DEMONSTRATIO MATHEMATICA
Vol. XLII No 4 2009

Servet Kutukcu, Sushil Sharma

A COMMON FIXED POINT THEOREM IN
NON-ARCHIMEDEAN MENGER PM-SPACES

Abstract. In the present work, we introduce two types of compatible maps in non-
Archimedean Menger PM-spaces and obtain a common fixed point theorem for six maps.

1. Introduction and preliminaries

In 1997, Cho et al. [2] introduced the concepts of compatible maps and
compatible maps of type (A) in non-Archimedean Menger probabilistic met-
ric spaces and gave some fixed point theorems for these maps. In this paper,
we introduce the concept of compatible maps of type (A-1) and type (A-2),
show that they are equivalent to compatible maps under certain conditions
and illustrating with an example, prove a common fixed point theorem for
such maps in the spaces which generalizes, extends and fuzzifies several fixed
point theorems for contractive type maps on metric spaces and fuzzy metric
spaces.

Next, we recall some definitions and known results in Menger space. For
more details we refer the readers to [1-7].

DEFINITION 1. A triangular norm * (shorty t-norm) is a binary operation
on the unit interval [0,1] which is associative, commutative, nondecreasing
in each coordinate and a x1 = a for all a € [0,1]. Some important examples
of t-norms are ¢ * b =max{a + b— 1,0} and a * b = min {a, b}.

DEFINITION 2. A distribution function is a function F' : [—o00, 00] — [0,1]
which is left continuous on R, non-decreasing and F'(—o0) = 0, F(o0) = 1.
If X is a nonempty set, F': X x X — A is called a probabilistic distance on
X and F(z,y) is usually detoned by Fi,.

2000 Mathematics Subject Classification: 47TH10, 54H25, 54E70.
Key words and phrases: non-Archimedean Menger probabilistic metric space, com-
patible maps, mutually compatible maps, common fixed point.



838 S. Kutukcu, S. Sharma

DEFINITION 3. The ordered pair (X, F') is called a non-Archimedean prob-
abilistic metric space (shortly N. A. PM-space) if X is a nonempty set
and F' is a probabilistic distance satisfying the following conditions: for
all z,y,z € X and ¢,s > 0,

(PM-1) Fppy(t) = 1,t > 0 =z =y,
(PM-2) Fiy = Fys,
(PM-3) Fyy(0) =0,
(PM-4) Fyy(t) =1, Fy,(s) =1 = Fy(max{t,s}) =1.
The ordered triple (X, F, %) is called a non-Archimedean Menger prob-
abilistic metric space (shortly N. A. Menger space) if (X, F) is a N. A.

PM-space, * is a t-norm and the following condition is also satisfies: for all
x,y,z€ X and ¢,8 > 0,

(PM-5) Fy.(max{t,s}) > Fyy(t) x Fy(s).

The concept of neighbourhoods in Menger PM-spaces was introduced by
Schweizer and Sklar [6]. If z € X,e > 0 and A € (0,1), then an (g, A)-
neighbourhood of z, U, (e, A) is defined by

Ug(e,A) ={y € X : Fgy(e) > 1 —A}.

If the t-norm x is continuous and strictly increasing then (X, F, %) is a Haus-
dorff space in the topology induced by the family {U,(e,\) : z € X,e >
0,X € (0,1)} of neighbourhoods [6].

DEFINITION 4. ([2]) A PM-space (X, F') is said to be of type (C), if there
exists a g € Q such that

9(Fay(t)) < g(Frz(t)) + g(Fay(2))
for all z,y,z € X and t > 0 where Q = {g: g : [0,1] — [0, 00) is continuous,
strictly decreasing, g(1) = 0 and g(0) < oo}.

DEFINITION 5. ([2]) A N. A. Menger PM-space (X, F, *) is said to be of
type (D)g if there exists a g € £ such that

g(t*s) < g(t) + g(s)
for all s,t € [0,1].
REMARK 1. If a N. A. Menger PM-space (X, F,*) is said to be of type
(D)g then (X, F,x) is of type (C)g. On the other hand, (X, F,*) is a N.

A. PM-space such that a x b > max{a+ b — 1,0} for all a,b € [0,1], then
(X, F, %) is of type (D), for g € Q defined by g(t) =1—t,t > 0.

Throughout this paper, let (X, F,*) be a complete N. A. Menger PM-
space of type (D), with a continuous strictly increasing t-norm x and
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¢ : ]0,00) — [0,00) be a function satisfying the condition (®): ¢ is upper-
semicontinuous from the right and ¢(t) < ¢ for all ¢ > 0.

LEMMA 1. ([1]) If a function ¢ : [0,00) — [0,00) satisfies the condition
(®), then we have

(a) for allt > 0,lim,_, ¢"(t) = O where ¢™(t) is the n-th iteration of ¢(t),

(b) if {tn} is a non-decreasing sequence of real numbers and t,11 < P(ty),
n=1,2,... then lim,_ o t, = 0. In particular, if t < ¢(t) for allt >0
thent = 0.

LEMMA 2. ([2]) Let {yn} be a sequence in X such that limy, .o Fyy, y.,,(t) =
1 for all t > 0. If {yn} is not a Cauchy sequence in X, then there exist
€0 > 0,tp > 0 and two sequences {m;}, {n;} of positive integers such that

(a) m; >n; +1 and n; — 0o as i — oo,
(b) Fypn.ym, (to) <1—e0 and Fy,, _, 4, (to) 21 —¢9,i=1,2,....

DEFINITION 6. ([2]) Self maps A and B of a N. A. Menger PM-space
(X, F,*) are said to be compatible if g(Fapz,BAz,(t)) — 0 for all t > 0,
whenever {z,} is a sequence in X such that Az,, Bz, — z for some 2z in X
as n — 0o.

DEFINITION 7. ([2]) Self maps A and B of a N. A. Menger PM-space
(X, F, #) are said to be compatible of type (A) if g(FaBz, BBz, (t)) — 0 and
9(FBAz, AAz, (1)) — O for all t > 0, whenever {z,} is a sequence in X such
that Ax,, Bz, — z for some z in X as n — oo.

Now we introduce the concept of compatible mappings of type (A-1) and
type (A-2) in N. A. Menger PM-spaces and show that they are equivalent
to compatible mappings under certain conditions.

DEFINITION 8. Self maps A and B of a N. A. Menger PM-space (X, F, x)
are said to be compatible of type (A-1) if g(Faps, BBz, (t)) — 0 for allt > 0,
whenever {z,} is a sequence in X such that Az,, Bz,, — z for some z in X
as n — 0o.

DEFINITION 9. Self maps A and B of a N. A. Menger PM-space (X, F, %)
are said to be compatible of type (A-2) if g(FBaz, A4z, (t)) — 0 for all ¢ > 0,
whenever {z,} is a sequence in X such that Az,, Bz, — z for some z in X
as n — 0o.

REMARK 2. Clearly, if a pair of mappings (A, B) is compatible of type
(A-1) then the pair (B, A) is compatible of type (A-2). Such maps are called
mutually compatible of type (A). Further, if A and B compatible maps of
type (A) then the pair (A, B) is compatible of type (A-1) as well as type
(A-2).
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The following is an example of pair of self maps in a N. A. Menger
PM-space which are mutually compatible of type (A) but not compatible.

EXAMPLE 1. Let (X,d) be a metric space with the usual metric d where
X =[0,2] and (X, F| %) be the induced N. A. Menger PM-space with g(t) =
1 -t and Fyy(t) = H(t ~ d(z,y)) for all z,y € X, t > 0. Define self maps A
and B as follows:

4 2—z, ifo<z<l, z, f0<z<1,
T =
2, if1<x<2, - 2, ifi<z<2.

Take z, = 1—1/n. Then F4,,1(t) = H(t—(1/n)) and limy, 00 g(F4z,1(t)) =
g(H(t)) = 0. Hence Az, — 1 as n — oo. Similarly, Bz, — 1 as n — o0.
Also Fups,BAz,(t) = H(t — (1 — 1/n)) and lim, o0 9(FABz,BAz, () =
g(H(t—1)) # 0 for all t > 0. Hence the pair (A, B) is not compatible. But
FABz,BBz,(t) = H(t — (2/n)) and limp o0 9(FABs, BBz, (t) = g(H(t)) =0
for all ¢ > 0. Hence the pair (A, B) is compatible of type (A-1). Similarly,
the pair (A, B) is compatible of type (A-2). Therefore A and B are mutually
compatible but not compatible maps.

and Bzcz{

Next, we cite the following propositions which gives the condition under
which the Definitions 6, 8 and 9 becomes equivalent.

PROPOSITION 1. Let A and B be self maps of a N. A. Menger PM-space

(X, F,*).

(a) If B is continuous then the pair (A, B) is compatible of type (A-1) iff A
and B are compatible.

(b) If A is continuous then the pair (A, B) is compatible of type (A-2) iff A
and B are compatible.

Proof. (a) Let {z,} be a sequence in X such that Az,, Bz, — z for some
zin X as n — oo and let the pair (A, B) be compatible of type (A-1). Since
B is continuous, we have BAx,, — Bz and BBr, — Bz and so

9(FaBz,BAz, (1)) < 9(FABz,BBz,(t)) + 9(FBBz,.BAz,(t)) = 0

as n — o0o. Hence the mappings A and B are compatible.
Now, let A and B be compatible. Therefore, using the continuity of B,
we have

9(FaBz,BBz,(t)) < 9(FABz,BAz, (1)) + 9(FBAz, BBz, (t)) — 0
as n — o0o. Hence the mappings A and B are compatible of type (A-1).
(b) The proof is similar with (a). =

Next, we give some properties of compatible mappings of type (A-1) and
type (A-2) which will be used in our main theorem.
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PROPOSITION 2. Let A and B be self maps of a N. A. Menger PM-space
(X, F,*). If the pair (A, B) is compatible of type (A-1) and Az = Bz for
some z in X then ABz = BBz.

Proof. Let {z,} be a sequence in X defined by z, = z for n € N and let
Az = Bz. Then we have Az, —» Az and Bz, — Bz. Since the pair (A, B)
is compatible of type (A-1), we have g(Fap.BB:(t)) = 9(FABz, BBz, (t)) — 0
asn — oo. Hence ABz = BBz. u

PROPOSITION 3. Let A and B be self maps of a N. A. Menger PM-space
(X, F, ). If the pair (A, B) is compatible of type (A-2) and Az = Bz for
some z in X then BAz = AAz.

Proof. The proof is similar with the proof of Proposition 2. =

PROPOSITION 4. Let A and B be self maps of a N. A. Menger PM-space
(X, F,x). If the pair (A, B) is compatible of type (A-1) and {z,} is a sequence
in X such that Ax,, Bx, — z for some z in X as n — oo then BBz, — Az
if A is continuous at z.

Proof. Since A is continuous at z and the pair (A4, B) is compatible of type
(A-1), we have ABz,, — Az and g(FaBz, BBz, (t)) — 0 asn — co. Therefore
9(Fa:BBz,(t) < 9(Fa24B2,(t)) + 9(FABz, BBz, (t)) = 0

as n — co. Hence BBz, — Az asn — 0. =

PROPOSITION 5. Let A and B be self maps of a N. A. Menger PM-space
(X, F,x). If the pair (A, B) is compatible of type (A-2) and {z,} is a sequence
in X such that Ax,, Bz, — z for some z in X asn — oo then AAz, — Bz
if B is continuous at z.

Proof. The proof is similar with the proof of Proposition 4. =

2. Main results

THEOREM 1. Let A,B,P,Q,S and T be self maps on a complete N. A.
Menger PM-space (X, F,*) satisfying:
(a) P(X) C ST(X), Q(X) C AB(X),
((b§ 9(Fpe,y(t)) < ¢(9(FaBz,s1y())),
c
9(FPz,qy(t))
g(FABz,STy(t)) + g(FP:c,ABx(t)) + g(FQy,STy(t)),
< ¢ | max Q(FPz,ABa:(t)) + g(FQy,ABx(t))a
9(Fpz,s1y(t)) + 9(Foy,s1y(1))
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forallz,y € X andt > 0, where a function ¢ : [0,00) — [0,00) satisfies
the condition (),

(d) AB = BA,ST = TS, PB = BP,QT = TQ,

(e) either P or AB is continuous,

(f) the pairs (P, AB) and (Q, ST) are mutually compatible of type (A).

Then A, B, P,Q,S and T have a unique common fized point.

Proof. Let zp be an arbitrary point of X. By (a), there exists z;,z2 € X
such that Pxg = STx1 = yo and Qzy = ABz1 = y1. Inductively, we can
construct sequences {z,} and {y,} in X such that Pzo, = STZ2,+1 = y2n
and Qxont+1 = ABZopto = Yopy1 forn =0,1,2,....

Stepl. We shall show that the sequence {y,} is a Cauchy sequence.

Since Pxzo, = S8Tzony1, using (b), we have g(Fyyoni(t)) =
g(FP$2nQy2n+1 (t)) < ¢(g(Fy2ny2n+1 (t))) and since Qm2n+1 = ABx2n+2, we
also have g(Fyzn,yzn—l (t) = g(FP-T2'n.1Qy2n—1 t) < ¢(9(Fy2n—1,y2n+2 (t))). Thus

g(Fynyyn-f-l (t)) S (b(g(Fyn—l,'yn(t))) fOI' n = 172’ e Hence g(Fyn7yn+1 (t)) S
¢"(g(Fyo 4, (1)) for n =1,2,.... Therefore, from Lemma 1,

(2.1) 9(Fygmsn(£) = 0 a5 m — 0.

Suppose {yn} is not a Cauchy sequence. Since g is strictly decreasing, from
Lemma 2, there exist g > 0,t9 > 0 and two sequences {my}, {nx} of positive
integers such that

(a) mg > ng + 1 and ng — 0o as k — oo,

(b) g(Fymk,'ynk (to)) > g(l - 80) a'nd g(Fymk—laynk (to)) S g(l - EO) for
k=1.2,...

Therefore

g(l - EO) < g(Fymkyynk (to))
< 9(Fyom, symg-1(0)) + 9(Fypn, _1,9n, (t0))
< 9(Fymy ymy—1 (t0)) + 9(1 — €0)

and letting £ — oo, we have
On the other hand, we have

9(1 —e0) < 9(Fy,, yn, (t0))
(2.3) < Q(Fymk Y +1 (to)) + Q(Fynk+1,ynk (to))-

Without loss of generality assume that both mj and ny, are even. Using (c),
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we have
9(Eypn, 11 (t0)) = 9(FPar, Qe +1(t0))

[ 9(Fym-10m, (10)) + 9(Fyy i1 (t0)
+g(Fynk+1»ynk (tO))a
I Eym ymp—1(80)) + 9(Fyp, 1 ymy 41 (o)),
I(Fyn, 41,0m, (10)) + 9(Fypn, n, (t0))

9(1 = €0) + 9(Fymy ym, -1 (t0)) ]
‘*‘Q(Fynkﬂ,yn,c (t0)),

< ¢ | max S Q(Fymk,ymk—1(t0)) + (1 — o)

+9(Fynk,ynk+1(t0))a

\ g(Fynk+1,ynk (to)) + g(Fymkvynk (o)) J

Substituting this in (3.3), letting £k — oo and using (3.1) and (3.2), we have

9(1 — €0) < ¢(g(1 —€0)) < g(1 — &o)

which is a contradiction. Hence {y,} is a Cauchy sequence. Since (X, F, ) is
complete, it converges to a point z in X. Also its subsequences converge as
follows: {Pxan} — 2z, {ABxan} — 2, {Qx2n+1} — 2z and {STzon41} — 2.

Case 1. AB is continuous, and (P, AB) and (Q, ST) are compatible of
type (A-1).

Since AB is continuous, AB(AB)za, — ABz and (AB)Pzxa, — AB:z.
Since (P, AB) is compatible of type (A-1), PPz2, — ABz.

Step 2. By taking x = Pxay, y = Zop+1 in (c¢), we have

< ¢ | max <

-

9(FPPzsn,Quans1 ()
9(F(AB)Pzop,STz2ns1 (1)) + 9(FPPay,. (AB)Pzay ()
+9(FQI2n+1,5T562n+1 (),
9(EPPry, (AB)Pr2n (1)) + 9(FQugny1,(AB)Pran (1))
9(FPPzyn,5Tz2m11 (1)) + 9(FQ13011,5T 2011 (1))
this implies that, as n — oo

g(FABz,z(t)) + g(FABz,ABz(t)) + g(Fz,z(t))a
9(FaBz-(t)) < ¢ | max 9(FaB2,aB2(t)) + 9(F; aB:(t)),
g(Fz,z(t)) + g(Fz,z(t))

< ¢ | max

= ¢ (9(FaB2,(t)))

which means that, by Lemma 1, g(FaB. .(t)) = 0 for all ¢t > 0 and it follows
that z = ABz.
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Step 3. By taking x = 2, y = zan41 in (c), we have

g(FP27Q12n+1 ()
9(FAB2,8Tzon11(t)) + 9(Fpz 4B:(1))
T9(FQz2041,5Tz3n11 (1))
9(Fpz,a8:(t)) + 9(FQuany1,4B:(t)),
9(FP2,8T22041 () + 9(FQrons1,5T 22011 (1))

this implies that, as n — oo

< ¢ | max

9(Fz2(t) + g(Fp22(t) + g(F: (1)),
9(Fpz.(t)) < ¢ | max 9(Fp..(1) + 9(F22(t)),
9(Fp.2(t)) + g( zz(t))
= ¢(9(Fp2,:(t)))
which means that z = Pz. Therefore, z = ABz = P=.
Step 4. By taking £ = Bz, y = Z2,41 in (c) and using (d), we have

g(FP(Bz),szn.H (t))

9(FAB(B2),STzanis (1) + 9(Fp(B2),4B(B2) (1))
+g(FQz2n+1,STﬂi2n+1 (t))’
9(Fp(B2),AB(Bz) 1)) + 9(FQaonsr,4B(B2) (1),
g(FP(Bz),STz2n+1 t) + g(FQx2n+1,ST£C2n+1 ()

< ¢ | max

this implies that, as n — oo

9(FB2,:(t)) + 9(FB2,B2(t)) + g(Fy (1)),
Q(FBz,z(t)) < ¢ | max g(FBz,Bz( )) (Fz z(t))v
' 9(FB2,2(1) + 9(F32(t))
= ¢(9(FB2,:(1)))

which means that z = Bz. Since z = ABz, we have z = Az. Therefore,
z2=Az=Bz= Pz.

Step 5. Since P(X) C ST(X), there exists w € X such that z = Pz =
STw. By taking £ = x2,, ¥y = w in (c), we have

9(FABz3,,5Tw(t)) + 9(FpPey,, ABes, ()
+9(Fou,sTw(t)),
9(FPr3n,ABr2, (1) + 9(FQu,ABz,, (1)),
9(Fpey,,510(t)) + 9(FQu,sTw(t))

Q(FP:vzn,Qw(t)) < ¢ | max
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this implies that, as n — o

9(Fz,2 () + g(F2 (1) + 9(Fou,-(1),
9(Fz,0u(t)) < ¢ | max 9(F:2(8)) + 9(FQu 2 (1)),
9(F:,2(1) + 9(FQu,s(t))
= ¢(9(Fz,Qu(?)))

which means that z = Qw. Hence, STw = z = Qw. Since (Q,ST) is
compatible of type (A-1), we have Q(ST)w = ST(ST)w. Thus, STz = Q=z.
Step 6. By taking x = z2,, y = 2z in (c) and using Step 5, we have

9(FABzy,5T2(t)) + 9(FPryy, 4By, (1))
+9(FQz,s12(t)),
9(FPz3,,4B32, (1) + 9(FQz,ABx,, (1)),
9(FPryn,5T2(t)) + 9(FQz,572(t))

g(FP:vgn,Qz(t)) < ¢ max

this implies that, as n — oo

9(F2,:(t)) + g(F2 2 (t)) + 9(Fg2,0:(1)),
9(F%q:(t)) < ¢ | max 9(F; (1)) + 9(Fg.,:(1)),
9(F.,q:(t)) + 9(FQz,:(1))
= ¢(9(F:,:(t)))

which means that z = Qz. Since STz = Qz, we have z = STz. Therefore,
z2=Az=Bz=Pz=Qz=5Tz.
Step 7. By taking £ = z2,, y = Tz in (c) and using (d), we have

9(F 4By, ST(T2)(t)) + 9(FPryn, ABzy, (1))
+9(FQ(T2),s7(T2)(1))
9(FpPzy,,ABzsn (1) + 9(FQ(T2), AB2sn (1)),
9(Fpay,.sT(T2)(t) + 9(Fo(12),5T(T2)(t))

9(Fpaey,12(t)) < ¢ | max

this implies that, as n — oo

9(Fe1z(1) + 9(F2,2(1)) + 9(Fr,r2(t)),
9(Fz12(t)) < ¢ | max 9(Fz2(t)) + 9(Fr2,2(¢)),
9(Fz2(t) + 9(Frz72(t))
= ¢(g(Fz,1=(t)))

which means that z = Tz. Since z = STz, we have 2z = Sz. Therefore,
z=Az= Bz = Pz=Qz= S5z =Tz, that is, z is the common fixed point
of A,B,P,Q,S and T.
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Similarly, it is clear that z is also the common fixed point of A, B, P,Q, S
and T in the case AB is continuous, and (P, AB) and (@, ST') are compatible
of type (A-2).

Case II. P is continuous, and (P, AB) and (@, ST) are compatible of
type (A-1).

Since P is continuous, PPze, — Pz and P(AB)zs, — Pz. Since
(P, AB) is compatible of type (A-1), AB(AB)za, — Pz.

Step 8. By taking z = ABza,, ¥ = Tap+1 in (c), we have

9(Fp(AB)z2n,Qzansi ()

)

9(FAB(AB)z2n,ST22n11(t)) T 9(FP(AB)zon, AB(AB)z2s (1))
+9(FQz2n+1,5T932n+1 (t),
9(FP(AB)22n,AB(AB)z2n (1) + 9(F Q2 11,AB(AB)zon (1)),
9(FP(AB)z3n,5T23n11 (1)) + 9(FQ22011,8T 22011 (1))

this implies that, as n — oo
g(FPz,z(t)) + g(FPz,Pz(t)) + g(Fz,z(t))a
9(Fp.(t)) < ¢ | max 9(Fp2,p(t)) + 9(F; p:(1)),
9(Fpz (1)) + 9(F,2(2))

< ¢ | max

= ¢(9(FP::(1)))
which means that z = Pz. Now using Step 5-7, we have z = Qz = §Tz =
Sz="Tz.
Step 9. Since Q(X) C AB(X), there exists w € X such that z = Qz =
ABw. By taking * = w, y = Zop4+1 in (c), we have
g(FPw,Qw2n+1 (1))
9(FABw,ST w241 (1)) + 9(FPuw,ABw(t))
+9(Fszn+1,ST$2n+1 (),
Q(FPw,ABw (t)) + Q(FQz2n+1,ABw (1)),
Q(FPw,STa:2n+1 (t)) + g(FQ$2n+1,STI2n+1 (t))

this implies that, as n — oo

< ¢ | max

9(F2(t) + 9(Fpu,(t) + g(F: 2(1)),
9(Fpuz(t)) < ¢ | max 9(Fpu,(1)) + g(F(1)),
9(FPu,(t)) + g(F:,2(t))
= ¢(9(Fpuw,:(1)))

which means that z = Pw. Since z = Qz = ABw, Pw = ABw. Since
(P, AB) is compatible of type (A-1), we have Pz = ABz. Also z = Bz
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follows from Step 4. Thus, z = Az = Bz = Pz. Hence, z is the common
fixed point of the six maps in this case also.

Similarly, it is clear that z is also the common fixed point of A, B, P, @, S
and T in the case P is continuous, and (P, AB) and (Q, ST') are compatible
of type (A-2).

Step 10. For uniqueness, let v (v # z) be another common fixed point
of A,B,P,Q,S and T. Taking x = 2z, y = v in (c¢), we have

9(Fp2,u(t))
9(FaBz,sTo(t)) + 9(Fpz,aB:(t) + 9(Fgu,sTu(t)),
< ¢ | max 9(Fp2,4B:(t)) + 9(Fgo,AB:(t)),
9(FPz,s10(t)) + 9(FQu,sT0(t))
which implies that

9(Few(t) + 9(F:2(8)) + 9(Fop(t)),
9(F:p(t)) < ¢ | max 9(F:,2(t)) +g(Fu,z(t)),
9(Fep(t) + g(Fo (1))
= ¢(9(F(t)))
so we have z = v. This completes the proof of the theorem. n

If we take A = B =S =T = Ix (the identity map on X) in Theorem 1,
we have the following:

COROLLARY 1. Let P and Q be self maps on a complete N. A. Menger
PM-space (X, F,*). If g(Fpzy(t)) < ¢p(g(Fry(t))) and

9(Fry() + 9(Fpzz(t)) + 9(Foyy(t)),

g(FP:c,Qy(t)) < ¢ | max g(FP:v,z(t)) + g(FQy,:t(t))a

9(Fpzy(t)) + 9(Foyy(t))

for all z,y € X and t > 0, where a function ¢ : [0,00) — [0,00) satisfies the
condition (®), then P and Q have a unique common fized point.

In [7], Sehgal and Bharucha-Reid presented the probabilistic version of
the Banach contraction theorem. Next we prove such theorem for N. A.
Menger PM-spaces as follows:

COROLLARY 2. Let P be self maps on a complete N.A. Menger PM-space
(X, F,x). If

g(FPzPy(t)) < ¢(9(F1y(t)))
forallz,y € X and t > 0, then P has a unique common fized point.
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Proof. The proof follows from Corollary 1 since P = ) and
9(Fry(t)) = max{g(Fuy(t)), 9(Fzpa(t)), 9(Fyqy(t)), 9(Fyra(t)), 9(Faqy(?))}-

EXAMPLE 2. Let (X, d) be a metric space with the usual metric d where
X =[0,1] and (X, F, *) be the induced N. A. Menger PM-space with g(t) =
1 —tand Fpy(t) = H(t — d(z,y)) for all z,y € X,t > 0. Let A,B,P,Q,S
and T be maps from X into itself defined as

Ar=z/5,Bx =z/3,Pr =2/6,Qx =0,Sz =x,Tx = /2
for all z € X. Then

P(X) = [o, é] c [o, %] — ST(X)

and
Q(X) = {0} [o, %} — AB(X).

If we take t = 1 and a = 1, we see that the condition (b) and (c) of the main
Theorem is satisfied. Clearly, conditions (d) and (e) of the main Theorem
are also satisfied. Moreover, the pairs (P, AB) and (Q, ST) are mutually
compatible of type (A). In fact, if lim, o 2, = 0, where {z,} is a sequence
in X such that lim, .. Pz, = lim, oo ABz, = 0 and lim, .. Qz, =
lim,, 00 STz, = 0 for some 0 € X, then

T}LH;OQ(FP(AB)%,AB(AB)% (t)) =g(H(t) =0
and
T}LH;OQ(F(AB)Pzn,PPzn (t))=g(H(t)) =0

hence (P, AB) and (@, ST') are compatible of type (A-1). Similarly, the pairs
(AB, P) and (ST, Q) are also compatible of type (A-2). Thus, all conditions

of the main Theorem are satisfied and 0 is the unique common fixed point
of A,B,P,Q,S and T.
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