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SOME PROPERTIES OF POSITIVE WEAK
DUNFORD-PETTIS OPERATORS ON BANACH LATTICES

Abstract. We characterize Banach lattices for which each positive weak Dunford-
Pettis operator is weakly compact. As consequences, we obtain some interesting results
on reflexive Banach lattices.

1. Introduction and notation

An operator T from a Banach space E into another F' is said to be
weak Dunford—Pettis if the sequence (y},(T(zr))) converges to 0 whenever
(z) converges weakly to 0 in F and (y},) converges weakly to 0 in F’. The
operator T is called Dunford—Pettis if it carries weakly compact subsets of
E onto compact subsets of F'. Note that each Dunford-Pettis operator is
weak Dunford-Pettis but a weak Dunford-Pettis operator is not necessary
Dunford—Pettis.

On the other hand, it is well known that a weakly compact operator is
not necessary Dunford—Pettis. And as each Dunford-Pettis operator is weak
Dunford-Pettis, it is natural to ask if each weakly compact operator is weak
Dunford—Pettis. The answer is negative. In fact, since the Banach space
L2 ([0,1]) is reflexive, its identity operator is weakly compact, but it is not
weak Dunford-Pettis.

Note that a Banach space E has the Dunford-Pettis property if every
weakly compact operator defined on F (and taking their values in another
Banach space) is Dunford—Pettis and hence weak Dunford-Pettis.

Conversely, a weak Dunford—Pettis operator is not always weakly com-
pact. In fact, since the Banach space I! has the Dunford—Pettis property, its
identity operators is weak Dunford—-Pettis but it is not weakly compact.
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Our goal in this paper is to characterize Banach lattices for which each
positive weak Dunford-Pettis operator is weakly compact. More precisely,
we will prove that if E is a Dedekind o-complete Banach lattice, then each
positive weak Dunford—Pettis operator from FE into E is weakly compact
if and only if E is reflexive (Theorem 2.1). Next, whenever E and F are
two Dedekind o-complete Banach lattices, we will show that if each positive
weak Dunford—-Pettis operator from F into F is weakly compact, then E is
reflexive or F' has an order continuous norm (Theorem 2.2). After that, by
an example, we will establish that the second necessary condition of Theorem
2.2 is not sufficient (Remark 2.4). Finally, we will give some consequences
(Corollaries 2.3 and 2.5).

To state our results, we need to fix some notation and recall some defini-
tions. A vector lattice E is an ordered vector space in which sup(z, y) exists
for every z,y € E. A vector lattice is said to be Dedekind o-complete if ev-
ery nonempty countable subset that is bounded from above has a supremum.
A Banach lattice is a Banach space (E, ||.||) such that F is a vector lattice
and its norm satisfies the following property: for each x,y € F such that
|z| < |y|, we have ||z|]| < ||y||.- If E is a Banach lattice, its topological dual
E’, endowed with the dual norm and the dual order, is also a Banach lattice.

A norm ||.|| of a Banach lattice E is order continuous if for each generalized
sequence (xo) such that z, | 0 in E, the sequence (zo) converges to 0 for
the norm ||.|| where the notation z, | 0 means that the sequence (z,) is

decreasing, its infimum exists and inf(z,) = 0. A Banach lattice E is said
to be an AM-space if for each z,y € E such that inf (z,y) = 0, we have
Iz + yll = max{||=[|, ||y]l}-

We will use the term operator T : E — F between two Banach lattices
to mean a bounded linear mapping. It is positive if T'(z) > 0 in F whenever
z > 0in E. It is well known that each positive linear mapping on a Banach
lattice is continuous.

For unexplained terminology on Banach lattice theory and positive op-
erators, we refer the reader to [1].

2. Main results

A Banach lattice F is said to be a KB-space, whenever every increasing
norm bounded sequence of E* is norm convergent. As an example, each
reflexive Banach lattice is a KB-space.

Note that each KB-space has an order continuous norm, but a Banach
lattice with an order continuous norm is not necessary a KB-space. In fact,
the Banach lattice ¢g has an order continuous norm but it is not a KB-space.
However, if E is a Banach lattice, the topological dual E’ is a KB-space if
and only if its norm is order continuous.
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Let us recall from Theorem 5.16 of Schaefer [3], that a Banach lattice
E is reflexive if and only if the norms of its topological dual E' and of its
topological bidual E” are order continuous.

Our principal characterization is the following.

THEOREM 2.1. Let E be a Dedekind o-complete Banach lattice. Then the
following assertions are equivalent:

1) E is reflexive.

2) FEach positive weak Dunford-Pettis operator from E into E is compact.

3) For all operators S,T : E — FE such that 0 < S < T and T is weak
Dunford-Pettis, S is compact.

4) Each positive weak Dunford—Pettis operator from E into E is weakly com-
pact.

5) For each positive weak Dunford—Pettis operator T : E — E, the operator
product T? is weakly compact.

Proof. 1) = 2) Let T : E — FE be a positive weak Dunford—Pettis op-
erator. Since E is reflexive, its identity operator Idg : E — E is weakly
compact. Then it follows from Theorem 5.99 of [1] that the composed oper-
ator T = Idg o T : E — E is Dunford—Pettis. Finally, Theorem 5.81 of [1]
implies that T' is compact.

2) => 3) Let S,T : E — E be two operators such that 0 < S < T and
T is weak Dunford-Pettis. By Theorem 4.5 of Kalton-Saab (2], S is weak
Dunford—Pettis and hence it is compact.

3) = 4) Let T : E — FE be a positive weak Dunford-Pettis operator.
Since 0 < T < T, it follows that T is compact, and hence it is weakly
compact.

4) == 5) Obvious.

5) = 1) Step 1. We prove that the norm of F is order continuous. If
not, it follows from the proof of Theorem 1 of Wickstead [4] that E contains
a closed sublattice isomorphic to [*° and there is a positive projection P :
E — [*. Let i :[{°° — FE be the canonical injection of [ into E. Since [*°
has the Dunford—Pettis property, the operator T defined by

T=ioP:E—I[*—>F
is positive and weak Dunford—Pettis. But, its second power
(T?:E—1® —E—I° —E,
which coincides with T, is not weakly compact. If not, the operator

PoToi:l*° 5 E—[®° > E—-][®
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would be weakly compact. But P oT o4, which is just the identity operator
Idj, is not weakly compact. This presents a contradiction and hence E has
an order continuous norm.

Step 2. We prove that E is a KB-space. If not, as the norm of FE
is order continuous, it follows from the proof of Theorem 2 of Wnuk [5] the
existence of a closed sublattice of E, which is isomorphic to ¢g and a positive
projection Py : E — cp. Let i3 : ¢ — E be the canonical injection of ¢
into E. Since ¢y has the Dunford—Pettis property, the operator defined by

Ti=ioP: F— ¢cy— FE,
is weak Dunford—Pettis. But, its second power
(T1)2:E——>co—>E—>co—>E,

which coincides with T, is not weakly compact (if not, the operator Pj o
Ty o1 = Idg, : co — cog would be weakly compact and this is false). This
presents a contradiction and hence F is a KB-space.

Step 3. We show that the norm of the topological dual E’ is order
continuous. If not, it follows from the proof of Theorem 1 of Wickstead [4]
the existence of a sublattice H of E isomorphic to I! and a positive projection
Py : E — 1. Let Ty be the operator defined by Tho =iso Py: E - [! - E
where i : I! — F is the canonical injection of {! into E. Since /! has the
Dunford Pettis property, T is weak Dunford-Pettis but (T)? = T, is not
weakly compact. If not, the operator Py o Ty 0 iy = Idj would be weakly
compact, and this gives a contradiction.

Whenever E # F in Theorem 2.1, we obtain the following necessary
conditions.

Theorem 2.2. Let E and F be two Dedekind o-complete Banach lat-
tices. If each positive weak Dunford—Pettis operator from E into F is weakly
compact, then one of the following assertions is valid:

1) E is reflezive.
2) F has an order continuous norm.

Proof. It suffices to prove that if the norm of F' is not order continuous,
then E is reflexive i.e. E and E’ are KB-spaces (Theorem 5.16 of Schaefer
[3]). Assume that the norm of F' is not order continuous and hence it is not
reflexive.

Step 1. We prove that E’ has an order continuous norm i.e. E’ is a
KB-space. If not, it follows from the proof of Theorem 1 of Wickstead [4]
the existence of a sublattice H of E which is isomorphic to I! and a positive
projection P : E — ['. Also, since F is not reflexive, its closed unit ball
Br is not weakly compact and then there exists a sequence (y,) in (Bp)™*
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which does not have any weakly convergent subsequence (Eberlein-Smulian’s
Theorem).

Consider the operator S defined by
o0
S:It 5 F, () — Z’\"y"'
n=1

Since the Banach space {! has the Dunford-Pettis property, the positive op-
erator S o P is weak Dunford—Pettis. But it is not weakly compact, indeed,
as the sequence (S(er)) = (yn) does not have any weakly convergent subse-
quence, where (e,,) is the canonical basis of I!. This presents a contradiction,
and hence E’ is a KB-space.

Step 2. We prove that F is reflexive. For this it suffices to show that F
is a KB-space.

In the first time, we prove that the norm of F is order continuous. If
not, it follows from the proof of Theorem 1 of Wickstead [4] that E (resp.
F) contains a closed sublattice isomorphic to [* and there is a positive
projection Py : E — [ (resp. @ : F — [*°).

Let 43 : I®° — E (resp. j1 : I — F’) be the canonical injection of [*° into
E (resp. into F'). Since I*® has the Dunford—Pettis property, the operator
Ty defined by

T1=j10P1IE—>loo~—>F

is positive and weak Dunford-Pettis, but it is not weakly compact. If not,
the operator

QroTio I - E—>I*® > F =%

would be weakly compact. But @1 o T7 0 i1 = Idj~ is not weakly compact.
This presents a contradiction and hence F has an order continuous norm.

In the second time, we establish that F is a KB-space. If not, as the
norm of E is order continuous, it follows from the proof of Theorem 2 of
Wnuk [5] the existence of a closed sublattice of E isomorphic to ¢y and a
positive projection P : £ — ¢g. Let i : cg — F be the canonical injection
of ¢g into F.

Also, as the norm of F' is not order continuous, then F' contains a closed
sublattice isomorphic to ¢p. Let jo : ¢g — F be the canonical injection. If
T is the operator defined by

TQZjQOPQZE—)CO-—)F.

This operator is weak Dunford—-Pettis, but it is not weakly compact. If not,
the operator

Thoig=ja:co — F
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would be weakly compact, but this is not true. This presents a contradiction
and hence F is a KB-space. This ends the proof of the Theorem.

As a consequence of Theorem 5.24 of [1] and Theorem 2.2, we obtain the
following characterization of reflexive Banach lattices:

COROLLARY 2.3. Let E and F be two Dedekind o-complete Banach lat-
tices such that F is an infinite-dimensional AM-space with unit. Then the
following assertions are equivalent:

1) E is reflexive.

2) Each operator from E into F is weakly compact.

3) FEach positive weak Dunford—-Pettis operator from E into F is weakly com-
pact.

Proof. 1) = 2) Follows from Theorem 5.24 of [1].

2) = 3) Obvious.

3) = 1) The norm of the Banach lattice F' is not order continuous.
Indeed, if the norm of the Banach lattice F' is order continuous, as F' is an
AM-space with unit, it follows from Theorem 5.10 of Schaefer [3] that the
closed unit ball Bp = [—e, €] is weakly compact and hence E is reflexive.
Now, by Corollary 2 of ([3], paragraph (9.9)), the Banach lattice F is finite-
dimensional. This gives a contradiction. Finally, since the norm of the
Banach lattice F' is not order continuous it follows from Theorem 2.2 that
E is reflexive.

REMARK 2.4. The second necessary condition of Theorem 2.2 is not suth-
cient. In fact, if we take E = F = ¢y, it is well known that ¢y is not reflexive.
But since ¢y has the Dunford-Pettis property, its identity operator Id., : co
— ¢g is weak Dunford—Pettis but it is not weakly compact. Although, the
norm of ¢g is order continuous.

However, we have the following property:

COROLLARY 2.5. Let E be an infinite-dimensional AM-space with unit
and F' a Banach lattice. Then the following assertions are equivalent:

1) Each positive operator from E into F' is weakly compact.

2) FEach positive weak Dunford-Pettis operator from E into F is weakly com-
pact.

3) The norm of F is order continuous.

Proof. 1) = 2) Obvious.

2) = 3) By Corollary 2 of ([3], paragraph (9.9)), the AM-space E is
not reflexive, and hence it follows from Theorem 2.2, that the norm of F is
order continuous.
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3) => 1) Let T be a positive operator from E into F. Since E is an
AM-space with unit e, we have Bg = [—e, e] and then T(Bg) =T ([—e,€]) C
[-T(e),T(e)]. As the norm of F is order continuous, Theorem 5.10 of (3]
implies that [—-T'(e),T'(e)] is weakly compact. And hence T is weakly com-
pact.

REMARK 2.6. If the Banach lattice F is an AM-space without unit, the
precedent Corollary is false. In fact, if we take £ = F = ¢p, the iden-
tity operator Id., : co — cp is weak Dunford-Pettis but it is not weakly
compact.
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