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SOME PROPERTIES OF POSITIVE WEAK 
DUNFORD-PETTIS OPERATORS ON BANACH LATTICES 

Abstract. We characterize Banach lattices for which each positive weak Dunford-
Pettis operator is weakly compact. As consequences, we obtain some interesting results 
on reflexive Banach lattices. 

1. Introduction and notation 
An operator T from a Banach space E into another F is said to be 

weak Dunford-Pettis if the sequence (y'n(T(xn))) converges to 0 whenever 
(xn) converges weakly to 0 in E and (y'n) converges weakly to 0 in F'. The 
operator T is called Dunford-Pettis if it carries weakly compact subsets of 
E onto compact subsets of F. Note that each Dunford-Pettis operator is 
weak Dunford-Pettis but a weak Dunford-Pettis operator is not necessary 
Dunford-Pettis. 

On the other hand, it is well known that a weakly compact operator is 
not necessary Dunford-Pettis. And as each Dunford-Pettis operator is weak 
Dunford-Pettis, it is natural to ask if each weakly compact operator is weak 
Dunford-Pettis. The answer is negative. In fact, since the Banach space 
L2 ([0,1]) is reflexive, its identity operator is weakly compact, but it is not 
weak Dunford-Pettis. 

Note that a Banach space E has the Dunford-Pettis property if every 
weakly compact operator defined on E (and taking their values in another 
Banach space) is Dunford-Pettis and hence weak Dunford-Pettis. 

Conversely, a weak Dunford-Pettis operator is not always weakly com-
pact. In fact, since the Banach space I1 has the Dunford-Pettis property, its 
identity operators is weak Dunford-Pettis but it is not weakly compact. 
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Our goal in this paper is to characterize Banach lattices for which each 
positive weak Dunford-Pettis operator is weakly compact. More precisely, 
we will prove that if E is a Dedekind a-complete Banach lattice, then each 
positive weak Dunford-Pettis operator from E into E is weakly compact 
if and only if E is reflexive (Theorem 2.1). Next, whenever E and F are 
two Dedekind cr-complete Banach lattices, we will show that if each positive 
weak Dunford-Pettis operator from E into F is weakly compact, then E is 
reflexive or F has an order continuous norm (Theorem 2.2). After that, by 
an example, we will establish that the second necessary condition of Theorem 
2.2 is not sufficient (Remark 2.4). Finally, we will give some consequences 
(Corollaries 2.3 and 2.5). 

To state our results, we need to fix some notation and recall some defini-
tions. A vector lattice E is an ordered vector space in which sup(x, y) exists 
for every x,y € E. A vector lattice is said to be Dedekind a-complete if ev-
ery nonempty countable subset that is bounded from above has a supremum. 
A Banach lattice is a Banach space (E, ||.||) such that E is a vector lattice 
and its norm satisfies the following property: for each x,y 6 E such that 
I®I < 12/1, we have ||x|| < ||y||. If E is a Banach lattice, its topological dual 
E', endowed with the dual norm and the dual order, is also a Banach lattice. 
A norm ||.|| of a Banach lattice E is order continuous if for each generalized 
sequence (xa) such that xa [ 0 in E, the sequence (xa) converges to 0 for 
the norm ||.|| where the notation xa J. 0 means that the sequence (xa) is 
decreasing, its infimum exists and inf(xa) = 0. A Banach lattice E is said 
to be an AM-space if for each x,y G E such that inf (x, y) = 0, we have 
II® + y\\ — max{||a;||, ||j/||}. 

We will use the term operator T : E —> F between two Banach lattices 
to mean a bounded linear mapping. It is positive if T(x) > 0 in F whenever 
x > 0 in E. It is well known that each positive linear mapping on a Banach 
lattice is continuous. 

For unexplained terminology on Banach lattice theory and positive op-
erators, we refer the reader to [1]. 

2. Main results 
A Banach lattice E is said to be a KB-space, whenever every increasing 

norm bounded sequence of E+ is norm convergent. As an example, each 
reflexive Banach lattice is a KB-space. 

Note that each KB-space has an order continuous norm, but a Banach 
lattice with an order continuous norm is not necessary a KB-space. In fact, 
the Banach lattice Co has an order continuous norm but it is not a KB-space. 
However, if E is a Banach lattice, the topological dual E' is a KB-space if 
and only if its norm is order continuous. 
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Let us recall from Theorem 5.16 of Schaefer [3], that a Banach lattice 
E is reflexive if and only if the norms of its topological dual E' and of its 
topological bidual E" are order continuous. 

Our principal characterization is the following. 

T H E O R E M 2 . 1 . Let E be a Dedekind a-complete Banach lattice. Then the 
following assertions are equivalent: 

1) E is reflexive. 
2) Each positive weak Dunford-Pettis operator from E into E is compact. 
3) For all operators S,T : E —• E such that 0 < S < T and T is weak 

Dunford-Pettis, S is compact. 
4) Each positive weak Dunford-Pettis operator from E into E is weakly com-

pact. 
5) For each positive weak Dunford-Pettis operator T : E —• E, the operator 

product T 2 is weakly compact. 

Proof. 1) 2) Let T : E —> E be a positive weak Dunford-Pettis op-
erator. Since E is reflexive, its identity operator ME • E —• E is weakly 
compact. Then it follows from Theorem 5.99 of [1] that the composed oper-
ator T = IdE o T : E —> E is Dunford-Pettis. Finally, Theorem 5.81 of [1] 
implies that T is compact. 

2) ==> 3) Let S,T : E —> E be two operators such that 0 < S < T and 
T is weak Dunford-Pettis. By Theorem 4.5 of Kalton-Saab [2], S is weak 
Dunford-Pettis and hence it is compact. 

3) =>• 4) Let T : E —» E be a positive weak Dunford-Pettis operator. 
Since 0 < T < T, it follows that T is compact, and hence it is weakly 
compact. 

4) 5) Obvious. 
5) 1) Step 1. We prove that the norm of E is order continuous. If 

not, it follows from the proof of Theorem 1 of Wickstead [4] that E contains 
a closed sublattice isomorphic to Z°° and there is a positive projection P : 
E —> Z°°. Let i : l°° —> E be the canonical injection of Z°° into E. Since Z°° 
has the Dunford-Pettis property, the operator T defined by 

T = ioP:E—+l(X)—>E 

is positive and weak Dunford-Pettis. But, its second power 

(T)2 : E —> Z°° —• E —• Z°° — > E , 

which coincides with T, is not weakly compact. If not, the operator 

P o T o i r Z 0 0 — > Z ° ° — > £ • — > Z ° ° 
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would be weakly compact. But P o T o i , which is just the identity operator 
Idioo, is not weakly compact. This presents a contradiction and hence E has 
an order continuous norm. 

Step 2. We prove that E is a KB-space. If not, as the norm of E 
is order continuous, it follows from the proof of Theorem 2 of Wnuk [5] the 
existence of a closed sublattice of E, which is isomorphic to Co and a positive 
projection P\ : E —> Co. Let i\ : Co —> E be the canonical injection of Co 
into E. Since CQ has the Dunford Pettis property, the operator defined by 

Ti = h o P1 , E —• co —> E, 

is weak Dunford-Pettis. But, its second power 

(7\)2 : E —+ co —• E —• c0 — • E, 

which coincides with Ti, is not weakly compact (if not, the operator Pi o 
T \ o i i = IdC() : co —> Co would be weakly compact and this is false). This 
presents a contradiction and hence E is a KB-space. 

Step 3. We show that the norm of the topological dual E' is order 
continuous. If not, it follows from the proof of Theorem 1 of Wickstead [4] 
the existence of a sublattice H of E isomorphic to I1 and a positive projection 
P2 :E —> I1. Let T2 be the operator defined by T2 = i2 o P2 : E -»I1 -> E 
where i2 : I1 —> E is the canonical injection of I1 into E. Since ll has the 
Dunford-Pettis property, T2 is weak Dunford-Pettis but (T2)2 = T2 is not 
weakly compact. If not, the operator P2 o T2 o i2 = Idii would be weakly 
compact, and this gives a contradiction. 

Whenever E ^ F in Theorem 2.1, we obtain the following necessary 
conditions. 

Theorem 2.2. Let E and F be two Dedekind a-complete Banach lat-
tices. If each positive weak Dunford-Pettis operator from E into F is weakly 
compact, then one of the following assertions is valid: 

1) E is reflexive. 
2) F has an order continuous norm. 

Proof. It suffices to prove that if the norm of F is not order continuous, 
then E is reflexive i.e. E and E' are KB-spaces (Theorem 5.16 of Schaefer 
[3]). Assume that the norm of F is not order continuous and hence it is not 
reflexive. 

Step 1. We prove that E' has an order continuous norm i.e. E' is a 
KB-space. If not, it follows from the proof of Theorem 1 of Wickstead [4] 
the existence of a sublattice H of E which is isomorphic to ll and a positive 
projection P : E I1. Also, since F is not reflexive, its closed unit ball 
Bp is not weakly compact and then there exists a sequence (yn) in ( 5 f ) + 
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which does not have any weakly convergent subsequence (Eberlein-Smulian's 
Theorem). 

Consider the operator 5 defined by 

oo 

n= 1 

Since the Banach space Z1 has the Dunford-Pettis property, the positive op-
erator S o P is weak Dunford-Pettis. But it is not weakly compact, indeed, 
as the sequence (S(en)) = (yn) does not have any weakly convergent subse-
quence, where (en) is the canonical basis of I1. This presents a contradiction, 
and hence E' is a KB-space. 

Step 2. We prove that E is reflexive. For this it suffices to show that E 

is a KB-space. 
In the first time, we prove that the norm of E is order continuous. If 

not, it follows from the proof of Theorem 1 of Wickstead [4] that E (resp. 
F) contains a closed sublattice isomorphic to l°° and there is a positive 
projection Pi : E (resp. Qi : F l°°). 

Let i\ : Z°° —> E (resp. j\ : —> F) be the canonical injection of into 
E (resp. into F). Since l°° has the Dunford-Pettis property, the operator 
T\ defined by 

Ti = h ° Pi : E -> - F 

is positive and weak Dunford-Pettis, but it is not weakly compact. If not, 
the operator 

Qi o Ti o ix : E -h. F l°° 

would be weakly compact. But Qi o T j o ^ = Id[<x is not weakly compact. 
This presents a contradiction and hence E has an order continuous norm. 

In the second time, we establish that E is a KB-space. If not, as the 
norm of E is order continuous, it follows from the proof of Theorem 2 of 
Wnuk [5] the existence of a closed sublattice of E isomorphic to CQ and a 
positive projection P2 : E —> CQ. Let ¿2 : co —• E be the canonical injection 
of co into E. 

Also, as the norm of F is not order continuous, then F contains a closed 
sublattice isomorphic to CQ. Let J2 • CQ F be the canonical injection. If 
T2 is the operator defined by 

T 2 = j 2 o P 2 : E - + c o ^ F . 

This operator is weak Dunford-Pettis, but it is not weakly compact. If not, 
the operator 

T 2 o i 2 = j2 : c 0 F 
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would be weakly compact, but this is not true. This presents a contradiction 
and hence E is a KB-space. This ends the proof of the Theorem. 

As a consequence of Theorem 5.24 of [1] and Theorem 2.2, we obtain the 
following characterization of reflexive Banach lattices: 

COROLLARY 2.3. Let E and F be two Dedekind a-complete Banach lat-
tices such that F is an infinite-dimensional AM-space with unit. Then the 
following assertions are equivalent: 

1) E is reflexive. 
2) Each operator from E into F is weakly compact. 
3) Each positive weak Dunford-Pettis operator from E into F is weakly com-

pact. 

Proof. 1) = > 2) Follows from Theorem 5.24 of [1]. 
2) 3) Obvious. 
3) ==> 1) The norm of the Banach lattice F is not order continuous. 

Indeed, if the norm of the Banach lattice F is order continuous, as F is an 
AM-space with unit, it follows from Theorem 5.10 of Schaefer [3] that the 
closed unit ball Bp = [—e, e] is weakly compact and hence E is reflexive. 
Now, by Corollary 2 of ([3], paragraph (9.9)), the Banach lattice F is finite-
dimensional. This gives a contradiction. Finally, since the norm of the 
Banach lattice F is not order continuous it follows from Theorem 2.2 that 
E is reflexive. 

REMARK 2.4. The second necessary condition of Theorem 2.2 is not suffi-
cient. In fact, if we take E = F = CQ, it is well known that CQ is not reflexive. 
But since co has the Dunford-Pettis property, its identity operator IdCQ : Co 
—> Co is weak Dunford-Pettis but it is not weakly compact. Although, the 
norm of Co is order continuous. 

However, we have the following property: 

COROLLARY 2.5. Let E be an infinite-dimensional AM-space with unit 
and F a Banach lattice. Then the following assertions are equivalent: 

1) Each positive operator from E into F is weakly compact. 
2) Each positive weak Dunford-Pettis operator from E into F is weakly com-

pact. 
3) The norm of F is order continuous. 

Proof. 1) 2) Obvious. 
2) 3) By Corollary 2 of ([3], paragraph (9.9)), the AM-space E is 

not reflexive, and hence it follows from Theorem 2.2, that the norm of F is 
order continuous. 
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3) ==> 1) Let T be a positive operator from E into F. Since E is an 
AM-space with unit e, we have BE — [—e, e] and then T(BE) = T ([—e, e]) C 
[—T(e),T(e)]. As the norm of F is order continuous, Theorem 5.10 of [3] 
implies that [—T(e),T(e)] is weakly compact. And hence T is weakly com-
pact. 

R E M A R K 2 . 6 . If the Banach lattice E is an AM-space without unit, the 
precedent Corollary is false. In fact, if we take E — F = CQ, the iden-
tity operator IdCQ : CQ —> CQ is weak Dunford-Pettis but it is not weakly 
compact. 
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