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A COMMON FIXED POINT THEOREM IN 
NON-ARCHIMEDEAN MENGER PM-SPACES 

Abstract . In the present work, we introduce two types of compatible maps in non-
Archimedean Menger PM-spaces and obtain a common fixed point theorem for six maps. 

1. Introduction and preliminaries 
In 1997, Cho et al. [2] introduced the concepts of compatible maps and 

compatible maps of type (A) in non-Archimedean Menger probabilistic met-
ric spaces and gave some fixed point theorems for these maps. In this paper, 
we introduce the concept of compatible maps of type (A-l) and type (A-2), 
show that they are equivalent to compatible maps under certain conditions 
and illustrating with an example, prove a common fixed point theorem for 
such maps in the spaces which generalizes, extends and fuzzifies several fixed 
point theorems for contractive type maps on metric spaces and fuzzy metric 
spaces. 

Next, we recall some definitions and known results in Menger space. For 
more details we refer the readers to [1-7]. 

DEFINITION 1. A triangular norm * (shorty t-norm) is a binary operation 
on the unit interval [0,1] which is associative, commutative, nondecreasing 
in each coordinate and a * 1 = a for all a €E [0,1]. Some important examples 
of t-norms are a * b = max {a + b — 1,0} and a * b = min {a, 6}. 

DEFINITION 2. A distribution function is a function F : [—oo, oo] —> [0,1] 
which is left continuous on K, non-decreasing and F(—oo) = 0, F(oo) = 1. 
If X is a nonempty set, F : X x X —> A is called a probabilistic distance on 
X and F(x,y) is usually detoned by Fxy. 
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D E F I N I T I O N 3 . The ordered pair (X, F) is called a non-Archimedean prob-
abilistic metric space (shortly N. A. PM-space) if X is a nonempty set 
and F is a probabilistic distance satisfying the following conditions: for 
all x,y,z G X and t, s > 0, 

(PM-1) Fxy(t) = l,t>0<=>x = y, 
(PM-2) Fxy = Fyx, 
(PM-3) Fxy(0) = 0, 
(PM-4) Fxy(t) = 1, Fyz(s) = 1 F I Z ( m a x { t , 4 ) = 1. 

The ordered triple ( X , F,*) is called a non-Archimedean Menger prob-
abilistic metric space (shortly N. A. Menger space) if (X,F) is a N. A. 
PM-space, * is a t-norm and the following condition is also satisfies: for all 
x,y,z G X and t, s > 0, 

(PM-5) F I Z (max{M}) > Fxy(t) * Fyz(s). 

The concept of neighbourhoods in Menger PM-spaces was introduced by 
Schweizer and Sklar [6]. If x G X, e > 0 and A G (0,1), then an (e, A)-
neighbourhood of x, Ux(e, A) is defined by 

Ux(£,\) = {yeX :FXy(£)> 1 - A} . 

If the t-norm * is continuous and strictly increasing then (X, F, *) is a Haus-
dorff space in the topology induced by the family {Ux(e, A) : x G X, e > 
0, A G (0,1)} of neighbourhoods [6]. 

D E F I N I T I O N 4. ([2]) A PM-space (X, F) is said to be of type (C)9 if there 
exists a g G ft such that 

g(Fxy(t)) < g(Fxz(t)) + g(Fzy(t)) 

for all x,y,z G X and t > 0 where ft = {g : g : [0,1] —> [0, oo) is continuous, 
strictly decreasing, g(l) = 0 and g(0) < oo}. 

D E F I N I T I O N 5. ([2]) A N. A. Menger PM-space (X, F, *) is said to be of 
type (D)g if there exists a g E Cl such that 

g{t*s) <g(t) + g(s) 

for all s,t G [0,1]. 

R E M A R K 1. If a N. A. Menger PM-space (X,F,*) is said to be of type 
(D)9 then (X,F,*) is of type (C)g. On the other hand, (X,F,*) is a N. 
A. PM-space such that a*b > max {a + b — 1,0} for all a,b G [0,1], then 
(X, F, *) is of type (D)g for geO, defined by g{t) = l-t,t>0. 

Throughout this paper, let (X, F, *) be a complete N. A. Menger PM-
space of type (D)9 with a continuous strictly increasing t-norm * and 
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<j) : [0, OG) —¥ [0, OO) be a function satisfying the condition ($): <p IS upper-
semicontinuous from the right and 4>{t) < t for all t > 0. 

L E M M A 1 . ([1]) If a function <f> : [0, oo) —»• [0, oo) satisfies the condition 
($), then we have 

(a) for all t > 0, limn^oo 4>n{t) = 0 where 4>n(t) is the n-th iteration of </>(t), 
(b) if {tn} is a non-decreasing sequence of real numbers and tn+1 < (¡>{tn), 

n = 1 ,2 , . . . then limn^oo tn = 0. In particular, if t < <f>{t) for all t > 0 
then t = 0. 

L E M M A 2 . ([2]) Let {yn} be a sequence in X such that LIM^oo Fyntyn+1 (t) = 
1 for all t > 0. If {yn} is not a Cauchy sequence in X, then there exist 
Eo > 0, io > 0 and two sequences {m^}, {rij} of positive integers such that 

(a) mi > Hi + 1 and ni —> oo as i —> oo, 
(b) Fymt,yni (to) < 1 - eo and Fymi_uyn. (t0) > 1 — er0, « = 1,2, 

D E F I N I T I O N 6. ([2]) Self maps A and B of a N. A. Menger PM-space 
(X,F,*) are said to be compatible if g(FABxnBAxn(t)) ~~* 0 f° r t > 0, 
whenever {xn} is a sequence in X such that Axn, Bxn —> z for some z in X 
as n —> oo. 

D E F I N I T I O N 7 . ([2]) Self maps A and B of a N. A. Menger PM-space 
(X, F, *) are said to be compatible of type (A) if g(FABxnBBxn(t)) —>• 0 and 
g(FBAx„AAx„(t)) ^ 0 f° r all t > 0, whenever {xn} is a sequence in X such 
that Axn, Bxn —> z for some z in X as n —> oo. 

Now we introduce the concept of compatible mappings of type (A-l) and 
type (A-2) in N. A. Menger PM-spaces and show that they are equivalent 
to compatible mappings under certain conditions. 

D E F I N I T I O N 8. Self maps A and B of a N. A. Menger PM-space (X, F, *) 
are said to be compatible of type (A-l) if g{FABxnBBxn(t)) 0 f° r t > 0, 
whenever {xn} is a sequence in X such that Axn, Bxn —> z for some z in X 
as n —> oo. 

D E F I N I T I O N 9 . Self maps A and B of a N. A. Menger PM-space ( X , F, *) 
are said to be compatible of type (A-2) if g(FBAxnAAxn(t)) 0 for all t > 0, 
whenever {xn} is a sequence in X such that Axn, Bxn —> z for some z in X 
as n —> oo. 

R E M A R K 2 . Clearly, if a pair of mappings (A, B) is compatible of type 
(A-l) then the pair (B , A) is compatible of type (A-2). Such maps are called 
mutually compatible of type (A). Further, if A and B compatible maps of 
type (A) then the pair (A, B) is compatible of type (A-l) as well as type 
(A-2). 
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The following is an example of pair of self maps in a N. A. Menger 
PM-space which are mutually compatible of type (A) but not compatible. 

E X A M P L E 1 . Let (X,d) be a metric space with the usual metric d where 
X = [0,2] and (X, F, *) be the induced N. A. Menger PM-space with g(t) = 
1 — t and Fxy(t) = H(t — d(x, y)) for all x, y e X, t > 0. Define self maps A 
and B as follows: 

( 2 - x , if 0 < a; < 1, , „ f x , i f 0 < x < l , 
Ax — { and Bx — < 

[2, iil<x<2, [2 , if 1 < x < 2. 

Take xn = 1 - 1 /n. Then FAxnl(t) = H(t-(l/n)) andlinin^oo^ArniW) = 
g(H(t)) - 0. Hence Axn —> 1 as n —> oo. Similarly, Bxn —> 1 as n —> oo. 
Also FABXnBAxn{t) = H{t - (1 - l/n)) and l iningg{F A B X n BAx n { t ) ) = 
g(H(t — 1)) 0 for all t > 0. Hence the pair (A,B ) is not compatible. But 
FABXnBBxn(t) = Hit - (2/n)) and l im^oog{F A B x n B B X n { t ) ) = g(H(t)) = 0 
for all t > 0. Hence the pair (A, B) is compatible of type (A-l). Similarly, 
the pair (A, B) is compatible of type (A-2). Therefore A and B are mutually 
compatible but not compatible maps. 

Next, we cite the following propositions which gives the condition under 
which the Definitions 6, 8 and 9 becomes equivalent. 

PROPOSITION 1 . Let A and B be self maps of a N. A. Menger PM-space 
(X,F,*). 

(a) If B is continuous then the pair (A,B) is compatible of type (A-l) iff A 
and B are compatible. 

(b) If A is continuous then the pair (A, B) is compatible of type (A-2) iff A 
and B are compatible. 

Proof, (a) Let {xn\ be a sequence in X such that Axn. Bxn —> 2 for some 
2 in X as n —• 00 and let the pair (A, B) be compatible of type (A-l). Since 
B is continuous, we have BAxn —> Bz and BBxn —> Bz and so 

g(FABXnBAxn{t)) < g{FABXnBBXn(t)) + g{FBBXnBAxn(t)) -> 0 

as n —> 00. Hence the mappings A and B are compatible. 
Now, let A and B be compatible. Therefore, using the continuity of B, 

we have 

g(FABxnBBXn(t)) < g(FABxTlBAxn(t)) + g(FBAxnBBXn(t)) 0 

as n —> 00. Hence the mappings A and B are compatible of type (A-l). 
(b) The proof is similar with (a). • 

Next, we give some properties of compatible mappings of type (A-l) and 
type (A-2) which will be used in our main theorem. 
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P R O P O S I T I O N 2 . Let A and B be self maps of a N. A. Menger PM-space 
(X,F,*). If the pair (A,B) is compatible of type (A-l) and Az = Bz for 
some z in X then ABz = BBz. 

Proof. Let {xn} be a sequence in X defined by xn — x for n € N and let 
Az = Bz. Then we have Axn —> Az and Bxn —• Bz. Since the pair (A, B) 
is compatible of type (A-l), we have g{FABzBBz(t)) = g(FABXnBBxn{t)) 0 
as n —> oo. Hence ABz = BBz. » 

P R O P O S I T I O N 3 . Let A and B be self maps of a N. A. Menger PM-space 
(X, F, *). If the pair (A, B) is compatible of type (A-2) and Az = Bz for 
some z in X then BAz — AAz. 

Proof. The proof is similar with the proof of Proposition 2. • 

P R O P O S I T I O N 4 . Let A and B be self maps of a N. A. Menger PM-space 
(X, F, *). If the pair (A, B) is compatible of type (A-l) and {xn} is a sequence 
in X such that Axn, Bxn —> z for some z in X as n —> oo then BBxn Az 
if A is continuous at z. 

Proof. Since A is continuous at z and the pair (A, B) is compatible of type 
(A-l), we have ABxn —> Az and g(FABxnBBxn(t)) 0 as n oo. Therefore 

g{FAzBBxn{t)) < g(FAzABxn(t)) + g(FABxnBBxn(t)) -> 0 
as n —> oo. Hence BBxn —> Az as n —• oo. • 
P R O P O S I T I O N 5 . Let A and B be self maps of a N. A. Menger PM-space 
(X, F, *). If the pair (A, B) is compatible of type (A-2) and {xn} is a sequence 
in X such that Axn, Bxn —> z for some z in X as n —> oo then AAxn Bz 
if B is continuous at z. 

Proof. The proof is similar with the proof of Proposition 4. • 

2. Main results 
T H E O R E M 1 . Let A,B,P,Q,S and T be self maps on a complete N. A. 
Menger PM-space (X, F, *) satisfying: 
(a) P(X) Ç ST(X), Q(X) Ç AB(X), 
(b) g{FPx,Qy{t)) < <f>(g(FABXisTy{t))), 
(c) 

' g(FABx,STy(t)) + g(FpXjABx(t)) + 9(FQy,STy(t)), 
g{Fpx,ABx{t)) + g(FQyiABx{t)), 
g{FPx,STy{t)) + g(FQy,STy(t)) 
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for all x, y & X and t > 0 ; where a function (j> : [0, oo) —> [0, oo) satisfies 
the condition ($), 

(d) AB = BA, ST = TS, PB = BP, QT = TQ, 
(e) either P or AB is continuous, 
(f) the pairs (P,AB) and (Q,ST) are mutually compatible of type (A). 

Then A, B,P,Q,S and T have a unique common fixed point. 

Proof. Let xq be an arbitrary point of X. By (a), there exists xi,x% € X 
such that Pxo = STxi = yo and Qx\ = ABxi = y\. Inductively, we can 
construct sequences {xn\ and {yn} in X such that Px<2n = STx2n+i = V2n 
and Qx2n+i = ABx2n+2 = V2n+1 for n = 0 , 1 , 2 , . . . . 

Stepl. We shall show that the sequence {yn} is a Cauchy sequence. 
Since Px2n = STx2n+i, using (b), we have g(Fy2ny2n+1(t)) = 

9(Fpx2nQy2n+1(t)) < <p(g(Fy2ny2n+1(t))) and since Qx2n+1 = ABx2n+2, we 
also have g{Fy2n y2n_1 (t)) = g{FpX2ntQy2n_1 (t)) < <P(g(Fy2n_ m- Thus 
9(Fyn,yn+1(t)) < ^g{Fyn_^yn{t))) for n = 1 , 2 , . . . . Hence g(Fyntyii+1(t)) < 
<frn(g(Fyo yi (t))) for n = 1,2, Therefore, from Lemma 1, 

(2.1) 5 ( i ^ n i l i n + 1 ( i ) ) - > 0 a s n - > o o . 

Suppose {yn} is not a Cauchy sequence. Since g is strictly decreasing, from 
Lemma 2, there exist £q > 0, ¿o > 0 and two sequences {m^}, {nk} of positive 
integers such that 

(a) mk > rifc + 1 and n^ —> 00 as k —> 00, 

(b) g(Fyrnktynk(t0)) > g( 1 - £0) and g(Fymk_uVnk(to)) < g(l - £0) for 
k = l,2,... 

Therefore 

5(1-e0) < g(Fymk,ynk(t0)) 

< diFy^^^ito)) + g{Fyrnk_uynk(t0)) 

< g(Fymk,ymk-Ato)) + g(l - eo) 

and letting k —• 00, we have 

(2-2) limg(Fy y (to)) =g(l~ e0). n—>00 K K 

On the other hand, we have 

g( 1 - eo) < g(Fymk,ynk (to)) 
(2-3) < g(Fymk,ynk+1(t0)) + g(Fynk+1,ynk(t0)). 

Without loss of generality assume that both m& and n^ are even. Using (c), 



A common fixed point theorem 843 

we have 

9(Fymk,ynk+i (t0)) = g(FP «¿raiu ,QXmk +1 (io)) 

( 9(Fymk-l,ynk (<o)) + 0 ( ^ î / r n f c , ( ¿ o ) ) 
+g{Fynk + uynk (io)), 

5(-Fî/mfc,!/mfc-l(Î0)) + 9{Fymk_uynk + 1(to)), 
9(Fynk + 1,ynk (to)) + g(Fymk,ynk (to)) 

<<t> max 

<<t> max 

V / 

g(l - £0) + g(Fymk ,ymk-1 (to)) 

+9(Fynk + l,ynk(t0)), 

9(FVmk ,ymk-1 

+9(Fynk,ynk + 1(to)), 

,9(Fynk + uynk(to)) +g(Fymk,ynk (to)) J 

Substituting this in (3.3), letting k —> oo and using (3.1) and (3.2), we have 
g(l - e 0 ) < <t>(g( 1 " e o ) ) < g( 1 " e o ) 

which is a contradiction. Hence {yn} is a Cauchy sequence. Since (X, F, *) is 
complete, it converges to a point z in X. Also its subsequences converge as 
follows: {Px2n} —> -2, {ABx2n} Z, {Qx2n+l} 2 and {STx2n+1} Z. 

Case I. AB is continuous, and (P, AB) and (Q, ST) are compatible of 
type (A-l). 

Since AB is continuous, AB(AB)x2n —• ABz and (AB)Px2n ABz. 

Since (P, AB) is compatible of type (A-l), PPx2n —' ABz. 
Step 2. By taking x = Px2n, y = £2n+i in (c), we have 

g(FpPx2n,Qx2n+l(t)) 

' 9(F(AB)Px 2n ,STx 2n+l )) ' * 

+g(FQX2n+uSTX2n+l (t)), 

g(FPPx2n,(AB)Px2n(t)) + 9(FQ 

X2n+u(AB)Px2n (t)), 

g(FpPx2„,STx2n+l(t)) + g(FQx2n+l,STx2n+l(t)) j 

this implies that, as n —> oo 

<4> max 

V 

/ 
g(FABz,z(t)) < 4> max 

' g(FABz,z(t)) + g(FABz,ABz(t)) + g(Fz,z(t)), ' 

g(FABz,ABz(t)) + g(FZiABz(t)), 

g(Fz,z(t)) + g(Fz,z(t)) 

= 4>(g(FABz,z(t))) 

\ 

which means that, by Lemma 1, g(FApz,z(t)) = 0 for all t > 0 and it follows 
that z = ABz. 
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Step 3. By taking x = z, y = X2n+i in (c), we have 

9{Fpz,Qx2n+1{t)) 

<<t> 

( 

max 

V 

g{FABz,STx a„+i(i)) + g{Fpz,ABz(t)) 

+9{FQx2n+l,STx2n+l (*))> 
g(FPz,ABz(t)) + g(FQx2n+uABz{t)), 

k g{FpZ,STx2n+1(t)) + g(FQx2n+liSTx2n+l(t)) , / 
this implies that, as n —> oo 

/ 
g{Fpx,z{t)) < <t> max 

\ 

g(FZtZ(t))+g(FPz,z(t))+g(Fz,z(t)), 
g(FPz>z(t)) + g(Fz,z(t)), 
g(FPz<z(t)) + g(FZtZ(t)) 

= 4>(g(FpZtZ(t))) 

which means that z — Pz. Therefore, z = ABz = Pz. 
Step 4. By taking x = Bz, y = X2n+i in (c) and using (d), we have 

g(FP(Bz)tQX2n+1(t)) 

<<t> max 

/ g(FAB(Bz),STx2n+i(t)) + g(Fp(Bz),AB(Bz)(t)) 
+g(FQX2n+uSTx2n+i(t)), 

9{Fp(Bz),AB(Bz)(t)) + 9(Fq 

k g(Fp(Bz),STx2n+iW) + si^n+l^+lii)) > 

this implies that, as n —> 00 
\ 

g(FBz,z(t)) < 

( 
max 

\ </(iW*)) + g(FBz,Bz(t)) + g(Fz,z(t))i} 
g{FBz,Bz{t)) + g(Fz,Bz(t)), 

g(FBz,z(t)) + g(FzAt)) 

= 4>(g(FBz,zm 
\ 

which means that z = Bz. Since z = ABz, we have z = Az. Therefore, 
z — Az = Bz = Pz. 

Step 5. Since P(X) C ST(X), there exists w (z X such that z = Pz = 
STw. By taking x = X2n, y = w in (c), we have 

/ 

9(FPX2n,Qw(t)) < 4> max 

g(FABx2n,STw(t)) + g(FpX2n!ABx 2„(i)) 

g(Fpx2n,ABx2n(t)) + g(FQw,ABx2n (*) ) > 
g(FpX2n,sTw(t)) + g(FQtl/isTW(t)) / 
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this implies that, as n —>• oo 
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g(Fz,Qw{t)) < <t> 

( g(Fz,z(t)) + g(Fz,z(t)) + g{FQw,z{t)),' 
max • g(FZtZ(t)) + g(FQWtZ(t)), 

V t g(Fz,z(t)) + g(FQw,z(t)) 

= 4>{g(Fz,QW{t))) 
which means that z = Qw. Hence, STw = 2 = Qw. Since (Q,ST ) is 
compatible of type (A-l), we have Q(ST)w = ST(ST)w. Thus, STz = Qz. 

Step 6. By taking x = X2n, y — z m (c) and using Step 5, we have 

/ 

g(FPx2n,Qz(t)) < </> max 

\ g{FABx2n,STZ{t)) + g{FpX2ntABx2n{t)) 
+g{FQz,STz{t)), 

g{FpX2ntABx2n(t)) + g(FQz,ABx2n(t)), 

\ g(FpX2n,STz(t)) + g(FQz>STz{t)) ) / 

this implies that, as n —> 00 

( { g(Fz,QZ(t)) + g{Fz,z{t)) + g(FQz,Qz(t)), 
g(Fz,Qz(t)) <4> max i g(Fz,z(t)) + g(FQz<z(t)), 

V [ g(Fz,Qz(t)) + g(FQZtQz(t)) 
= <t>(g(Fz,Qz(t))) 

which means that 2 = Qz. Since STz = Qz, we have 2 = STz. Therefore, 
z = Az = Bz = Pz = Qz = STz. 

Step 7. By taking x = X2n, y = Tz in (c) and using (d), we have 

g(FPx2n,Tz(t)) < <t> max 

V / 

( g(FABX2n,sT(Tz)(t)) + g(FPx2nABx2n(t)) \ 
+g{FQ[TZ),ST(TZ){t)), 

g(FpX2n,ABX2n(t)) + g(FQ(Tz)ABx2n W ) ' 
. g{FpX2n,ST{Tz){i)) +5(-fQ(T^),5T(T2)(i)) , 

this implies that, as n —> 00 

' g(Fg,Tz(t)) + g(Fz,z(t)) + g(FTz,Tz(t)),' 

g(Fz,z(t))+g(FTz,z(t)), 
g(Fz,Tz(t)) + g(FTZ,TZ(t)) 

= 4>(g(Fz,Tzm 
which means that z = Tz. Since z = STz, we have 2 = Sz. Therefore, 
2 = Az = Bz =- Pz = Qz = Sz = Tz, that is, z is the common fixed point 
of A, B, P, Q, S and T. 

g(Fz,Tz(t)) < 0 max 
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< max 

Similarly, it is clear that z is also the common fixed point of A, B, P, Q, S 
and T in the case AB is continuous, and (P, AB) and (Q, ST) are compatible 
of type (A-2). 

Case I I . P is continuous, and (P, AB) and (Q, ST) are compatible of 
type (A-l). 

Since P is continuous, PPx2n Pz and P(AB)x2n —> Pz. Since 
(P,AB) is compatible of type (A-l), AB{AB)x2n —• Pz. 

Step 8. By taking x = ABx2n, y = X2n+\ in (c), we have 

m 
/ ( \ \ 

FP(AB 
B)x 2n(i)) 

+g(FQx2n+l,STx2u+l (0)) 
g(Fp(AB)x2n,AB(AB)x2„(t)) + 9{Fq AB(AB)x2n(t))> 

\ g(Fp(AB)x2n,STx2n+l(t)) +9(Fq J 
this implies that, as n —> oo 

{ g(Fpz,z(t)) + 9(FpzMt)) + g(FzAt)), 
g(FPZiZ(t)) <4> max g(Fpz,pz(t)) + g(FZipz(t)), 

V g(FPzAt)) + g(Fz,z(t)) 
= mppzAt))) 

which means that z = Pz. Now using Step 5-7, we have z = Qz = STz = 
Sz = Tz. 

Step 9. Since Q(X) C AB(X), there exists w € X such that z = Qz = 
ABw. By taking x = w, y = X2n+i in (c), we have 

g(FpW,Qx2n + l(t)) 
{ 

< max 

V 

g{F P w At)) < <f> max < 

g{FABw,STx2n+\it)) + g(Fpw,ABw(t)) 
+g(FQx2n+uSTx2n+l 00)> 

g{Fpw,ABw(t)) + g(FQX2n+ltABw(t)), 
g(FpW,STx 2n+l(0) + g(FQx2n+l,STx2n+l (t)) J / 

this implies that, as n —> oo 

' g{FzAt)) + g(FPwAt)) + g(FzAt)).' 

g(FPwAt))+g(FzAt)), 
g(FPwAt)) + g(FzAt)) 

= 4>(g(FPwAt))) 
which means that z = Pw. Since z = Qz = ABw, Pw = ABw. Since 
(P,AB ) is compatible of type (A-l), we have Pz = ABz. Also 2 = Bz 
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follows from Step 4. Thus, z = Az = Bz = Pz. Hence, 2 is the common 
fixed point of the six maps in this case also. 

Similarly, it is clear that z is also the common fixed point of A, B, P, Q, S 
and T in the case P is continuous, and (P, AB) and (Q, ST) are compatible 
of type (A-2). 

Step 10. For uniqueness, let v (v / z) be another common fixed point 
of A, B, P, Q, S and T. Taking x = z, y = v in (c), we have 

g{Fpz,Qv{t)) 
( 

<4> max 

V 

g{FABz,STv{t)) + g{Fpz,ABz{t)) + g{FQViSTv{t)), Ì ^ 
g(Fpz,ABz(t)) + g(FQv,ABz(t)), 
g(Fpz,sTv(t)) + g(FQv,sTv(t)) 

which implies that 

g(Fz,v(t)) < <t> 

{ 
max 

f g(Fz,v(t)) + g{FZiZ(t)) + g(Fv,v(t)), ) \ 
g(FZtZ(t)) + g(Fv,z(t)), 
g(FZtV(t)) + g(FViV(t)) 

= 4>(g{FZtV(t))) 

so we have z = v. This completes the proof of the theorem. • 

V 

9(FpX,Qy(t)) < 

If we take A = B = S = T = Ix (the identity map on X) in Theorem 1, 
we have the following: 

C O R O L L A R Y 1 . Let P and Q be self maps on a complete N. A. Menger 
PM-space (X,F,*). If g(FPx>Qv(t)) < and 

( g(FX,y(t)) + g(FpXiX(t)) + g(FQy,y(t)), 

tiax g(FpXtX{t)) + g{FQy7X(t)), 

V g{FPx,y(t)) + g(FQy,y(t)) 
for all x, y G X and t > 0, where a function (f> : [0,00) —• [0, 00) satisfies the 
condition ($), then P and Q have a unique common fixed point. 

In [7], Sehgal and Bharucha-Reid presented the probabilistic version of 
the Banach contraction theorem. Next we prove such theorem for N. A. 
Menger PM-spaces as follows: 

C O R O L L A R Y 2 . Let P be self maps on a complete N.A. Menger PM-space 
(X,F,*). If 

g(FPxPy(t)) < <t>(g(Fxy(t))) 

for all x, y € X and t > 0, then P has a unique common fixed point. 
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Proof. The proof follows from Corollary 1 since P — Q and 

E X A M P L E 2 . Let ( X , d) be a metric space with the usual metric d where 
X = [0,1] and (X, F, *) be the induced N. A. Menger PM-space with g(t) -
1 - t a n d Fxy(t) = H(t - d(x, y)) for all x, y e X , t > 0. L e t A, B, P, Q, S 
and T be maps from X into itself defined as 

Ax = x/5, Bx = x/3, Px = x/6, Qx = 0, Sx = x, Tx = x/2 

for all x £ X. Then 

and 

P ( X ) = 

Q(X) = {0} C 

r i i r i i c 

0, 
15 

= S T ( X ) 

= AB(X). 

If we take t = 1 and a — 1, we see that the condition (b) and (c) of the main 
Theorem is satisfied. Clearly, conditions (d) and (e) of the main Theorem 
are also satisfied. Moreover, the pairs (P,AB) and (Q,ST) are mutually 
compatible of type (A). In fact, if limn^oo xn = 0, where {xn} is a sequence 
in X such that limn^oo Pxn = lim^—Kx, ABxn = 0 and limf^oo Qxn = 
l i m ^ o o STxn = 0 for some 0 £ I , then 

}^o9(FP(AB)xn,AB(AB)xn(t)) = 9(H(t)) = 0 

and 
l i m g(F{AB)PxntPPXn(t)) = g(H(t)) = 0 n—>oo 

hence (P, AB) and (Q, ST) are compatible of type (A-l). Similarly, the pairs 
(AB, P) and (ST, Q) are also compatible of type (A-2). Thus, all conditions 
of the main Theorem are satisfied and 0 is the unique common fixed point 
of A, B, P, Q, S and T. 
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