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THE CONVERGENCE CLASSES OF 
DIVERGENT PERMUTATIONS 

Abstrac t . The scope of the paper is the analysis of the convergence classes of different 
permutations of N. In this paper we prove that with any divergent permutation p it could 
be associated a family 2)(p) of divergent permutations having the power of the continuum 
and such that the convergence class of p is a proper subset of the convergence class of q 
for every q G 33 (p). Also, the convergence classes of the countable families of divergent 
permutations are discussed here. 

1. Introduction 
Let us denote by the family of all permutations of N. 
Given a permutation p G ̂ 3 its convergence class, denoted by ^ ( p ) , 

is defined to be the family of all convergent series Y1 an of real terms such 
that the series ^ ap(n) is also convergent. 

We say that two permutations p,q G are incomparable if the follow-
ing conditions hold true: 

£ ( P ) \ £(<?) 0 and 
A permutation p G is called a divergent permutation if there exists a 
conditionally convergent series an of real terms such that the series ap(n) 
is divergent. The family of all divergent permutations is denoted by 2). We 
say that p is a convergent permutation if p € £ := ^3 \ Thus p G ̂ 3 is 
a convergent permutation if for every conditionally convergent series ^ an 
of real terms the series ^ ap(n) is also convergent. 

We introduce the notation AB for the subset of ^3 defined by the following 
relation: 

p G AB if and only if p G A and p - 1 G B 
for every A,B€ {£,2)}. We note that all these families AB are nonempty. 
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In this paper we prove that with any divergent permutation p it could 
be associated a family 2>(p) of divergent permutations having the power of 
the continuum and such that JZCp) a P r o P e r subset of XX?) f° r every 
q £ 2)(p). Moreover, it may be assumed that any two different elements of 
2)(p) are incomparable and, additionally, that 2)(p) is a subset of one of the 
following three sets: either 2)<£ or 2)2) or il whenever p also belongs to this 
set. For the definition of the family fi we refer to the Section 5. Moreover, 
an example of the permutations p,q £ 2) such that there is no divergent 
permutation a with the property 

5 > ) U C J > ) 

is presented in Section 4. 

2. Notations and terminology 
Let A and B be infinite subsets of N. By D(A,B) and by €(A,B) we 

denote two subsets of defined as follows: 

D(J4,B) = { p £ i P : p(A) = B and the composition I^B ° (p ° 4>A 
is a divergent permutation}, 

and 

&(A, B) = {p P : p(A) = B and the composition ips o (p | A) o <pA 

is a convergent permutation}, 

where (f>A is the increasing bijection of N onto A, p | A is the restriction to 
the A of p, and ips is the increasing bijection of B onto N. To simplify the 
notation, we write p £ il(A) instead of p E i l (A ,p(A) ) where It £ {£, 2)} 
and A is an infinite subset of N. We observe that il(N, N) = il for every 
il £ {£,2)}. 

Let B be a nonempty subset of N. Then a subset I of B is said to be 
an interval of B either if I = 0 or when it can be expressed in the form 
I = B fl {n, n + 1 , . . . , n + m — 1} for some n, m £ N. For abbreviation, 
we write "7 is an interval" instead of "I is an interval of N". Only intervals 
of the subsets of N are discussed in this paper. We will use the symbols 
[n, m], [n,m), (n, m] and (n, m) with n,m £ N, n < m, to denote the 
intervals {n, n + 1 , . . . , m}, {n, n + 1 , . . . , m — 1}, {n + 1, n + 2 , . . . , m} and 
{n + 1, n + 2 , . . . , m — 1} respectively. 

We say A C N is a union of n (or at least n or at most n) mutually 
separated intervals (abbrev.: MSIs) if there exists a family 3 of nonempty 
intervals with (J 3 = A, card 3 = n (or card 3 > n or card 3 < n, resp.) and 
such that dist(/, J) > 2 for any two different members I and J of J. 
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We say that two sequences {xi : i = 1 , 2 , . . . , n} and {yi : i = 1 , 2 , . . . , n} 
of positive integers are spliced when they are both one-one, have no common 
values and satisfy one of the following conditions: either 

xp(i) < Vq(i) < x
P(i+1) < yq(n) for every ¿ = 1,2, . . . , n - l , 

or 
Vq(i) < xp{i) < Vq(i+1) < xp{n) for every i = l , 2 , . . . , n - l . 

Here p and q denote the permutations of the set {1 ,2 , . . . , n} chosen in such 
a way that the sequences { x p ^ : i = 1 ,2 , . . . , n} and {yq(i) '• i = 1 , 2 , . . . , n} 
are both increasing. In other words, two finite sequences x and y are spliced 
if they have the same cardinality, are both one-one, have no common values 
and if the increasing sequence in which the elements of x and y alternate 
could be created from all elements of the sequences x and y. 

A family S of increasing sequences of positive integers having the power of 
the continuum is said to be a Sierpinski's family if any two different members 
{an} and {bn} oi S are almost disjoint. This means that the sets of values of 
the sequences {an} and {bn} have only a finite number of common elements. 

We use the symbol c(p\A), where p € € and A is a nonempty subset of 
N, to denote the following positive integer: 

c(p\A) = max{fc G N : there exists an interval I of the set A 

such that the p(I) is a union of k MSIs of the set p{A) }. 

For abbreviation, we write c(p) instead of c(p \ N) for every p G <£. 
We will denote inclusion by C. The use of the sign c will be reserved for 

cases when the subset is proper. 
We shall write K < L for any two subsets K and L of N whenever K = 0 

or K and L are nonempty and k < I for any k £ K and / € L. 
In this paper we will often identify a given sequence with its set of values. 

Moreover, we will consider only series an of real terms. 

3. Countable families of divergent permutations 
In this section we consider some basic properties of convergence classes of 

a given countable families of divergent permutations. First we remark that 
the convergence class of any divergent permutation is wide in the mean-
ing that the intersection of any countable family of the convergence classes 
of divergent permutations is nonempty. This is expressed in the following 
theorem, which is taken from [8]. 

T H E O R E M 3 . 1 . For each sequence { p n } of divergent permutations there 
exist two conditionally convergent series ^ an and ^ bn of real terms such 
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oo 
that the series £ aPn(k) i-s convergent to zero for every n 6 N and the set of 

k=l 
oo 

the limit points of the series £ bpn(k) 18 equal to M for every n € N. 
k=l 

COROLLARY 3.2. For each sequence {pn} of divergent permutations we 

have D £ ( P n ) # 0-

THEOREM 3.3. Let pn, qn G ty, n € N. If there exists an infinite subset A 

of N such thatpn € <i(p~1(A)) and qn € D(q~l(A)) for every positive integer 

n then 

H E (p» ) \ U £ ( * » ) * 0 -
n=l n=1 

Proo f . Let for every n G M, s„ and an be the increasing mappings of N onto 
the sets p~l (A ) and q~1(A), respectively, and let 6 be the increasing mapping 
of A onto N. Then, by the hypothesis, the permutation <pn defined by <pn = 
Sqnan is divergent for each n € N. Hence, by Theorem 3.1, there exists a 

oo 
conditionally convergent series ^ bn such that all series of the form £ 

k=l 
oo 

n G N, are divergent. Then the series £ ^ G N, are certainly 
k=l convergent because all permutation tpn := Spnsn, n £ N, are convergent. 

Let { a (n ) } be the increasing sequence of all members of the set A. We 
define a new series £ dn by setting da(n) = bn for every n € N and dn = 0 
for the remaining indices n € N. 

It can be readily checked that the series £ dn and any of its pn - rear-
oo 

rangements i.e. the series £ n 6 ^ a r e convergent. This follows 
k=1 

immediately from the relation 

YldPn(i) = E ^ W = ^2bSpn(i) 
iel ieB ieB jeJ 

which holds for every nonempty interval I, where B = I H p~1(A) and 
J = [min s " 1 (/ fl p " 1 (A ) ) , max s^1 (/ D p~1(A))]. 

oo 
On the other hand, all series of the form £ ^<jn(fc)' n e N, are diver-

fc=i 
gent. This assertion follows from the following relation which holds for every 
nonempty interval J: 

= X X n M = E ^ < M « > = E Vi ( j )> 
iel ieB ieB jeJ 
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where B = I fl qn 1 (A) and I = [min<Tn(J),maxcrTl(J)]. The proof is com-
pleted. • 
COROLLARY 3.4. Let £ ip. If there exists an infinite subset A of N 
such that p G and q G D(q~1(A)) then 

C O R O L L A R Y 3 . 5 . Let p,q G ty. If ^ Z X ? ) then for any infinite 
subset A of N the following implication proves true: 

if pE then q G 

C O R O L L A R Y 3 . 6 . Let p,q € If J2(p) = X X ^ ) then for any infinite 
subset A of N the following relation holds: 

pGi(p-1(i4)) if and only if qe€(q~1(A)). 

Let pi G and let A{ be an infinite subset of N for every i = 1 , 2 , . . . , n. 
Assume that the sets A\, ..., An, form a partition of N as well as the 
sets p1(A1),p2(A2), • • .,pn(An), do. 

Moreover, assume that the action of any permutation pi is concentrated 
on the set Ai in the sense that all permutations qi, i = 1 , 2 , . . . ,n, and the 
permutation <f> are convergent. Here 

. = ipi(k)iorkeN\Ai, 

17i(fc) for k G Ai, 

for every i = 1 , . . . , n and 
4>(k) :=7i(k), 

for k G Ai and i = 1 , . . . , n, where 7i is the increasing bijection of the set Ai 
onto the set Pi(Ai) for every i = 1 , . . . , n. Then there is a following relation 
between the convergence classes of permutations pi, i = 1 , . . . ,n, and the 
convergence class of the permutation a defined by a(k) = pi(k) for k E Ai 
and i = 1 , . . . , n. 

n 
L E M M A 3 . 7 . We have F| £ ( P » ) C £(<T). 

t=1 
Proof. Notice that for any series ^ a^ and for any nonempty interval I the 
following equality is satisfied: 

n n 

m*:) = £ a P i W + a < / i ( f c ) ' 
kei i= 1 kei kei ¿=1 kei 

which, by the hypothesis, implies the desired inclusion. • 
R E M A R K 3 . 8 . There exists the possibility of replacing the weak inequality 
sign by the equality sign in the assertion of Lemma 3.7. Indeed, assume 
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that there exists a positive integer t such that for any interval I there ex-
ists a family of pairwise disjoint subintervals h,l2, • • • ,Ik °f I with k < t 
satisfying the following two conditions: 

(1) any interval i j , i = 1 , . . . , k, is simultaneously a subset of some set Aj 
with j = j ( i ) <E { 1 , . . . , n } , 

k 
(2) the set a(I \ ( J /¿) is a union of at most t MSIs. 

i=1 
n 

Then we have f ) J2(Pi) = ZK0")-
i=1 

The following example shows that the inclusion in the assertion of Le-
mma 3.7 could be made strictly for every positive integer n. Here we consider 
only the case n = 2; the generalization to any n € N is rather straightforward 
(and will be omitted here). 

E X A M P L E 3 . 9 . P u t 

( an + 2i — 1 for i = 1 , 2 , . . . , n , 
Pli^n + 2i — l j = < 

I an + 2(i — n — 1) fori = n + l ,n + 2 , . . . , 2 n, 

Pi(an + 2i) = an + 2n + i fori = 0 , 1 , . . . , 2n - 1, 

p2(on + 2i) = 2n + p\(an + 2i + l ) fori = 0 , 1 , . . . , 2n - 1, and 

P2{an + 2« — 1) = an + i - 1 for i = 1 , 2 , . . . ,2n, 

for every positive integer n, where an = 2n(n — 1) + 1. Moreover, set Ai = 
( J {an + 2i - 1 : ¿ = 1 , 2 , . . . , 2 n } and A2 = N \ A\. Then the hypotheses 

neN 
of Lemma 3.7 are satisfied, which implies the following inclusion: 

(3.1) J > ) , 

where a(k) := Pi(k) for k e A{, i = 1,2. 
Now define 

bk = < 

—n_1 for k = an + 2¿ and for k = an + 2n + 2i + 1 
where i = 0 , 1 , . . . , n — 1, 

n-1 for k = an + 2¿ — 1 and for k = an + 2n + 2(¿ — 1) 
where i = 1,2,..., n, 

for n G N. It is clear that the series Y2 bk is convergent. Furthermore, 
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a noncomplicated verification shows that 

2 n 

£ W i ) = l + 0 . 5 [ ( - i r - l ] n - \ 

i= 1 

2n—1 

y ^ ^p2(an+2n+i) 
¿=0 

4n—1 

-i) = 1 + 0.5[(—l)n_1 + l ]n _ 1 , 

X ] &<T(an+t) = °> a n d 

t=0 iei 

< 2 n - l 

for any subinterval I of the interval [a„, an+i ) and for every n G N. From 
the above relations we deduce that the series ^ bpi(n) and ^ frP2(n) a r e both 
divergent but, however, the series b<r(n) is convergent. Accordingly, by 
(3.1), we get 

which is our claim. 

4. Extending of convergence classes 
The convergence class of any divergent permutation can be extended 

to the convergence class of some other divergent permutation. What is 
more, for any divergent permutation p there exists a family D (p ) of pairwise 
incomparable divergent permutations having the continuum cardinality and 
such that the convergence class of any permutation q £®(p) is bigger than 
the convergence class of p. This is the main result of this section. 

We begin with three auxiliary lemmas. First lemma is well known and 
comes from P. Erdos, the two other ones come from paper [10]. 

LEMMA 4.1. Let ak , k = 1,2, . . . , n, be a 1 — 1 sequence of real numbers. 

Then rs > n where r denotes the length of the longest decreasing subsequence 

of {afc} and s stands for the length of the longest increasing subsequence of 

{ak}-

LEMMA 4.2. Let p G Suppose that for some interval I and for some 

positive integer k the set p(I) is a union of at least (4A;4 + 1) MSIs. Then 

there exists an increasing sequence X = {xn : n = 1,2, ...,2A;} of positive 

integers satisfying the following conditions: 

(1) X C p - 1 ([minp(J), maxp(J)]), 
(2) one of the two following relations holds true: 

either {xn : n = 1, 2 , . . . , A;} C I and x^+i > I 

or Xh < I and {xn : n = k + l,k + 2,..., 2k} C I, 
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(3) the sequences {p(xn) : n = 1 , 2 , . . . , fe} and {p(xn) : n = k + l,k + 
2 , . . . , 2k} are both strictly monotonic and simultaneously, are spliced. 

C O R O L L A R Y 4 . 3 . Let p G D. Then for any r,s € N there exists an increas-
ing sequence § = {zn : n = 1 , 2 , . . . , 2r} of positive integers such that 

(1) SUp(S)>s, 
(2) the sequences {p{zn) : n = 1,2, . . . , r } and {p(zn) : n = r + l , r + 

2 , . . . , 2r} are both strictly monotonic and are spliced. 

L E M M A 4 . 4 . Let p,q E ty. Assume that there exist increasing sequences 
Xr = {Xn ̂  : n = 1 , 2 , . . . , 2r}, r G N of positive integers such that for every 
re N 

(1) X r Up(Xr) U g - y x , . ) < X r + i Up(X r + i) U rt(Xr+1), 
(2) the sequences xf1^ and xf2^ are spliced where X ^ := {p(xn^) : n = 

1 , 2 , . . . , r } and X ^ := {p(xn ') : n = r + 1, r + 2 , . . . , 2r} and, at the 
same time, 

(3) the sequences {q~xp{xn: n = 1 , 2 , . . . , r } and {q~lp{xn: n = r + 
1, r + 2 , . . . , 2r} are spliced. 

Then we have £(<?) \ £(p) ^ 0. 

Proof. Put 
f r " 1 forn G xf1 } , 

~ \ - r " 1 for n G xf2 ) , 

for every r G N. For the remaining indices n G N we set an = 0. 
Obviously, by the assumptions (1) and (2), the series ^ an is convergent. 

By the condition (3) the following two relations hold true for every r G N: 

(4-1) 
nei 

for any subinterval I of the interval Jr := [mm q~1 p(%r), maxg -1p(X r)] and 

(4.2) al(n) = 

By the condition (1) this means that the series Y1 aq„ a l s o convergent. On 
the other hand, we have 

ap(")= Y1an = 1 

for every r G N which yields the divergence of the series Y2 ap(n) • Therefore 
the relation \ ZXP) 0 holds as claimed. • 
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THEOREM 4 .5 . For every permutation p 6 3) there exists a family $ (p) of 
divergent permutations such that 

(1) card$(p) = c, 
(2) C YliQ) for everU permutation g £ $ (p) , 
(3) any two different permutations q\,q2 £ are incomparable. 

P r o o f . Fix p £ S . By Corollary 4.3 we can choose a countable family of 
increasing sequences § r = {z^ : n = 1 , 2 , . . . , 2 r } , r € N, of positive integers 
such that for every r e N 

(4.3) S r Up(S r ) < § r + i Up(Sr+i ) , 

and the sequences and s£2) are both strictly monotonic and simultane-
ously are spliced, where 

« ( 1 ) - ( p ( 4 r ) ) : n = l , 2 , . . . , r } , 

:= {p(z{n]) : n = r + 1, r + 2 , . . . , 2 r } . 

We shall use the following notation: 

4 r ) = min{S r U p(Sr)} , 4 r + i = max{S r U p ( § r ) } , 

4 r ) = l ^ ^ i i ) , i = 0 , l , . . . , 2 r - l , 

for every r e N . 
(r) 

It is obvious that the intervals , i = 0 , 1 , . . . , 2r, form a partition of the 

interval K r : = [Z(f\ 22r+il a n c ^ by (4.3), we have 

(4.5) K r < K r + 1 r e N. (r) 
Notice that it may happen that some of the sets Iq , r € N, are empty. 

Our next goal is to define a new partition of the interval K r having the 
form { J ^ : i = 0 , 1 , . . . , 2 r } for every r g N . The desired partition of the 
interval K r will be uniquely determined by the conditions: 

r(r) _ r(r) ^ j(r) T(r) 
J0 ~ 10 Ji Ji+V 

for i = 1 , 2 , . . . , 2r — 1, and 

card J2I-1 = card and card = card 

for i = 1, 2 , . . . , r. 
tr\ /r) 

We will denote by ~f2i_-i the increasing mapping of the interval J ^ i - i 
(r) (r) (r) the interval I\ and by the increasing mapping of the interval J ^ onto 
(r) the interval / J + r , for every i = 1 , 2 , . . . , r and for every r € N. Moreover, let 
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be the identity function of the interval whenever i j ^ / 0. In the 
(V) rt (r) case when IQ — 0 we define % as the empty function. 

Let S denote a Sierpinski's family of increasing sequences of positive inte-
gers. With each sequence s G S, s = {s(n)}, we associate some permutation 
qs acting as follows: 

qs{n) =ij7f(r))(n), 

for n G i = 0 , 1 , . . . , 2s ( r ) and r G N. For the remaining positive 
integers n we set q8(n) = p(n). 

Put D(p) = {qs • s G S}. By (4.4) and by the definition of qs the set 
Qs ( z[T\ z<f^ j is a union of at least r MSIs for every r G N \ s. Since the 
set N \ s is infinite we conclude that the permutation qs is divergent for each 
s e S. Hence 53 (p) C 53. 

Fix an s G S, s = {s(n)}. Then, from the definition of qs we de-
duce that for any n G N and for any subinterval U of the interval Ks(n) 

there exist two subintervals V\ and Vi of the intervals 

respectively, such that 

qs{U)=p{V1)Up{V2). 

Simultaneously we have 

• (*(n)) («(n)) 
s (n )+ l ' 2s(n)+l 

y(s(n)) (s(«)) 
' zs{n)+1 ) and 

qs(Kr) =p(Kr 

for every r G N, and 
qs(n) =p{n 

for all positive integers n G ( N \ (J Ks(n) 

From the last three relations and from (4.5) it can be easily concluded 
that the weak inclusion XXp) Q holds true. Furthermore, if we set 
X r = Ss( r), r G N, then the hypotheses of Lemma 4.4 are fulfilled with qs 

instead of the permutation q, and consequently YKls) \ XXp) / Hence 
and from the previous relation we get Y1(P) c YKQS)-

Take s,t G S, s ^ t, s = (s(n)}, t = {i(n)}. Then for almost all indices 
n G N we have 

(4.6) qs{i)=p(i), ieKt{n), 

and 

(4.7) qt(i)=p(i), ¿ g K s ( n ) . 
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Set 

a„ = 

and 

bn = 

r - ' f o r n e S j 

- r " 1 for n G 

r " 1 for n G 

- r ^ f o r n e S ® ) , 

for every r G N. Immediately from the definitions of the permutations qs 

and qt it follows that the series ^ a q s ( n ) and Y^bqt,n) are both convergent. 
At the same time, from (4.6) and (4.7) we get that the series ^ aqt(n) and 

bqsln) are both divergent. This means that the permutations qs and qt are 
incomparable, and hence the proof is completed. • 

REMARK 4.6. If p G 2)2) then we may assume that for every r G N there 
exists an interval I such that 

zll^iup-HiXz^ 
and the set p~1(I) is a union of at least r MSIs. Then from the definition 
of qs, we see that each permutation qs, s G 5, belongs to 252). Thus 2)(p) C 
2)2). 

REMARK 4.7. Let ÜH be the set of all positive integers r for which only one 

of the sequences or is increasing. Suppose that the definitions of 
(r) (r) the intervals J¡ , i = 1, 2, . . . , 2r — 1, and the mappings 7^ , i = 1,2, . . . , r, 

(V) 
are replaced for every r G ÍR by the following ones. The intervals J> ' C K 

are uniquely determined by the conditions: 
T(r) _ T{r) T(r) _ T(r) 

Jo — J0 ^ Ji — Ji+1 

for i = 1,2, . . . , 2r — 1, and 

card J2Í-1 = c a r d and card J ^ = card i^r-i+i 1 

(r) for i = 1, 2 , . . . , r. Next is defined to be the increasing mapping of the 
M (r) 

interval -J.2l onto the interval ^ r - i + i ' every i — 1,2, . . . , r. 
Take s,t G S, s ^ t, s = ( s (n ) } , t = { i ( n ) } . Then it can be easily 

concluded that 

^ ¿ ( ^ ( I J P ^ W ) ) ) a n d 9 t € 2 ) ( 9 t - 1 ( | J P(S- (n) ) ) )> 
neN n€N 

and 

9 s G 2 ) ( ^ 1 ( | J p ( S t ( n ) ) ) ) and fteífft^lJPÍSíw)))-
n€N 
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This implies, by Corollary 3.4, that the permutations qs and qt are incom-
parable. 

EXAMPLE 4 .8 . Let { I n } be an increasing sequence of intervals which form 
a partition of N and such that card In —> oo as n —> oo. 

Let p, q € 2) be permutations such that the restriction to the set E of 
p is the identity function of E and the restriction to O of q is the identity 
function of O, where 

E := U hn and O : = j j I2n-1-
wGN neN 

Moreover, assume that 

(4.8) p(In) = q(In) = In, n G N. 

Then, by Remark 3.8, the following equality is fulfilled: 

£ ( p ) n $ > ) = 5 > ) , 

where a(i) := p(i) for i G O and a(i) := q(i) for ¿ G E . On the other hand, 
the set ^ ( p ) U ^ ( g ) is not a subset of the convergence class of any divergent 
permutation since the following lemma holds true: 

LE M M A 4 . 9 . If<r€^p and J2{p) U C £ ( < r ) then a G C. 

Proof. Suppose, contrary to our claim, that there exists a permutation 
a <E £> such that £ ( p ) U ¿(<?) C £)(<r). 

Since p G £ ( p _ 1 ( E ) ) and q G <£(g_ 1(0)), from Corollary 3.5 we get 
a G £ (c t - 1 (E) ) and a £ C(cr _ 1 (0)) . The following positive integer k is 
therefore well defined: 

k = max { c (<t | o - - 1 ^ ) ) , c (a | <y-1(<D))} . 

Now we choose a sequence { J n } of intervals such that for every n G N 

(4.9) the set a(Jn) is a union of at least 2(n + k) MSIs 

and 

(4.10) a(Jn) < a{Jn+1). 

Let | L¡n) :i = 1 , 2 , . . . , v„} and :i = 1, 2 , . . . , vn - l } be the in-
creasing MSIs-partitions of the sets 

(4.11) <r{Jn) and [mincr(Jn), maxcr(Jr i)] \ a(Jn), 

respectively, for every n € N. There is no loss of generality in assuming that 

(4.12) An : = card {» : V> n E ^ 0} > card {t : 0} 

for every n G N. By (4.9) we get 

(4.13) Xn>n + k, ne N. 
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Since the set Jn n<r_1(E) is an interval of the set <r_1(E) it follows from the 
definition of k that the set a(Jn) fl E is a union of at most k MSIs of E. 
On the other hand, if a subset I of the set a(Jn) fl E is simultaneously an 
interval of E and we have I n ^ 0 and I fl L^ ^ 0 for some indices 
i,j G N such that i < j < vn, then K^ C Q for every index s such that 
Lf1^ < K ^ < The two last remarks and the conditions (4.12) and 
(4.13) assure us that we can choose increasing sequences {.s(i) : i = 1 , . . . , n} 
and {t(i) : i — 1 , . . . , n} of positive integers such that 

s(n),t(n) < vn, 

(4-14) i < n ' 
L g H E ^ 0 a n d K $ c O , 

for every index i = 1,... ,n. 

Let ip be a choice function of the following family: 

{[/ : either U = L^ fl E or U = K^ for some i , n e N , i < n ) . 

Define 
-w-1 for n G : w G N a n d i = 1 , . . . , w}, 

a n = 

1 t ( i ) ' 

w~l for n G {^(I* J j n E) : w G N and i = 1 , . . . , to}, 

0 for the remaining indices n G N. 
We notice that by (4.10) this definition is correct. 

From (4.8), (4.10), (4.14) and from the definition of tp we easily deduce 
that all three series ^2an, Y^ap{n) a n d ]C aq(n) a r e convergent to zero. On 
the other hand, we have J2 ao(i) = 1 for every n G N, which is equivalent 

i&Jn 

to the divergence of the series ^ aa(n) • This contradicts our assumption. • 

5. The family ft 
We denote by 0 the family of all divergent permutations p for which 

there exist an increasing sequence {In(p)} of intervals and a positive integer 
k(p) with the following properties: 

( i ) V - \ l n { p ) ) < p - \ l n + l { p ) ) , 

(ii) any set p 1 ( I n ( p ) ) is a union of at most k(p) MSIs, 
(iii) lim t n ( p ) = oo where n—>oo 

7n{p) := max {c(p \ J) : J is an interval and J C p _ 1 ( / n (p) )} , 
for every n G N. We notice that C Q. Furthermore, if p G D<£ then we 
may assume that k(p) = c(p). 
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T h e o r e m 5.1. For any permutation j) £ i l there exists a subset Q(p) 

of f i having the power of the continuum such that C ^2((f>) for each 

permutation (f> £ fl(p) and any two different permutations <f> and ip from Q(p) 

are incomparable. Moreover, it can be assumed that 

Q{p) C and c (0 _ 1 ) < 4c{p~ l ) + 1, for every <p G ft(p), 

whenever p G 2)<£. 

Proof. Let us fix a permutation p 6 fl. Take an increasing sequence { / „ } 
of intervals and a positive integer k satisfying the conditions (i)-(iii) above. 
Additionally, by passing to a subsequence if necessary, we may suppose that 

(5.1) In Up-^In) < In+1 U p _ 1 ( / „ + i ) for every n G N. 

Let S be a Sierpinski's family of increasing sequences of positive integers 
with the following property: for any two different sequences s,t G S, s = 

{ s (n ) } , t = {t(n)} the inequality t(i) > s(i) for some index i € N implies 
that 

(5.2) s(n + 1) > t(n) > s(n) for large enough n £ f f . 

With each sequence s G S, s = { s (n ) } , we associate the permutation 
4>s of N which transforms the elements of the set l(s) := |J p~l (ls(n)) 

follows: <f>3{%) = p(i) for i G I (s) and such that <ps is the increasing map of 
the complement of the set I (s) onto the complement of the set p(l(s)). 

Put fi(p) = {<f)s : s G 5 } . We remark that for each s G S, s = ( s (n ) } , 
the conditions (i)-(iii) are satisfied with the permutation (f>s instead of p and 
with the intervals instead of In, n G N. Thus Q (p ) C f I . 

Set Jn = [min {ln Up _ 1 ( 7 n ) ) , max (ln Up _ 1 ( / n ) ) ] , n G N. Then, from 
(5.1) and from the definition of the permutations <f>3, s G S, we deduce that 
for every s G S and n G M the following conditions hold true: 

(1) <f>s(Js(n)) ~ JS(n)> 

(2) the restriction to the open interval (max Js(n), min Js (n+i)) of 4>s is either 
the identity function or the empty function, 

(3) and if p G then the set (f)~l(K) is a union of at most 2c(p~1 ) MSIs, 
for any subinterval K of the interval Js(n). 

Hence, we get c{<f)~l) < 4c( jp~ l ) + 1 for all s G S whenever p G SC. This 
yields, by (iii), that Cl(p) C DC whenever p G 

Let s,t G S, s = ( s (n ) } , t = { i ( n ) } and s ^ t. We show that the 
permutations <j>s and fa are incomparable. 

By the conditions (5.2) and (2) there exists m G N such that the re-
oo 

striction to the set |J It(n) 4>s is the identity function and that the 
n=m 



The convergence classes of divergent permutations 795 

oo 
restriction to the set |J /,(„) of is also the identity function. On the 

n=m 

other hand, by (iii), for any sufficiently large n G N there exist two inter-
vals Ln C p~1(Is(n)) and Kn C p~l{It(n)) and two increasing sequences of 
positive integers 

and 

such that 

and 

an = [a¡n) :i = 1 , 2 , . . . , 2(7s (n) - 1)} C / s ( n ) 

bn = {b<n) : i = 1, 2 , . . . ,2 (7 t ( „ ) - 1 ) } C It{n) 

4>s(Ln)f]an = { a ^ : i = 1 ,2, . . . ,7 s ( n ) - l | 

<f>t(Kn) nbn = :i = 1,2,. . . , 7 t ( n ) - l } 

for every n G N. Putting these observations together we can easy conclude 
that 

00 00 

(f>s G 2) ( V ; 1 ( U On) ) and 4>t e ( ( J a n ) ) , 
n=w n=w 

and 
00 00 

^ G Í ^ f U ^ ) ) and ¿ t e D ^ r ^ U 6 » ) ) ' 
n=u> n=«) 

for any w > m chosen such that 7 s (n ) > 1 and Jt(n) > 1 for n > u;. Hence, 
by Corollary 3.4, we obtain 

X > . ) \ 5 > i ) ^ 0 a n d \ 0-

This means that the permutations 4>s and 4>t are incomparable as required. 
Now let the series ^ an and ^ ap(n) be simultaneously convergent. Then 

using the definition of permutations (j>s, s G S, and the conditions (ii), 
(5.1), (1) and (2) we deduce that any series of the form where 
s G 5, satisfies the Cauchy condition i.e. it is also convergent. Hence we get 
XXp ) — X X f ° r each index s G S. 

Finally, since for each s G S there exist infinite many positive integers n G 
N such that the restriction to the interval I n of 4>s is the identity function, the 
strict inclusion XXíO c XX<As) follows immediately from the condition (iii) 
and from Corollary 3.4. • 

A c k n o w l e d g m e n t . We are grateful to dr J. Wlodarz for his helpful 
advice and interesting conversations. 
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