a vector field 
on an open subset V of B, then the horizontal lift of Z is horizontal vector 
field Z on F " 1 ^ ) such that F*(Z) = Z o F, [1], 

We denote the space (kerF*)1' — span{£M} by T>. Then, we say that a 
contact horizontally conformal submersion is V— homothetic if X(A) = 0 
for every X € r(P) . Now, we can state and prove our first classification 
theorem for contact horizontally conformal submersions. 

T H E O R E M 3 . 1 . Let {M,4>M,£M,r]M,gM) be a normal almost contact metric 
manifold and (B, <pB,£,B,i]B) be an almost contact metric manifold. Suppose 
that F : M —> B is a contact horizontally conformal submersion. Then B 
is normal if and only if F is T>— homothetic. 

Proof. Let X and Y be vector fields on an open subset of B, and X,Y 
their horizontal lifts to M. First, using (3.1) and F*[X,Y] = [F*X, F*Y], it 
is easy to see that F*Ntj>M(X,Y) = Nlj)B(F*X,F*Y) for basic vector fields 
X,Y € r(TM). Now, for X,Y € T((kerFlt)±), we have 

(3-3) gM(X,Y) = ±gB(F.X,F,Y). 

Using (3.3), we derive 

2 drjM(X,Y) = X 

Thus we get 

2dVM(X,Y) = x(jp)gB(F.Y,F*ÇM) + ±XgB(F.Y,F.Çu) 

-Y(jp)gB{F.X,F.ÇM) - ±YgB(F*X,F*U 

~gB([F.X,F*Y],F.ÇM). 
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Hence, we have 

2drÌM(X,Y) = )gB(F*Y,F^M) + ±XgB(F*Y, F^J 

+lY(\)gB(F*X,F^M) - ±YgB(F*X,F*SJ 

Since F is horizontally conformai, using (1.1) in the above equation, we 
arrive at 

2 dVu(X,Y) = -^lgM(Y^M) + ±XgB(F*Y,F*£M) 

~gB{[F*X,F.Y],F.ZM)-

Hence we derive 

2 dVM(X,Y) = -2-^gM{Y^M) + ^XgB{YoF,KBoF) 

' 2Y{X)gM(X,(M)-^YgB(XoF,\^oF) 
A A2 

~gB{[F+X,F+Y],F*ZM). 

Then using (3.2), we obtain 

2 dVu(X,Y) = -™^lgM(Y,ZM) + ^X(\)gB(F*Y,£B) + jXgB(F*Y,SB) 

+ 2~-9M(X,HM) - ^Y(\)gB(F*X,ZB) - j?gB(F*X,(B) 

-±gB([F*X,F.Y],F.£M). 

Thus from (1.1) and (3.2)we derive 

2 dr,M(X,Y) = + + ±XgB(F*Y,ZB) 

- - \YgB(F.X,tB) 

-\gB([F.X,FmntB)-
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Hence, we have 

(3 .4 ) 2 dr,M(X,Y) = -X(lnX)r,M(Y) + Y(ln\)r,M(X) 

+jdVB(F*X,F*Y). 

On the other hand, since M is normal, we have 

F*(N<PM(X,Y) + drlM(X,Y)ZM) = 0. 

Hence, we derive 

N^B(F*X,F*Y) + dVM(X,Y)F^M) = 0 . 

Then (3.4) implies that 

( 3 . 5 ) N.^ (F*X, F*Y) + |-L{X(lnX)VM (Y) - Y(lnX)rjM (X) j 

+ jdVB(F.X,F.Y)} AG=0. 

Now, if B is also normal, then we have 

{-X(X)Vm(Y) + Y(X)Vm(X)}^B=0. 

Since B is an almost contact metric manifold, we have £B ^ 0. Then, 
for X = and Y G r(X>), above equation gives Y(A) = 0, which shows 
that F is V— homothetic. Conversely, suppose that F is T>— homothetic, 
then for X,Y G T(V) we have N,pB(F*X, F*Y) + di]B{F*X, F*Y)£B = 0. 
For X € r(Z>) and Y = from (3.5) we also have 7V^B(F*X,£B) + 
dr]B(F*X,£B)£B = 0. Thus proof is complete. 

In a similar way, we have the following theorem: 

T H E O R E M 3 . 2 . Let (M,(f)M,£M,r]M,gM) be a Sasakian manifold and 
(B,4>b,^b,TJB) be an almost contact metric manifold. Suppose that F : 
M — > B is a contact horizontally conformal submersion. Then B is j — 
Sasakian manifold if and only if F is T>— homothetic. 

Proof. Let <J>M be the Sasakian form of M. First, since (fcerF*)x is 
invariant, we have $M(X,Y) = gM(X,<pMY) = ^¡gB(F*X, F^MY) for 
X,Y G T((kerF*)x). Using (3.1), we get 

(3-6) = 

where is the Sasakian form of B. On the other hand, Sasakian M implies 
that &M(X, Y) = dr]M (X, Y) for every X, Y € T(TM). Using (3.4) and (3.6) 
in the above equation, we get 

( 3 . 7 ) 4>B(F.X,F,Y) = ^{—X(X)r]M{Y)-\-Y(X)r)M(X)+2dr]B(F*X,F*Y)}. 
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Prom Theorem 3.1, we know that B is normal if and only if F is V— homo-
thetic. Thus it is enough to show that $ B = A d'qB for manifold B. Since F 

is V— homothetic, for X,Y £ T(£>), from (3.7), we get 

(.F*X, F,Y) = A dr]B (F.X, F*Y). 

For X G T ( V ) and Y = J£,m, we also have 

*B(F,X,ZB) = \dr,B(F.X,ZB) 

which shows that B is j— Sasakian. 
When the total manifold of a contact horizontally conformai submersion 

is almost cosymplectic, we have the following strong result. 

THEOREM 3.3. Let (M, <pM, , t]m, gM) be an almost cosymplectic mani-

fold, (B,(j>B,£B,r]B) be an almost contact metric manifold and F : M —> B 

be a contact horizontally conformai submersion. Then B is also almost 

cosymplectic if and only if F is horizontally homothetic submersion. 

Proof. First, recall that we have 

3d$M (X, Y, Z) = X$M (Y, Z) + Y$M (Z,X) + Z$M (X, Y) 

-*M([X,nZ)-*M(\Y,Z\,X)-*M([Z,X],Y) 

for X,Y,ZG R(TM). Since F is contact horizontally conformai submersion, 
from (3.1) and (1.1), we get 

3 d*M{X,Y,Z) = X 
A5 

9b(F*Y, <j>BF*Z) 
1 

±gB(F,X,</>BF.Y) 

Y[^gB(F*Z,<j>BF*X)] 

- ^{gB{[F*X,F*Y],F*Z) 

+gB([F*Y, F*Z\,F*X) + gB ([F*Z, F.X],F*Y)}, 

where X, Y and Z are basic vector fields. Hence we have 

3d$M(X,Y,Z) = - AX(\)gB(F*Y,<f>BF*Z) + ^XgB(F*Y, <t>BF*Z) 

-^Y(\)gB{F*Z,<t>BF*X) + ±YgB(F,Z,<l>BF*X) 

Z(\)gB(F*X,<j>BF*Y) + ±ZgB(F,X,<l>BFmY) 

-±{gB ([F*X, F*Y], F*Z) + gB([F.Y, F*Z\,F*X) 

+gB([F*Z,F*X},F*Y)}. 

Then, using (1.1), (3.1) and the formula of the exterrior derivative, we ar-
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rive at 

(3 .8 ) 3 d $ M ( X , Y , Z ) = -2X(lnX)gM(Y,<f>MZ) - 2Y(lnX)gM(Z,<f>MX) 

—2Z(lnX)gM(X, <t>MY) + ^d<!>B(F*X,F*Y,F*Z). 

Since M is almost cosymplectic, from (3.4) and (3.8), we derive 

(3 .9 ) ^d<S>B(F*X,F*Y,F*Z) = 2X{lnX)gM{Y,<t>MZ) 

+2Y(lnX)gM(Z,<f>MX) 

+2Z{lnX)gM(X^MY) 

and 

(3.10) ldr,B(F*X,F*Y) = X(lnX)r,M(Y) - Y(lnX)r,M(X). 

Now, suppose that B is almost cosymplectic, then from (3.9), for X = 
(f>MZ G T{F>), w e g e t 

(j>MZ(lnX)gM(Y,<t>MZ) - Y(lnX)gM(Z,Z) + Z{lnX)gM{<t>MZ,<f>MY) = 0. 

Thus, for Y — £M, we obtain 

(3.11) ZM(lnX)gM(Z,Z) = 0. 

In similar way, from (3.10), for X G r(X>) and Y = we have 

(3.12) X{lnX) = 0. 

Since (kerF*)1- = T> © span{£M } and gM is a Riemannian metric, we have 
T(lnX) = 0 for T G T((fcerF*)x), which proves that F is horizontally homo-
thetic. The converse is clear from (3.9) and (3.10). 

Finally, we investigate contact character of the base manifold of a contact 
horizontally conformai submersion when the total manifold is Kenmotsu 
manifold. 

T H E O R E M 3 . 4 . Let F : M — • B be a contact horizontally conformai 
submersion from a Kenmotsu manifold (M, <f>M, £M, r]M, gM ) to an almost 
contact metric manifold, ( B , 4 > B , £ B , T]B) such that dim(B) ^ 2. Then the 
following statements are equivalent: 

(a ) B is a trans-Sasakian manifold of type (0 , j ) . 

(b) For every X,Y G T((kerF^), (VF,)(X, <f>MY) = <f>B(VF*)(X, Y ) . 
(c) F is horizontally homothetic. 

Proof. Since M is Kenmotsu, from (2.7), (3.1), (3.3) and (3.2) we have 

V x K Y ~ <t>uVM
xY = ~gB{4>BF^F,Y)iM - jVb(F*Y)4>mX 



866 B. Sahin 

for X , Y 6 r((A;eri?*)-L). Hence, using again (3.2) and (3.1), we get 

F * { V x < j > M Y ) - F ^ m V M
x Y ) = j { g B ( c f > B F * X , F * Y ) Z B - ^ ( F + Y W ^ X } . 

Considering (2.9) and (3.1) we write 

-(VF*)(X, 4>MY) + Vx<t>BF*Y - 4>BF*VM
xY = j { g B ( c f > B F * X , F * Y ) £ B 

- r } B ( F * Y ) 4 > B F * X } . 

Hence, we get 

- ( V F * ) ( X , < t > M Y ) + + 4 > b ( V F , ) { X , Y ) - < j > B V x F * Y 

= ± { 9 B { < l > B F * X , F j r ) ( l B - r i B { F * Y ) < t > B F * X } . 

Thus, we obtain 

(3.13) ( V x < t > B ) F * Y = ( V F * ) ( X , < f > M Y ) - </>B(VF*)(X, F) 

+ \ { g B ( < l > B F . X , F * Y ) Z B - r i B ( F * Y ) < t > B F . X } . 

Then (3.13) proves (a)4=> (b). Now suppose that (b) holds. First, recall from 
([1], Lemma 4.5.1, page: 119), we have 

(3.14) ( V F * ) ( X , Y ) = X ( l n A ) F , ( y ) + y ( l n A ) M - 5 ( X , y ) F , ( 5 r a d l n A ) 

for X , Y G r^fcerF*)-1). Substituting (3.14) in (b), we get 

(3.15) < j > M Y ( l n \ ) F * X - g M ( X , < f > M Y ) F * ( g r a d I n X ) = Y ( l n \ ) F * ( < f > M X ) 

~ 9 m ( X I Y ) F i f ( 4 > M g r a d l n \ ) 

for X , Y e T((A;erF»)x). Then for 7 = ^ a n d l G T { T > ) , we derive 

Z M ( l n \ ) < t > B F . X = 0 . 

Applying ( f ) B to this equation and using (2.1), we have 

- Z M ( l n \ ) F > X + r , B ( F . X ) Z M ( l n \ ) Z B = 0 . 

Here, r , B ( F * X ) = g B ( F , X , S B ) = \ g B ( F * X , F ^ J = A g M ( X , £ M ) . Hence, 
we obtain 

(3.16) r , B ( F * X ) = 0 . 

Using (3.16), we arrive at 

Z M ( l n \ ) F * X = 0 . 

Then non-constant F submersion implies that 

(3.17) £M(ZnA) = 0. 
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On t h e o ther hand, interchanging t h e role of X and Y in ( 3 . 1 5 ) , we get 

( 3 . 1 8 ) 4>MX(ln\)F*Y - gM(Y, <t>MX)F*{gradln\) = X{ln\)F*{4>MY) 
-9m(XI Y)F*{<pMgradln\) 

for X,Y e r ( ( f c e r F * ) - L ) . T h e n from ( 3 . 1 5 ) a n d ( 3 . 1 8 ) we have 

( 3 . 1 9 ) 4>MY{ln\)F*X - <j>MX{ln\)F*Y - 2gM{X,4>MY)F*{gradln\) 
= Y(ln\)F*(<t>MX) - X(ln\)F.(<l>MY). 

Taking Y = and X 6 Y(V) in ( 3 . 1 9 ) , using </>M£M = 0 we obtain 

-<t>MX{ln\)F*{£M) =iM{ln\)F^MX). 
Using again ( 3 . 1 7 ) , we arrive at 

-<f>MX{ln\)F^M) = Q. 
T h e n ( 3 . 2 ) implies t h a t 

-<j>MX{\)iB = 0. 
Since T> is invariant with respect t o <f>M and ^ 0, we conclude t h a t 

( 3 . 2 0 ) Z(\) = 0 

for any Z € T(V). T h e n from ( 3 . 1 7 ) and ( 3 . 2 0 ) , we obtain F ( A ) = 0 for Y € 
T((kerF*)-*-), which shows t h a t F is horizontally homothet ic . Conversely, if 
F is horizontally homothet ic , from ( 3 . 1 4 ) and (3 .1 ) , one can obtain t h a t (b) 
holds. T h u s we have shown t h a t (b)<=i> (c ) . T h i s completes t h e proof. • 
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