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CONTACT HORIZONTALLY CONFORMAL SUBMERSIONS

Abstract. Using the notion of horizontally conformal submersion, we generalize the
contact metric submersions and obtain classification theorems for this submersion when
the total manifold has some special almost contact structures.

1. Introduction

Let (M,g,,) and (B, g,) be Riemannian manifolds and F': M — B be
a smooth submersion. Then F' is called a Riemannian submersion if

gM(X,Y) :gB(F*X’F*Y)

for every X,Y € ['((kerF,)'), where * is symbol for the tangent map. The
theory of Riemannian submersions was initiated by O’Neill in [12] and it
has been used widely in differential geometry to investigate the geometry of
manifolds. In {7] (see also, [5], [6] and [8]), Chinea introduced almost contact
metric submersion between two almost contact manifolds with compatible
metrics as a Riemannian submersion which is in addition an almost contact
map. Then he showed that various properties of the total space are pre-
served. For Riemannian submersions between various manifolds, see: [5], [9]
and [14].

On the other hand, as a generalization of Riemannian submersions, hor-
izontally conformal submersions are defined as follows [1]: suppose that
(M,g,,) and (B,g,) are Riemannian manifolds and F : M — B is a
smooth submersion, then F is called a horizontally conformal submersion, if
there is a positive function A such that

(1.1) )‘29M(X7Y) :gB(F*X’F*Y)
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for every X,Y € I'((kerF,)*), where g,, and g, are the Riemannian metrics
of M and B, respectively. It is obvious that every Riemannian submersion
is a particular horizontally conformal submersion with A = 1. We note that
horizontally conformal submersions are special horizontally conformal maps
which were introduced independently by Fuglede [10] and Ishihara [11]. We
also note that a horizontally conformal submersion F': M — B is said to
be horizontally homothetic if the gradient of its dilation A is vertical, i.e.,

(1.2) H(grad)) =0

at p € M, where H is the projection on the horizontal space (kerF*p)L. A
vector field X on M is said to be projectable if there exists a vector field X’
on B such that Fy X, = X'p(y), for all p € M. In this case X’ and X are
called F'— related. As it is well known, the vector field X is called a basic
vector field.

In this paper, we consider horizontally conformal submersion between
almost contact metric manifolds and show that vertical kerF, and horizontal
(kerF,)* spaces of a contact horizontally conformal submersion are invariant
with respect to the almost contact structure of the total manifold M. Also
we obtain that if M is a normal almost contact metric manifold and B
is an almost metric manifold, then B is also normal if and only if F' is a
special horizontally homothetic map. Moreover, we investigate the contact
character of the base manifold when the total manifold is almost Sasakian,
cosymplectic or Kenmotsu.

We have seen from above results that the geometry of contact horizontally
conformal submersions is quite different from the geometry of almost contact
metric submersions. For example, if M is a Sasakian manifold and B is an
almost contact metric manifold, then the almost contact metric submersion
F : M — B implies that B is also a Sasakian manifold. But in the
contact horizontally conformal situation, this is not true even for additional
condition.

2. Preliminaries

In this section, we give brief information for almost contact manifolds.
Our main reference is Blair’s book [2]. We also mention the second funda-
mental form of a map only as much as we need to carry out our work on
contact horizontally conformal submersions.

An odd dimensional Riemannian manifold (M, g) is called almost contact
metric manifold if there is a (1,1) tensor field ¢, a vector field &, called the
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characteristic vector field and its 1-form 7 such that

(2.3) #(X) =~ X +n(X)¢
(2.2) | n(e) =1
(2.3) 9($X,6Y) = g(X,Y) - n(X)n(¥)

for X,Y € I(TM). It follows that ¢ = 0 and no ¢ = 0. An almost
contact metric manifold M is said to have a normal contact structure if
N+ dn®E& = 0, where N, is the Nijenhuis tensor field of ¢ and it is defined
by

for X,Y € T'(T'M). The Sasakian form of an almost contact metric manifold
is given by ®(X,Y) = ¢(X,¢Y). An almost contact metric manifold M
is called almost cosymplectic if dp = 0 and d® = 0. A normal almost
cosymplectic manifold is called cosymplectic. Let M be an almost contact
metric manifold, if & = dn, then M is called a contact metric manifold. A
normal contact metric manifold is called a Sasakian manifold. Equivalently
an almost contact metric manifold is a Sasakian manifold if and only if

(2.5) (Vx9)Y =g(X,Y)€ - n(Y)X.

Moreover, a c—Sasakian manifold [9], ¢ € R, is an almost contact metric
manifold which is normal and satisfies dn = ¢®. An almost contact metric
manifold is ¢c— Sasakian if and only if the following formula holds

(2.6) (Vx@)Y =c{g(X,Y)€ — n(Y)X}.
Besides Sasakian manifolds, another well known almost contact metric man-

ifolds are Kenmotsu manifolds and they are characterized by the following
tensor equation

2.7 (Vx@)Y =g(¢X,Y){ —n(Y)oX.

As a generalization of Sasakian and Kenmotsu manifolds, an almost contact
metric manifold M is called trans-Sasakian manifold of type (a, 3) ([3], [13])
if and only if

(28)  (Vx8)Y =a{g(X,Y)§ — n(Y)X} + B{g(¢X,Y){ — n(Y)pX}.
From (2.8), it is easy to see that a trans-Sasakian manifold is Sasakian, c—
Sasakian or Kenmotsu according as 3 =0, a=1;or =0, a =¢; or a = 0,
8 = 1, respectively.

Finally, we recall the second fundamental form of a map [1]. Let (M, g,,)
and (B,g,) be Riemannian manifolds and suppose that FF : M — B is
a smooth mapping between them. Then the differential F, of F' can be
viewed a section of the bundle Hom(TM, F~1TB) — M, where F~!TB
is the pullback bundle which has fibres (F~TB), = TppB,p € M.
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Hom(TM, F~'TB) has a connection V induced from the Levi-Civita con-
nection VM and the pullback connection. Then the second fundamental
form of F' is given by

(2.9) (VE)(X,Y) = VxF,Y — F,(VyxY)

for X,Y € I'(TM), where V" is the pullback connection along F. It is
known that the second fundamental form is symmetric.

3. Contact horizontally conformal submersions

In this section, we consider contact horizontally conformal submersion
between almost contact metric manifolds and check the contact structure of
the base manifold when the total manifold has a special contact structure.
First recall that a submersion F' ( or a map) between almost contact mani-
folds (M, ¢,,,€,,, M) and (B, ¢, &, m5) is called the (¢, ¢5)— holomor-
phic if
(3.1) Fio¢, = ¢, 0 F.

It is easy to see [4] that £,, belongs to horizontal distribution (kerF,)* when
F is a submersion.

DEFINITION 1. Let M?™*! and B?"*! be manifolds carrying the al-
most contact metric structures (¢,,,€,,,M>95) a0d (05,€5,75,95), T€-
spectively. A (¢ar, #5)— holomorphic horizontally conformal submersion
F: M?+1 _, B2+l is called contact horizontally conformal submersion
if the following is satisfied:

(3.2) Flyy = A&p-

It is clear that every contact submersion is a special contact horizontally
conformal submersion with A = 1.

REMARK 1. We note that contact horizontally conformal submersions were
already studied in [4] by Burel under the name of semi-conformal (¢,,,¢,)—
holomorphic submersion. He investigates the harmonicity of this map in
that paper. Our objective is to obtain classification theorems when the total
space has some geometric structures. For the notations, we follow [1] and {9].

Let kerF,, be the kernel space of Fi and denote its orthogonal comple-
mentary space in T,M by (kerF*)IJ; at p € M. Then one can observe that
vertical distribution kerF, is ¢,,— invariant, see [4]. Then invariant kerF,
implies that g,,(¢,,X,V) = —g,,(X,6,,V) = 0 for X € I'((kerF,)!) and
V € I'(kerF,). This shows that (kerF,)" is also invariant and any fibre of
the contact horizontally conformal submersion is an invariant submanifold.
Thus, we have the following result.
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PROPOSITION 3.1. Let F be a contact horizontally conformal submersion
between almost contact metric manifolds. Then the distribution kerF, and
(kerF.)* are invariant with respect to the almost contact structure of the
total manifold and the fibres of F' are invariant submanifolds.

For any submersion F' : M — B between Riemannian manifolds, the
restriction of the differential Fi, to the horizontal space (kerFi,)" maps
that space isomorphically on to T, B. Denote its inverse by, then for any

vector Z € (kerF,,)" is called the horizontal lift of Z. If Z is a vector field
on an open subset V of B, then the horizontal lift of Z is horizontal vector
field Z on F~Y(V) such that F.(Z) = Z o F, [1].

We denote the space (kerF,)* — span{¢ o} by D. Then, we say that a
contact horizontally conformal submersion is D— homothetic if X(\) = 0

for every X € I'(D). Now, we can state and prove our first classification
theorem for contact horizontally conformal submersions.

THEOREM 3.1. Let (M, ¢,,,€,,,M4> 9, ) be a normal almost contact metric
manifold and (B, ¢5,€5,m5) be an almost contact metric manifold. Suppose
that FF : M — B 1is a contact horizontally conformal submersion. Then B
is normal if and only if F is D— homothetic.

Proof. Let X and Y be vector fields on an open subset of B, and X,Y
their horizontal lifts to M. First, using (3.1) and F,[X,Y] = [F.X, F.Y], it
is easy to see that F\Ny,, (X,Y) = Ny, (F.X,F.Y) for basic vector fields
X,Y € [(TM). Now, for X,Y € I'((kerF,)1), we have

1
(33) gM(va) = ﬁgB(F*X7 F*Y)

Using (3.3), we derive

1 1
2d77M(X, Y)=X [')\—293 (F.Y, F*é-M)} -Y l:pr (FiX, F*gM)

1

—3295 (X, F.Y], Fg,,).

Thus we get

1

1
2dn,, (X,Y) =X (Xf) 95 (FY, Fu6,,) + —

3 Xg, (R, F.&,,)

1 l 5
—Y(ﬁ)gB(F*Xa Fi&,,) — :\EYgB(F*X’ F*§M)

1
~ 5295 (F.X, EY], R,
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Hence, we have
1
a2
1
A2

2 _
2dn,,(X,Y) = —EX(/\)gB(F*Y, F.&,) + = Xg5(BY,FE,,)

2
+ﬁy(/\)gs (F*X7 F*gM) -

1
—339s ([(BX, EY], R.€,,).

Y'gB (F X, F.E,,)

Since F' is horizontally conformal, using (1.1) in the above equation, we
arrive at

2X (A 1

Zan(Xa Y) = —%QM(}C fM) + p

2Y (A 1

+—(—29M(X’§M) BBV

)
([F.X, Y], F.£,,).

Xg,(F.Y,FE,,)

Yg,(F X, F&,,)

1

Hence we derive

2X (X
2dn, (X,Y) = —%QM(Y’ a) + 22

2Y (A 1 —
+%9M(X,£M) — —):-Z—YgB(X o F, ¢, o F)
1

—FgB([F*X, FY], F&,,).

1 _
—=Xg,(YoF,X{, o F)

Then using (3.2), we obtain

2u, (X,¥) =~ g (V,6,) 4 XNy (RY,6,) + Ko (RY,6,)
P (X, 60) — Y W9, (RX,6,) — V0, (RX )
50, (F.X, BY] R,
Thus from (1.1) and (3.2)we derive
2un, (%,) = g (v6,) + X (v, + 1 Xg, (RY:6,)
N (60 - T, (x,6,) - (Faa(RX )

—'}YQB([F*X’ F*Y]vgs)'
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Hence, we have
(3.4) 2dn,, (X, Y) = =X (In\)n,, (¥) + Y (In))m, (X)

2
+5dny (FX,F.Y).

On the other hand, since M is normal, we have

F*(N¢M (X,Y)+ d”?M(X’Y)fM) =

Hence, we derive
Nyp (B X, FY) +dn,, (X, Y)F.(&,) =0
Then (3.4) implies that

(35 Nap(EXEY)+ { =5 {X @0, (V) = ¥ (0, ()

1
+ anB(F*X, F.Y)IX, =0
Now, if B is also normal, then we have
{=X My (Y) + Y (M)n, (X)}€, = 0.

Since B is an almost contact metric mamfold7 we have £, # 0. Then,
for X =¢,, and Y € T'(D D), above equation gives Y (\) = 0, which shows
that F' is D— homothetic. Conversely, suppose that F is D— homothetic,
then for X,Y € T(D) we have Ny, (F.X,F.Y) + dn,(F.X, F.Y)¢, = 0.
For X € (D) and Y = }¢,,, from (3.5) we also have Ny, (F.X,£,) +
dng (FiX,&5)€z = 0. Thus proof is complete.

In a similar way, we have the following theorem:

THEOREM 3.2. Let (M,d,,,€,,, My, 9y) be a Sasakian manifold and
(B,dg,&5,1;) be an almost contact metric manifold. Suppose that F :
M — B is a contact horizontally conformal submersion. Then B is %—

Sasakian manifold if and only if F is D— homothetic.

Proof. Let ®, be the Sasakian form of M. First, since (kerF.)*
invariant, we have ®y(X,Y) = ¢,,(X,¢,,Y) = :\lggB (Fu X, FuppY) for
X,Y € T'((kerF,)*). Using (3.1), we get

1

/\2@ (F.X,F.Y),

where @, is the Sasakian form of B. On the other hand, Sasakian M implies
that ®,,(X,Y) =dn,, (X,Y) for every X, Y € I'(T'M). Using (3.4) and (3.6)
in the above equation, we get

(3.6) o, (X,Y)=

(87) @, (FX, F.Y) = 5 (=X (N (Y)+Y (N, (X) 424, (F.X, EY)}.
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From Theorem 3.1, we know that B is normal if and only if F is D— homo-
thetic. Thus it is enough to show that ®, = Adn, for manifold B. Since F
is D— homothetic, for X,Y € I'(D), from (3.7), we get

&, (F.X,FY) = Adn, (F.X,F.Y).
For X e (D) and Y = +€,,, we also have
Q,(F.X, &) = Adn, (F X, €,)

which shows that B is %— Sasakian.
When the total manifold of a contact horizontally conformal submersion
is almost cosymplectic, we have the following strong result.

THEOREM 3.3. Let (M, ¢,,,€,,, M9, ) be an almost cosymplectic mani-
fold, (B, ¢4,€5,m5) be an almost contact metric manifold and F : M — B
be a contact horizontally conformal submersion. Then B is also almost
cosymplectic if and only if F is horizontally homothetic submersion.

Proof. First, recall that we have

3d®, (X,Y,Z) = X, (Y, Z) + Y®,,(Z,X) + Z®,,(X,Y)
—(I)M([X’ Y]’ Z) - (I)M([K Z]’X) - (I)M([Z7X:|’Y)

for X,Y,Z € T(T'M). Since F is contact horizontally conformal submersion,
from (3.1) and (1.1), we get

1 1
3dd, (X,Y,2) =X [pr (F.Y, ¢BF*Z)] +Y (5395 (F.Z, 65 F. X))

1
+Z[A293(F*X’ ¢BF*Y)] - F{QB([F*X’ F*Y]’ F*Z)
+95([FWY, FiZ], B, X) + g5 ([FxZ, F. X], F.Y)},
where X,Y and Z are basic vector fields. Hence we have

2 1
3d(I)M(X7Y’Z)=——X(/\)QB(FY(ﬁBF*Z)‘i' XgB(FY¢BF Z)

A3
2

_FY()\)gB(F*Z@BF* )+ )\2YgB(F*Z dpFX)
2

_ﬁZ(A)gB(FX ¢BF Y)+ ZgB(FX ¢BF Y)

_ﬁ{gB([F*X’ F*Y]’ F*Z) + gB([F*Yv F*Z]vF*X)
+9,([FuZ, F  X], F.Y)}.

Then, using (1.1), (3.1) and the formula of the exterrior derivative, we ar-
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rive at
(38) 3dD,(X,Y,Z) = —2X(In\)gy (Y, b,y Z) — 2 (InN)g,, (Z, 6, X)
—2Z(ln)\)gM (X, ¢>MY) + —3-d<I>B(F*X, E.Y,F.Z).

2
Since M is almost cosymplectic, from (3.4) and (3.8), we derive
3
(3.9) 34%,(F.X, F.Y, F.Z) = 2X(in))g,, (Y, 6,, 2)

+2Y (InA)g) (2, 5, X)
+2Z(InA)gy (X, 6, Y)

and

(3.10) %

Now, suppose that B is almost cosymplectic, then from (3.9), for X =

¢y Z € T'(D), we get
G Z(InN)g,, (Y, 00, Z) — Y (InN)g,\, (Z,Z) + Z(InX) gy, (P02, 04, Y) = 0.
Thus, for Y = ¢,,, we obtain

dng (BX FY) = X(ln/\)ﬂM Y) - Y(l")\)UM (X).

(3.11) € (InN)g,, (Z,2) = 0.
In similar way, from (3.10), for X e (D) and Y =¢ s We have
(3.12) X (InX) = 0.

Since (kerF,)t = D @ span{¢,,} and g,, is a Riemannian metric, we have
T(In)) = 0 for T € T'((kerF,)"), which proves that F is horizontally homo-
thetic. The converse is clear from (3.9) and (3.10).

Finally, we investigate contact character of the base manifold of a contact
horizontally conformal submersion when the total manifold is Kenmotsu
manifold.

THEOREM 3.4. Let F : M — B be a contact horizantally conformal
submersion from a Kenmotsu manifold (M, ¢,,,€,,,M,,9,) to an almost
contact metric manifold, (B, ¢,,€,,1;) such that dim(B) # 2. Then the
following statements are equivalent:

(a) B s a trans-Sasakian manifold of type (0, %)

(b) For every X,Y € T'((kerF\)1), (VF)(X, 9, Y) = ¢, (VFE)(X,Y).
(c) F is horizontally homothetic.

Proof. Since M is Kenmotsu, from (2.7), (3.1), (3.3) and (3.2) we have

1 1
v;d’MY - d)Mv;Y = '/\_593(¢BF*Xv F*Y)é-M - XT’B(F*Y)QSMX
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for X,Y € I'((kerF,)*). Hence, using again (3.2) and (3.1), we get

M M 1
F(Vx¢uY) = Fu(¢y VxY) = 5195 (8 B X, FY)Ep — 15 (FY ) P X}
Considering (2.9) and (3.1) we write

~(VE)(X, 6, ¥) + VoY — 9, VXY = £{g, (95 X, EY)E,
~15(FY )¢, F.X}.
Hence, we get
—(VE)(X, 0 Y) + Vs .Y + ¢, (VE)(X,Y) - ¢, Vx F.Y
= 1056 X, BY)E, — (R )6, F.X}.
Thus, we obtain
(3.13) (Vx¢n)FY = (VE)(X,0,Y) - ¢,(VE)(X,Y)
#5005 (82 X, BV )6, — 1, (FLY )8, FX).

Then (3.13) proves (a)< (b). Now suppose that (b) holds. First, recall from
([1], Lemma 4.5.1, page: 119), we have

(3.14) (VF )X, Y)=X(InN)F.(Y)+Y(In A\ F. X —g(X,Y)F.(gradin))
for X,Y € I'((kerF,)*). Substituting (3.14) in (b), we get
(3.15) ¢, Y (INNF.X — ¢,,(X, ¢, Y)Fi(gradinA) = Y (InA)F(¢,, X)
— g, (X, Y)F(¢,,gradin))
for X,Y € I((kerF,)1). Then for Y = ¢,, and X € I'(D), we derive
&, (nA)p, Fu X = 0.

Applying ¢, to this equation and using (2.1), we have

6, (IINFX + 1, (R Xy, (10N = 0.

Here, n,(FX) = g,(FX,&,) = }95(FX, F.£,,) = Mgy (X,€,,). Hence,
we obtain

(3.16) ng(FeX) =0.
Using (3.16), we arrive at

£, (INNF.X =0.
Then non-constant I’ submersion implies that

(3.17) £, (In\) = 0.
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On the other hand, interchanging the role of X and Y in (3.15), we get

(3.18) ¢, X(InNFY — g, (Y, ¢, X)Fi(gradin)) = X(InA\)Fi(¢,,Y)
—gy (X, Y)Fi(¢,, gradin))

for X,Y € I'((kerF,)'). Then from (3.15) and (3.18) we have

(3.19) ¢, Y(InNF.X — ¢,, X(InA\)E,Y — 2g,,(X, ¢,,Y)Fi(gradin))

= Y (In\)Fu($,, X) — X(InN)Fo($,,Y).
Taking Y = ¢,, and X € T'(D) in (3.19), using ¢,,£,, = 0 we obtain
X (INFy(€y) = £y IRV F (64, X).

Using again (3.17), we arrive at
by X (I FilEy) = 0.

Then (3.2) implies that

—¢, XA, =0.
Since D is invariant with respect to ¢, and &, # 0, we conclude that
(3.20) Z(A\) =0

for any Z € T'(D). Then from (3.17) and (3.20), we obtain Y(A\) =0for Y €
['((kerF,)*), which shows that F is horizontally homothetic. Conversely, if
F is horizontally homothetic, from (3.14) and (3.1), one can obtain that (b)
holds. Thus we have shown that (b)< (c). This completes the proof. w
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