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THE CONVERGENCE CLASSES OF
DIVERGENT PERMUTATIONS

Abstract. The scope of the paper is the analysis of the convergence classes of different
permutations of N. In this paper we prove that with any divergent permutation p it could
be associated a family D(p) of divergent permutations having the power of the continuum
and such that the convergence class of p is a proper subset of the convergence class of ¢
for every q € D(p). Also, the convergence classes of the countable families of divergent
permutations are discussed here.

1. Introduction

Let us denote by 3 the family of all permutations of N.

Given a permutation p € B its convergence class, denoted by » (p),
is defined to be the family of all convergent series ) a, of real terms such
that the series ) | a,(,) is also convergent.

We say that two permutations p, ¢ € P are incomparable if the follow-
ing conditions hold true:

Y @\Y (@#0 and D (9\D () #0.

A permutation p € P is called a divergent permutation if there exists a
conditionally convergent series ) | an, of real terms such that the series ) a, )
is divergent. The family of all divergent permutations is denoted by 2. We
say that p is a convergent permutation if p € € :=P \D. Thusp € P is
a convergent permutation if for every conditionally convergent series > an
of real terms the series ) ayy,) is also convergent.

We introduce the notation AB for the subset of B defined by the following
relation:

pE ABifandonlyifpc Aandp ' € B

for every A, B € {€,D}. We note that all these families AB are nonempty.
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In this paper we prove that with any divergent permutation p it could
be associated a family D(p) of divergent permutations having the power of
the continuum and such that > (p) is a proper subset of Y (q) for every
q € ©(p). Moreover, it may be assumed that any two different elements of
D(p) are incomparable and, additionally, that ©(p) is a subset of one of the
following three sets: either D€ or DD or 2 whenever p also belongs to this
set. For the definition of the family €2 we refer to the Section 5. Moreover,
an example of the permutations p,q € ® such that there is no divergent
permutation ¢ with the property

Y Ud (@S (o)

is presented in Section 4.

2. Notations and terminology

Let A and B be infinite subsets of N. By ©(A, B) and by €(4, B) we
denote two subsets of 3 defined as follows:

D(A,B) ={p € P:p(A) = B and the composition ¥p o (p|A4) o P4
is a divergent permutation},

and

€(A,B) ={pe€P:p(A) = B and the composition g o (p|4) o ¢4
is a convergent permutation},

where ¢4 is the increasing bijection of N onto A, p|A is the restriction to
the A of p, and ¥ p is the increasing bijection of B onto N. To simplify the
notation, we write p € Y(A) instead of p € U(A4,p(A)) where 4 € {€, D}
and A is an infinite subset of N. We observe that {(N,N) = {l for every
He{eD}.

Let B be a nonempty subset of N. Then a subset I of B is said to be
an interval of B either if I = () or when it can be expressed in the form
I=Bn{n,n+1,...,n+m— 1} for some n,m € N. For abbreviation,
we write "I is an interval" instead of "I is an interval of N". Only intervals
of the subsets of N are discussed in this paper. We will use the symbols
[n,m], [n,m), (n,m] and (n,m) with n,m € N, n < m, to denote the
intervals {n,n+1,...,m}, {n,n+1,.... m—1}, {n+1,n+2,...,m} and
{n+1,n+2,...,m— 1} respectively.

We say A C N is a union of n (or at least n or at most n) mutually
separated intervals (abbrev.: MSIs) if there exists a family J of nonempty
intervals with | JJ = A, card J = n (or card J > n or card J < n, resp.) and
such that dist(I, J) > 2 for any two different members I and J of J.
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We say that two sequences {z; :i=1,2,...,n}and {y; : 1 =1,2,...,n}
of positive integers are spliced when they are both one-one, have no common
values and satisfy one of the following conditions: either

Tp(i) < Yg(i) < Tp(i+1) < Yg(n) for every i =1,2,...,n— 1,

or
Yai) < Tp(i) < Yq(i+1) < Tp(n) for every i=1,2,...,n— 1.

Here p and ¢ denote the permutations of the set {1,2,...,n} chosen in such
a way that the sequences {z,;) :i=1,2,...,n} and {y,; 4 =1,2,...,n}
are both increasing. In other words, two finite sequences x and y are spliced
if they have the same cardinality, are both one-one, have no common values
and if the increasing sequence in which the elements of z and y alternate
could be created from all elements of the sequences = and y.

A family S of increasing sequences of positive integers having the power of
the continuum is said to be a Sierpiriski’s family if any two different members
{an} and {b,} of S are almost disjoint. This means that the sets of values of
the sequences {a,} and {b,} have only a finite number of common elements.

We use the symbol ¢(p|A), where p € € and A is a nonempty subset of
N, to denote the following positive integer:

c(p|A) = max{k € N: there exists an interval I of the set A
such that the p(I) is a union of k MSIs of the set p(A) }.

For abbreviation, we write ¢(p) instead of ¢(p | N) for every p € €.

We will denote inclusion by C. The use of the sign C will be reserved for
cases when the subset is proper.

We shall write K < L for any two subsets K and L of N whenever K = ()
or K and L are nonempty and k <[ for any k € K and [ € L.

In this paper we will often identify a given sequence with its set of values.
Moreover, we will consider only series ) a, of real terms.

3. Countable families of divergent permutations

In this section we consider some basic properties of convergence classes of
a given countable families of divergent permutations. First we remark that
the convergence class of any divergent permutation is wide in the mean-
ing that the intersection of any countable family of the convergence classes
of divergent permutations is nonempty. This is expressed in the following
theorem, which is taken from [8].

THEOREM 3.1. For each sequence {pn} of divergent permutations there
exist two conditionally convergent series ) a, and Y b, of real terms such
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e o]
that the series Y ap,. (k) 18 convergent to zero for every n € N and the set of
k=1
o0
the limit points of the series Y by, (k) s equal to R for every n € N.
k=1

COROLLARY 3.2. For each sequence {pn} of divergent permutations we

have QNZ(pn) # 0.

THEOREM 3.3. Let p,,qn € B, n € N. If there exists an infinite subset A
of N such that p, € €(p;*(A)) and g, € D(q;;*(A)) for every positive integer

n then
m Z(pn) \ U Z(Qn) #0
n=1 n=1

Proof. Let for every n € N, s, and o, be the increasing mappings of N onto

the sets p;;1(A) and q,;} (A), respectively, and let § be the increasing mapping

of A onto N. Then, by the hypothesis, the permutation ¢, defined by ¢, =

dgnoy 1s divergent for each n € N. Hence, by Theorem 3.1, there exists a
o0

conditionally convergent series " by, such that all series of the form > bgn (k)>
k=1

e o]
n € N, are divergent. Then the series )’ by, (), n € N, are certainly
k=1

convergent because all permutation ¥, := 5E)nsn, n € N, are convergent.
Let {a(n)} be the increasing sequence of all members of the set A. We
define a new series ) dy, by setting d,(,) = b, for every n € N and d, = 0
for the remaining indices n € N.
It can be readily checked that the series »_ d,, and any of its p, — rear-
rangements i.e. the series f dp, k), m € N, are convergent. This follows

k=1
immediately from the relation

D oy = D oy = D bepa(s) = D buni)s
iel i€B i€B jeJ

which holds for every nonempty interval I, where B = I N p,1(A) and
J = [mins; Y (I Np,1(A)), maxs; (I Np, (A))]

On the other hand, all series of the form E dg.(k)» ™ € N, are diver-

gent. This assertion follows from the following relatlon which holds for every
nonempty interval J:

Y gy = X dani) = 2 Boani) = D_ bguli)s

el ieB icB jeJ
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where B = I N g;'(A) and I = [minoy(J), maxa,(J)]. The proof is com-
pleted. m

COROLLARY 3.4. Let p,q € P. If there exists an infinite subset A of N
such that p € €(p~1(A)) and q € D(q 1(A)) then

Y @\ (a) #0.

COROLLARY 3.5. Let p,qg € B. If Y.(p) C >.(q) then for any infinite
subset A of N the following implication proves true:

if p € €(p7'(A)) then q € €(q ' (A)).

COROLLARY 3.6. Let p,q € B. If Y (p) = >_(q) then for any infinite
subset A of N the following relation holds:

pe€(p Q) if and onlyif g€ &g (A)).

Let p; € P and let A; be an infinite subset of N for every i = 1,2,...,n.
Assume that the sets Aq, Ag,..., An, form a partition of N as well as the
sets pl(A1)7p2(A2)7 s ;pn(An), do.

Moreover, assume that the action of any permutation p; is concentrated
on the set A; in the sense that all permutations ¢;, ¢ = 1,2,...,n, and the
permutation ¢ are convergent. Here

(k) for k € N\ A;,
ailk) = pi(k) \
’)’l(k) for k € A;,

foreveryi=1,...,n and

d)(k) = 7i(k)v
for k€ A; and i = 1,...,n, where +; is the increasing bijection of the set A;
onto the set p;(A;) for every i = 1,...,n. Then there is a following relation
between the convergence classes of permutations p;, ¢ = 1,...,n, and the
convergence class of the permutation o defined by o(k) = p;i(k) for k € A;
andi=1,...,n.

LEMMA 3.7. We have -61 S (p) C (o).

Proof. Notice that for any series Y ax and for any nonempty interval I the
following equality is satisfied:
n n

Yoy =D D At Y G~ DD ek

kel i=1 kel kel i=1 kel
which, by the hypothesis, implies the desired inclusion. =

REMARK 3.8. There exists the possibility of replacing the weak inequality
sign by the equality sign in the assertion of Lemma 3.7. Indeed, assume
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that there exists a positive integer ¢ such that for any interval I there ex-
ists a family of pairwise disjoint subintervals I,Is,..., Iy of I with k < ¢t
satisfying the following two conditions:

(1) any interval I;, i = 1,...,k, is simultaneously a subset of some set A,
with j = j(i) € {1,...,n},
k
(2) the set o(I'\ | I;) is a union of at most ¢t MSIs.
i—1

1

Then we have '61 Y(pi) = (o).

The following example shows that the inclusion in the assertion of Le-
mma 3.7 could be made strictly for every positive integer n. Here we consider
only the case n = 2; the generalization to any n € N is rather straightforward
(and will be omitted here).

ExXAMPLE 3.9. Put
an +2i—1 fori=1,2,...,n,

anp+2i—1) =
p1(an ) {an+2(i—n—1)f07‘i=n+17”+2""’2"’

pi(an+2i) =a,+2n+1ifori=0,1,...,2n — 1,

pa(an +29) = 2n+pr(an + 20+ 1) fori =0,1,...,2n — 1,
and
plan+2i—1)=a,+i~1fori=1,2,...,2n,
for every positive integer n, where a, = 2n(n — 1) + 1. Moreover, set A; =
Uf{an+2i—1: i=1,2,...,2n} and A2 = N\ A;. Then the hypotheses

neN
of Lemma 3.7 are satisfied, which implies the following inclusion:

(3.1) S )N S m) € 300,

where o(k) :=p;(k) for k € A;,1=1,2.

Now define
—n"Yfork=a,+2 and fork =an +2n+2i+1
b = wheret =0,1,...,n—1,
n~! fork=a,+2i—1and fork=a,+2n+2(i—1)
wherei=1,2,...,n,

for n € N. It is clear that the series )_ by is convergent. Furthermore,
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a noncomplicated verification shows that

2n
prl(an'Fi) =140.5[(-1)"—1n"!,
i=1

2n—1
3" bpsansansn = 1+ 05[(=1)" 1 + 1jn~,

=0
Y o)

In—1
< on !
iel

Z bg(an+i) = 0, and
=0

for any subinterval I of the interval [an,an+1) and for every n € N. From
the above relations we deduce that the series ) b, (,) and ) by, () are both
divergent but, however, the series Zbg(n) is convergent. Accordingly, by

(3.1), we get
S o0 Y (w2) € S(0),

which is our claim.

4. Extending of convergence classes

The convergence class of any divergent permutation can be extended
to the convergence class of some other divergent permutation. What is
more, for any divergent permutation p there exists a family D(p) of pairwise
incomparable divergent permutations having the continuum cardinality and
such that the convergence class of any permutation ¢ € D(p) is bigger than
the convergence class of p. This is the main result of this section.

We begin with three auxiliary lemmas. First lemma is well known and
comes from P. Erdds, the two other ones come from paper [10].

LEMMA 4.1. Letag , k=1,2,...,n, be a 1 — 1 sequence of real numbers.
Then rs > n where r denotes the length of the longest decreasing subsequence
of {ar} and s stands for the length of the longest increasing subsequence of

{ak}.

LEMMA 4.2. Let p € B. Suppose that for some interval I and for some
positive integer k the set p(I) is a union of at least (4k* + 1) MSIs. Then
there exists an increasing sequence X = {z, : n = 1,2,...,2k} of positive
integers satisfying the following conditions:

(1) X C p! (fminp(1), maxp(T)],

(2) one of the two following relations holds true:
either {, :n=1,2,...k} C I and 41 > I
orzp <l and{zp:n=k+1,k+2...,2k} C1I,
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(3) the sequences {p(zy) : m = 1,2,...,k} and {p(z,) : n = k+ 1,k +
2,...,2k} are both strictly monotonic and simultaneously, are spliced.

COROLLARY 4.3. Letp € D. Then for any r,s € N there ezists an increas-

ing sequence S = {z, :n=1,2,...,2r} of positive integers such that

(1) SUP(S) > s,

(2) the sequences {p(zn) : n = 1,2,...,r} and {p(z) : n = r+ 1,7 +
2,...,2r} are both strictly monotonic and are spliced.

LEMMA 4.4. Let p,q € P. Assume that there exist increasing sequences

X, = {z(r) n=12,...,2r}, r € N of positive integers such that for every
reN

(1) X, Up(Xr) U q—lp(xr) <Xr11 UP(XH—I) Ug~ p(Xr+1)

(2) the sequences Xgl) and X,(.z) are spliced where X = {p (I(r) n =
1,2,...,r} and Xx® = {p(z o yin=r71+ 1,r+2,...,27‘} and, at the
same time,

(3) the sequences {q_lp(wg)) :n=1,2,...,r} and {q_lp(xsf)) in =7+
1,7+ 2,...,2r} are spliced.

Then we have Y (q) \ Y.(p) #0

Proof. Put

1forn€X()
an:
—r1 forneX(z)

for every r € N. For the remaining indices n € N we set a, = 0.
Obviously, by the assumptions (1) and (2), the series ) ay, is convergent.
By the condition (3) the following two relations hold true for every r € N:

(4.1) 1> gt

nel

<r’t

for any subinterval I of the interval J, := [min ¢~ 'p(X;), max ¢~ 'p(X,)] and
(4.2) Z ag(n) = 0.
neJr

By the condition (1) this means that the series ) aq, is also convergent. On

the other hand, we have
> Gw= ) =1

ne[zgr) ,zﬁ")] neXﬁﬁl)

for every r € N which yields the divergence of the series > p(n)- Therefore
the relation Y (¢) \ Y (p) # 0 bolds as claimed. u
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THEOREM 4.5. For every permutation p € ® there exists a family ®(p) of
divergent permutations such that
(1) card ®(p) =

(2) Y (p) C Y.(q) for every permutation q € ®(p),
(3) any two different permutations q1,q2 € ®(p) are incomparable.

Proof. Fix p € ©. By Corollary 4.3 we can choose a countable family of

increasing sequences S, = {z(r) n=12,...,2r}, 7 € N, of positive integers
such that for every r € N

and the sequences Sg) and Sg) are both strictly monotonic and simultane-
ously are spliced, where

s = {pz7): n=1,2,...,7},
8(2) {p(z(r)) n=r+1r+2,...,2r}
We shall use the following notation:

Z(()T) = min{S, Up(S;)}, zgr)-H = max{S; Up(S,)},

(4.4)

I =100, i=o01,...,2r -1,

i) 1,+l
L, () = [z2r ,zzr +1] for every r € N.
It is obvious that the intervals Ii( ), t=0,1,...,2r, form a partition of the

interval K, := [z(()r), Zg')—}—l] and, by (4.3), we have
(45) K, < KT+1 r€N.

Notice that it may happen that some of the sets I (r ), r € N, are empty.
Our next goal is to define a new partition of the interval K, having the
form {Ji(r) :1=0,1,...,2r} for every 7 € N. The desired partition of the

interval K, will be uniquely determined by the conditions:
Jér) (T) < J(T) < JZ(:L)I,
fori=1,2,...,2r — 1, and
card J\) | = card I{” and card J$) = card Il(i)r,
fori=1,2,...,r
We will denote by 'yg) , the increasing mapping of the interval J2(z) , onto

(r)

the interval I " and by <v,,” the increasing mapping of the interval J2(i) onto

the interval I - ) , for every ¢ = 1,2,...,r and for every r € N. Moreover, let
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(T) be the identity function of the interval I(() ") whenever I 7é 0. In the

case when IO = () we define fy( " as the empty function.

Let S denote a Sierpiniski’s family of increasing sequences of positive inte-
gers. With each sequence s € S, s = {s(n)}, we associate some permutation
gs acting as follows:

gs(n) = 7T (n)

9y

for n € Ji(s(r)), i =0,1,...,2s(r) and r € N. For the remaining positive
integers n we set gs(n) = p(n).

Put ©(p) = {qs : s € S}. By (4.4) and by the definition of g5 the set
s ([zy), z£ )]) is a union of at least r MSIs for every r € N\ s. Since the
set N\ s is infinite we conclude that the permutation g is divergent for each
s € S. Hence D(p) C D.

Fix an s € S, s = {s(n)}. Then, from the definition of ¢; we de-

duce that for any n € N and for any subinterval U of the interval Ky,

there exist two subintervals V; and V5 of the intervals [z(()s(n)) (37(:;120 and

[0, fete

s(n)+17 %25(n) +1] respectively, such that

gs(U) = p(V1) Up(V2).

Simultaneously we have

for every r € N, and

for all positive integers n € (N \ U Ks(n)).
neN

From the last three relations and from (4.5) it can be easily concluded
that the weak inclusion ) (p) C > (gs) holds true. Furthermore, if we set
X = Sg(), 7 € N, then the hypotheses of Lemma 4.4 are fulfilled with ¢,
instead of the permutation ¢, and consequently Z(qs) \ >>(p) # 0. Hence
and from the previous relation we get > (p) C > (gs)-

Take s,t € S, s #t, s ={s(n)}, t = {t(n)}. Then for almost all indices
n € N we have

(46) qS(Z) = p(i), 1€ Kt(n)v
and

(4.7) q:(i) = p(), @ € K-
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Set

"

s(ry?

r~lforne S(l)
Arn =
" —r~lfornes$

and
b, — { r~lforn e Sggg),

-1 (2)
—r~tformn € St(r),

for every r € N. Immediately from the definitions of the permutations g,
and ¢, it follows that the series ans ) and qut(n) are both convergent.
At the same time, from (4.6) and (4.73 we get that the series 3 aq, ,, and
> bg.(n, are both divergent. This means that the permutations ¢ and g; are
incomparable, and hence the proof is completed. =»

REMARK 4.6. If p € D9 then we may assume that for every r € N there
exists an interval I such that

zg)ﬂ <Iup™I)< z((,TH)
and the set p~1(I) is a union of at least 7 MSIs. Then from the definition
of gs, we see that each permutation gs, s € S, belongs to 9. Thus D(p) C
9.

REMARK 4.7. Let R be the set of all positive integers r for which only one
of the sequences Sgl) or Sg) is increasing. Suppose that the definitions of
the intervals Ji(T), 1=1,2,...,2r — 1, and the mappings 'yg)
are replaced for every r € R by the following ones. The intervals Ji(r) CK

are uniquely determined by the conditions:
I = I(()T) < Ji(r) = Ji(:-)l
fori=1,2,...,2r — 1, and

card Jz(:ll = card Ii(r) and card Jz(:) = card Ig)_i oy
(r)
13

fori=1,2,...,r. Next v,
interval J2(:) onto the interval Ig)_ i1 forevery i =1,2,...,7.

Take s,t € S, s #t, s = {s(n)}, t = {t(n)}. Then it can be easily
concluded that

gs € €(q;1(U p(Ss(n)))) and q € ©<q{1(U p(Ss(n)))),

neN neN

gs € D(qs_l(U p(St(n)))) and ¢ € C(q{l(U p(St(n)))).

neN neN

,i1=1,2,...,7,

is defined to be the increasing mapping of the

and
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This implies, by Corollary 3.4, that the permutations ¢s; and ¢; are incom-
parable.

EXAMPLE 4.8. Let {I,} be an increasing sequence of intervals which form
a partition of N and such that card I, — 0o as n — o0.

Let p,g € D be permutations such that the restriction to the set E of
p is the identity function of E and the restriction to ©@ of g is the identity
function of O, where

E:=|JIm and O:= ] L.
neN neN
Moreover, assume that
(4.8) p(In) =q(I)=1,, neN.
Then, by Remark 3.8, the following equality is fulfilled:

N> (@)= (o),

where o (i) := p(i) for i € O and o () := ¢(¢) for ¢ € E. On the other hand,
the set > (p)UD (g) is not a subset of the convergence class of any divergent
permutation since the following lemma holds true:

LEMMA 4.9. Ifo € P and D (p)U D> (q) C > (o) then o € C.

Proof. Suppose, contrary to our claim, that there exists a permutation

o € D such that > (p) U (¢) C > (o).
Since p € €(p~(E)) and ¢ € €(g1(0)), from Corollary 3.5 we get

o € €0 YE)) and o € €(c"1(0)). The following positive integer k is
therefore well defined:
k=max{c(oc|o " (E),c(c|o7'(0Q))}.

Now we choose a sequence {J,} of intervals such that for every n € N

(4.9) the set o(Jy,) is a union of at least 2(n + k) MSIs
and
(4.10) o(Jn) < 0(Jp+t1)-

Let {L("):i: 1,2,...,vn} and {Ki(n) :i:1,2,...,vn—1} be the in-

1
creasing MSIs-partitions of the sets

(4.11) o(Jp) and [mino(J,), maxo(Jn)]\ o(Jn),
respectively, for every n € N. There is no loss of generality in assuming that
(4.12) Anpi=card{i: L?NE#0} >card{i: L} NO # B}

for every n € N. By (4.9) we get
(4.13) An>n+k neN,
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Since the set J, No~!(E) is an interval of the set o~ }(E) it follows from the
definition of k that the set o(J,) NE is a union of at most & MSIs of E.
On the other hand, if a subset I of the set o(J,) N E is simultaneously an

interval of E and we have I N Lgn) # @ and IN Lg.n) # @ for some indices

i,j € N such that i < j < vy, then Kgn) C O for every index s such that

Lgn) < K™ < Lg-n). The two last remarks and the conditions (4.12) and
(4.13) assure us that we can choose increasing sequences {s(i) : ¢ =1,...,n}
and {t(z) : 1 = 1,...,n} of positive integers such that

s(n),t(n) < vy,

(n) (n) (n) (n) .
(4.14) Ly < Kyiy < Ligiyny < Kt(n), i < n,
L™ NE+#0 and K™ coO,

s(1)
for every index i = 1,...,n.
Let ¢ be a choice function of the following family:

{U : either U = Li'(?) NEor U = Kt(zg for some i,n € N,i < n} .
Define

t(3)

—wlforn e {¢(Kt(zf))):w€Nandi= 1,...,w},
an = w‘lforne{w(L(w)ﬂ]E):weNandz'zl,...,w},

s(i

0 for the remaining indices n € N.

We notice that by (4.10) this definition is correct.
From (4.8), (4.10), (4.14) and from the definition of ¢ we easily deduce
that all three series ) an, ) @pm) and ) ay,) are convergent to zero. On

the other hand, we have ) a,(;) = 1 for every n € N, which is equivalent
i€Jn
to the divergence of the series ) a,(,). This contradicts our assumption. =

5. The family ()

We denote by  the family of all divergent permutations p for which
there exist an increasing sequence {I,(p)} of intervals and a positive integer
k(p) with the following properties:

(i) p™'(In(p)) < ™' (In+1(p));
(i) any set p~1(I,(p)) is a union of at most k(p) MSIs,
(i) lim yn(p) = oo where
n—o0
Yn(p) :=max {c(p | J) : J is an interval and J C p~(I(p))},

for every n € N. We notice that D€ C 2. Furthermore, if p € D€ then we
may assume that k(p) = c(p).



794 R. Witula, D. Stota

THEOREM 5.1. For any permutation p € ) there exists a subset (p)
of Q having the power of the continuum such that > (p) C S_(§) for each
permutation ¢ € §2(p) and any two different permutations ¢ and ¥ from Q(p)
are incomparable. Moreover, it can be assumed that

Qlp) CDE and c(¢7) <4cp™b) +1, for every ¢ < Q(p),
whenever p € DC.

Proof. Let us fix a permutation p € Q. Take an increasing sequence {I,}
of intervals and a positive integer k satisfying the conditions (i)—(iii) above.
Additionally, by passing to a subsequence if necessary, we may suppose that

(5.1) LUp YI,) < Iny1 Up i (1) for every n € N.

Let S be a Sierpinski’s family of increasing sequences of positive integers
with the following property: for any two different sequences s,t € S, s =
{s(n)}, t = {t(n)} the inequallty t(:) > s(i) for some index i € N implies
that

(5.2) s(n+1) > t(n) > s(n) for large enough n € N.

With each sequence s € S, s = {s(n)}, we associate the permutation
¢ of N which transforms the elements of the set I(s) := |J p™! (Is(n)) as
neN

follows: ¢s(i) = p(¢) for 7 € I(s) and such that ¢ is the increasing map of
the complement of the set I(s) onto the complement of the set p(I(s)).

Put Q(p) = {¢s : s € S}. We remark that for each s € S, s = {s(n)},
the conditions (i)—(iii) are satisfied with the permutation ¢, instead of p and
with the intervals I, instead of I, n € N. Thus Q(p) C €.

Set J, = [min (In Up‘l(In)) ,max (In Up‘l(In))], n € N. Then, from
(5.1) and from the definition of the permutations ¢s, s € S, we deduce that
for every s € S and n € M the following conditions hold true:

(1) ¢S(Js(n)) = Js(n)v

(2) the restriction to the open interval (max Js(n), min J, S(n+1)) of ¢5 is either
the identity function or the empty function,

(3) and if p € DC then the set ¢;(K) is a union of at most 2¢(p~!) MSTs,
for any subinterval K of the interval Jy(.

Hence, we get c(¢; 1) < 4c(p~!) +1 for all s € S whenever p € DC. This
yields, by (iii), that Q(p) C D€ whenever p € DC.

Let s,t € S, s = {s(n)}, t = {t(n)} and s # t. We show that the
permutations ¢ and ¢; are incomparable.

By the conditions (5.2) and (2) there exists m € N such that the re-

o0

striction to the set [J Iyyn) of ¢s is the identity function and that the
n=m
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oo
restriction to the set |J Iy of ¢, is also the identity function. On the
n=m

other hand, by (iii), for any sufficiently large n € N there exist two inter-
vals Lp, C p~}(I4() and K, C p~'(Iyn)) and two increasing sequences of
positive integers

= {a§") i=1,2 0 2(Ys(my — 1)} C Iyin

and

b, = {bgn) i=1,2,... >2(7t(n) - 1)} C It(n)
such that

¢s(Ln) Nap = {ag?) =12, » Vs(n) — 1}
and

$e(Kn) N bn = {bg;) i=1,2 Yy ~ 1}

for every n € N. Putting these observations together we can easy conclude

that o o
pren(s (o) we weelor ()

and
s € ¢(¢;1(© bn)) and ¢ € @(qs;l([j bn)),

for any w > m chosen such that vs,) > 1 and ) > 1 for n > w. Hence,
by Corollary 3.4, we obtain

ST@I\Y (6 #£0 and S (@) \ 3 (gs) #0.

This means that the permutations ¢ and ¢; are incomparable as required.

Now let the series ) ] an and ) ap(,) be simultaneously convergent. Then
using the definition of permutations ¢, s € S, and the conditions (ii},
(5.1), (1) and (2) we deduce that any series of the form } a4 (n), Where
s € S, satisfies the Cauchy condition i.e. it is also convergent. Hence we get
>(p) € Y (#s) for each index s € S.

Finally, since for each s € S there exist infinite many positive integers n €
N such that the restriction to the interval I, of ¢, is the identity function, the
strict inclusion ) (p) C > (¢s) follows immediately from the condition (iii)
and from Corollary 3.4. =
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