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COVERING A REDUCED POLYGON BY A DISK

Abstract. A convex body R in Euclidean d-space E¢ is reduced if every convex body
K C R different from R has thickness smaller than the thickness A(R) of R. We prove
that every reduced polygon P C E? is contained in a disk of radius A(P) centered at a
boundary point of P.

The minimum width of a convex body C in Euclidean d-space E is called
the thickness of C and it is denoted by A(C). A convex body R C E¢
reduced if A(K) < A(R) for every convex body K C R different from
R. The class of reduced bodies is larger than the class of bodies of constant
width (for d > 2). In particular, the regular odd-gons are examples of planar
reduced bodies. Various properties of reduced bodies are derived in (1], [2],
[4-6] and [8]. Lassak [6] conjectured that every reduced body R C E? is a
subset of a disk of radius A(R) centered at a boundary point of R. We prove
this conjecture to be true for the reduced polygons.

The notation of our paper is consistent with this of [5]. The diameter
of a convex body C is denoted by diam(C) and its boundary by bd(C).
The closed segment jointing points z and y is denoted by xy, and the dis-
tance of z and y by |ry|. We take the positive orientation of bd(C). If
z,y € bd(C), by g we mean the arc of bd(C) from z to y, according to the
positive orientation. Let P = vjvy...v, be a reduced n-gon (the vertices
are numbered according to the positive orientation). We identify vertices vy
and vy, whenever m = k (mod n). From Theorem 7 of [5] it follows that
the orthogonal projection t; of v; on the straight line containing the side
Vit (n—1)/2Vi+(n+1)/2 18 strictly between the end-points of this side. Denote by
B; the angle Zv;viy (n41)/2tit(nt1)/2- Let D; be the disk of radius A(P) cen-
tered at t;, and O; the disk of radius A(P) centered at v;. Let L; be the line
passing through v; and ¢ (41)/2, and M; the line passing through ¢; and v;.
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We omit an easy proof of the following claim.

CLAIM. Let S be a disk with center ¢ and let |lwyws| = diam(S). If wg €
cws, then for every point d € bd(S) we have |wows| < |wad| < |wow|.

THEOREM. For every reduced polygon P C E? there exists a disk D of
radius A(P) centered at a boundary point of P such that P C D.

Proof. Without any loss of generality we may assume that A(P) =
According to Theorem 4 of [5] the only point on the side v;y (n—1)/2Vit(n+1)2
in the distance 1 from v; is ;. Thus, the only candidates for D are the disks
D;fori=1,...,n,thatis, D = D; for some i € {1,...,n}. Hence, it suffices
to prove that P C D; for some i. Suppose, to the contrary, that

(1) PED o i=1.n

Consequently, we assume that for every disk D; there exists at least one
vertex of P which does not belong to this disk.

For the convenience of the reader we divide the proof into Parts 1-5.
Part 1. Recall that diam(P) = max{secf;;i = 1,...,n} (see (16) in [5]).
Without lost of generality we may assume that diam(P) = sec;. Then from
the triangle vityy (n41)/2V14(nt+1)/2 We See that [v1)4(n41)/2] = diam(P),
see Figure 1. Consider the disk B; of radius diam(P) centered at the
point v;. Denote by w this intersection point of bd(Bj) with Ly (ny1)/2
for which w and v are on one side of M;. Applying Claim to disk B; we ob-
tain [t14(ny1)2w| < it1+{n+1),=201+(n+1);2i Since [t1 n+1),*2‘”1+(n+1);24 =1
and the radius of Dyy(ny1)/2 is A(P) = 1, it follows that @WV14(n41)/2 C
Dy(nt1)72- Moreover, observe that by Theorem 8 of [5] the equality

|Ult1+(n+1)f2| = tanﬁ1 lmplles !U]t1+(n+1}ff2! < %. Hence

(2) V1, U2, - - V4 (n+1)/2 € Dit+(nt1)/2-
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Part 2. Let By (ny1)/2 be the disk of radius diam(P) centered at vy (n41)/2-
In the reasoning used in Part 1, we may replace the pair of disks (D, Hnt1)/2s
By) by the pair (D1, By(n+1)/2)- Then we obtain

(3) V1,025 44y V1(nt1)/2 € D1

Part 3. Let h be the smallest index such that vy & Dy (n41)/2- Its existence
is ensured by the assumption (1). By (2) we have 1+ (n+1)/2 < h < n
(see Figure 2). Hence we see that vy (n41)/2-+-,Vh—1 € Dij(ny1)/2 (We
do not assume V14 (n41)/2 # Yh—1)- Since the chords ¢yvy,...,¢,v, pairwise
intersect, ¢, and v, are on the opposite sides of M} (,41)/2. Denote by py
this intersection point of bd(Op) with M, (n41)/2 for which p, and v; are
on one side of My. Since vy ¢ Dj(n41)/2, We have |t1 (n41)/2vn| > 1. Thus

(4) Ph € tiq(n+1)/2V1+(n+1)/2-

For every 7 = {1+ (n+1)/2,...,h — 1} the following holds true. Since
Vj € Dyy(nt1)/2, We have [t14(ni1)/2v;] < 1. Moreover, by (4) we see that
[Prvj| < [ti4(nt+1)/2v5] £ 1. By Claim applied to disk O we conclude that
|vjth| < |vjpa| < 1. Thus by |tpup| = 1 we have

(5) V14(n+1)/2: -+ -1 Vh € Dp.

Denote by wj, this intersection point of bd(D}(n41)/2) with Ly, for which
wp, and tp, are on one side of My (n41)/2- By (6) we have [thv14(ny1)/2| < 1.
Thus applying Claim to disk Dy (ny1)/2, We get [tawn| < [Eav14(ny1)/2] < 1.
Consequently, Wh0y 4 (nt1)/2 C Dhp- Thus by (2) and (5) we obtain

(6) Vh4(n+1)/2> - - -+ ¥h € Dp.
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Part 4. In the consideration applied to Part 3, we may replace the pair of
disks (Di4(n+1)/2: Dr) by the pair of arbitrary disks (D,, Ds) such that
h < r < s < n, where s is the smallest index for which vs ¢ D,. Then we
obtain

(7) Us4(n+1)/25-++1Us € Ds.

Part 5. Since in Part 4 we follow the steps from Part 3 for every pair of disks
D, and Dj, there is an index s € {h+1,...,n} such that

(8) Vsy - .+, Un € Ds.

Consider two possibilities. If v; ¢ D, then similarly as in Part 3 we show
that v14(n1)/2:- - - > Un, v1 € D1. Thus by (3) we conclude that P C D;. This
contradicts the assumption (1).

Now consider the opposite situation, when v; € D,. Let ws be this
intersection point of bd(D;) with L, for which ws and ¢4 are on one side of
M;. Since |tsv1]| < 1, applying Claim to disk Dj, we get |tsws| < |tsv1] < 1.
Hence, analogously like in Part 3, we get viws C D; and vy, . . ., Vst (n-1)/2 €
D,. Thus by (7) and (8) we obtain P C D,. Again this contradicts the
assumption (1).

This completes the proof. =
REMARKS. In [6] there is also shown that every reduced polygon P is
contained in a disk of radius % - A(P) (with center not necessarily at the
boundary of P). The author conjectures that every reduced polygon P can
be covered by a disk of radius %diam2 (P)/A(P). Observe that this estimate
is sharp for regular odd-gons. Let us mention the unpublished conjecture of
M. Lassak that also every reduced convex body K of any normed plane M?
is a subset of a disk of M? of radius A(K) centered at a boundary point of
K. For some results on reduced bodies in normed spaces see 3] and [7].
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