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ASYMPTOTIC STABILITY OF SOLUTIONS TO THE
EQUATIONS OF LINEAR ELASTICITY AND
THERMOELASTICITY IN VISCOPOROUS MEDIA

Abstract. The systems of evolution equations modelling elasticity and thermoelas-
ticity of viscoporous bounded media are considered. The existence of co-semigroups of
contractions defining solutions to the systems is proved. The asymptotic vanishing of
energies of solutions when t — oo is explained.

1. Introduction and statement of problems

An increasing interest is observed in recent years to determine the decay
behavior of the solutions of several elasticity problems. In classical ther-
moelasticity theory the decay effects were studied in the book [12] and in
papers [10], [14], [5]. In the papers [2], [17], [18] there was studied the decay
of solutions of the one-dimensional elasticity models where besides of ther-
mal dissipation the porosity dissipation is taken into account. The similar
kind of problems (indirect internal stabilization of coupled evolution equa-
tions) has recently been the focus of interest of other authors [1], [6]. Our
goal in this paper is to establish the stabilization of solutions for two- and
three- dimensional elasticity and thermoelasticity systems for viscoporous
materials. :

Let us begin from evolution equations [4], [3]

pd2u = divT,
JO2¢ = divh + g,

where T denotes the stress tensor, u denotes the displacement vector, h
denotes equilibrated stress vector, g denotes intrinsic equilibrated body force

(1.1)
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and the scalar function ¢ denotes the change in the volume fraction from
the reference configuration, (divT); := Z;;laj:l;j, n = 2,3, denotes the
dimension of space and u has the same dimension.

In the linear theory there are considered the following constitutive rela-

tions n

T:=o(u)+bpl, h:=aVe, g¢g:= —bZell(u) —v¢p+ E,
=1
where o(u) denotes the elasticity stress tensor,

n
o(u)ij =AY en(w)dy; + 2ueis(v), eiy(u) = %(53% + O5u;),
=1
E denotes the dissipation friction and is taken to be equal E := —r8;¢, I
denotes the n x n unit matrix.
The coeflicients a, b, v, u > 0, and for simplicity of the further considera-
tions we put p = 1 and J = 1. After subjecting the system (1.1) with initial
and boundary conditions we obtain the following system for v and ¢.

PROBLEM 1.

Ou=Acu+bVe in D xRy,

3¢ = aA¢ — bdivu — y¢ — 019 in D x Ry,
u=0, Bp=0 on 0D x Ry,

u(0) = u%, 8u(0) = u', $(0) = ¢°, p(0) = ¢' in D.

In the above D C R", denotes a bounded domain with boundary 0D
having regularity of class C?, A, := uAI + (1 + A\)Vdiv denotes the elliptic
Lamé operator, Ry := (0,+00), B¢ = ¢ or B¢ = J,¢, where v denotes the
outer unit normal vector to dD. Physically D is the region occupied by the
body in the reference configuration.

To take into consideration also the thermal dissipation, the third equation
is added to the system (1.1)

(1.3) pTo0n = divg,

where 7 denotes the entropy and g the heat flux (see [11]), Tp > 0 is a
constant. From the classical linear theory we take the following constitutive
relations for ¢ and n:

q:=dVeo, pn=~0+ Mdivu+ M;¢,
and for g in (1.1) we take

g=-bY_eu(u) — 14+ M +E,
=1

(1.2)

where 8 denotes the temperature. The coeflicients d, M, M; > 0, and for
simplicity we put Ty = 1.
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After subjecting the system (1.1), (1.3) with initial and boundary condi-
tions we obtain the following system for u, ¢, 6:

PROBLEM 2.
Zu=Au+bVp—-MVO in DxRy,
¢ = alp — bdivu — yé — rd¢p + M6 in D x R,
(1.4) 8,0 = dAO — Mdivdyu — M3,¢ in D x Ry,
u=0, Bp=0, 6=0 on 0D x R,,
u(0) = u°, Bu(0) = ul, $(0) = ¢°,8;6(0) = ¢*,0(0) =6° in D.

The term —r0;¢, in equation for ¢ in the systems, models the porous dis-
sipation called viscoporosity [4], however in models derived by Iesan [11] such
term does not appear. In the Appendix 1 we give explanation that the dissi-
pative term in equations on ¢ appears naturally when one considers thermoe-
lasticity system taking into account microtemperatures [9], and then makes
the decoupling which separates the system for microtemperatures from equa-
tions for u, ¢, . Usually in the literature it is considered B¢ = ¢ when u =0
on 0D, but there exist papers where also the operator B¢ = 0,¢ is consid-
ered (2, 18]. In our paper we shall consider both possibilities for B: B¢ = ¢
and B¢ = 0,¢. We are able to prove one of our main results only for B¢ = ¢.

The first topic in this paper is to establish the existence of cy-semigroups
of contractions defining solutions of Problems 1, 2. The second one is to
explain when the energies of solutions asymptotically vanish when ¢t — oc.
Under the authors knowledge these both questions were not rigorously stud-
ied yet. For the 1-dimensional models some results are obtained in [2, 18].
For solutions of Problem 1 there was proved the lack of uniform stabilization
(that is the energy does not tend to 0 with exponential speed when t — 00).
For solutions of Problem 2 there was proved the uniform stabilization when
the parameter v > 0. But when r = 0 there was proved lack of the uni-
form stabilization. This means that interaction between ¢ and 6 weakens
dissipativity effects introduced by the parabolic equation for 6, because for
the classical 1-dimensional thermoelasticity we have the uniform stabiliza-
tion [16]. One can observe the positive feeedback interaction between ¢ and
6 in the system (1.4). In analysis of thermoelaticity systems there exists a
deep difference between 1-dimensional and many-dimensional models - see
Remarks 2.10 in section 2 of this paper.

The analytical difficulties involve the strong coupling of equations in the
systems. Under the authors knowledge, in the mathematical literature, the
problem of stabilization in the system of strong coupled hyperbolic equations,
where the damping comes only from one part of the system (see system (1.2))
has not been solved.
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The organization of paper is the following. In section 2 we formulate our
main results. In section 3 there will be proved the existence of cyg-semigroup
of contractions defining solutions of Problem 2. This same concept one can
apply to Problem 1. The proof relies on Hille-Phillips theorem [7, 20]. For
justification of conditions of the Hille-Phillips theorem in the context of
Problem 2 we use scheme done in [10].

In section 4 we prove stabilization of solutions for Problem 1. We use the
resolvent criterion done by Tomilov [21]. All results announced above will
be obtained for both cases of the operator B.

Section 5 is devoted to proving the stabilization of solutions for Problem
2 when B¢ = ¢. Here we adopt the scheme of proof done by Dafermos
[5]. Authors were not able to apply the resolvent criterion to Problem 2
successfully. Stabilization of solutions of Problem 1 for dimension n = 1 can
be proved by the same method as we present in this paper, the verification
of details we leave to the reader. As we have mentioned earlier, the 1-
dimensional Problem 2 was solved in [2, 18].

2. Main results
In this paper we shall work under the following special conditions on
by A i,y

ASSUMPTION 2.1. We require A + i > 0, (A + p)y > b*> when n = 2 and
3A 421 > 0, (3\ + 2u)y > 3b% when n = 3.

In the Appendix 2 we explain that conditions on coefficients, which we
have formulated above are optimal for the linear model (1.2) to be physically
realistic.

We denote

n
= 2 ool

Recall that Ac(u); = 3 7, 8j045(u), i =1,...,n.
From the Sylvester theorem concerning positively defined matrices we
derive:

PROPOSITION 2.2. Ifb, A, i1,y satisfy Assumption 2.1 then there exist con-
stants c1,co > 0 such, that

o(u) : e(u) > 1 Z €i5(

t,5=1

o(u) : e(u) + 2bpdivu + v¢2 > ca(d? + Z 6%(“))
i,j=1
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For sake of convenience we recall the classical Korn inequality.
There exist constant ¢ > 0, that for each v € Hi (D)™

n
} 2 cizellvol
Dij=1 D

where |Vv|? := Y7 | |[Vuil%
We shall consider H := H}(D)® x H}(D) when B¢ = ¢ and H :=
H} (D) x H'(D) when B¢ = 8,¢.
PROPOSITION 2.3. The bilinear form
(G1,¢2) = [[o(u)) : e(u?) +aVe' - V? +7¢'¢* + bg'dive® + bg?divu'],
D
G = (v, ¢Y), vt € HY(D)", ¢* € H}(D) when B¢ = ¢ and ¢* € H (D)
when B¢ = 8,¢, i = 1,2, defines the inner product in H.

Sketch of the proof. From the second inequality of Proposition 2.2, and
the Korn inequality we derive

(2.1) (€O el [IVul*+ Ve[ + 67, (€H,
D
where ¢ > 0 is constant. The proof can be closed.
Let || - || denote the norm in H generated by the inner product defined

in Proposition 2.3.
Now we give definitions of weak solutions for Problems 1, 2.

DEFINITION 2.4. We say that ((-) € C(Ry; H)NCY(Ry; L*(D)™*!) solves
Problem 1 in a weak sense when it satisfies

1. g(O) = (uo, ¢0)T78t4(0) = (u17¢1)T in D7

2. for each (v, )T € H,

d

— [ (v-Bu(t) + 9B (1)) + (L (t), (v, )T ) +7 g YOp(t) =0 in D'(Ry).

dtD

DEFINITION 2.5. We say that ({(-),0(-)),{(-) € C(R+; H)nCY(Ry; L*(D)"Y),
8(-) € C(Ry; L%(D)) solves Problem 2 in a weak sense if it satisfies

1. (¢(0),6(0)) = (u% ¢° 6°)7, 8,¢(0) = (u',¢")" in D,
2. for each (v,9)T € H, x € H*(D) N H}(D)

(2.2) S - Bpult) + Yo (t) + xB(t) + Mxdivu(t)) + (¢(t), (v,9)T)
D
+ § [(ry + Mix)Beg(t) — dO(t) Ax
D

—M6dive — M16(t)y] =0 in D'(Ry).
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To make investigations more clear we introduce the following Hilbert
spaces: Hy := H x L*(D)"*!, endowed with the inner product (n1,72); :=

<C1’<2> + SD [vl ' 'U2 + ¢1,¢)2]7 = (Cla (vi$"/}i))Ta Ci € Ha vi € L2(D)na W €
L*(D),i=1,2 and Hs := Hy x L?(D) endowed with the inner product

<C17C2>2 = <771a772>1 + S 9102,(2' = (Wz,ez)Tﬂ?z € Hlaei € L2(D)77’ = 1a2
D

The norm in H; generated by the inner product (-, -), we denote by || -||;,¢ =
1,2.

We distinguish the following dense linear subspaces X; C H;, i = 1,2:

X1 == (H3(D)N H}(D))" x (H2(D) N H}(D)) x H} (D)™ x H}(D) when
B¢ = ¢, and

X1 := (H*(D)NH}(D))"x (H*(D)N{8,¢ =0 on 8D})x HY(D)"
HY(D) when B¢ = 0,9,

X5 := X1 x (H%(D) n H}(D)).

We formulate the main existence theorems.

THEOREM 2.6. Let the coefficients and the domain D satisfy condi-
tions imposed above. Then on Hy there exist a co-semigroup of contrac-
tions S1(t),t € Ry such that whenever (u(t), ¢(t),v(t), v(t))T := S1(t)no,

= (u0, @0 ul, ¢1)T then for mo € Xy, (u(-), ¢(-)) is the unique strong so-
lution of Problem 1 and Byu(-) = v(:), 8:p(-) = ¥(-), S1(t)mo € X1, t € R4
For g € Hy, (u(-),¢(+)) is the unique weak solution of Problem 1.

THEOREM 2.7. Under the same assumptions as in Theorem 2.6 there
exist on Hy a co- semigroup of contractions S2(t),t € Ry such that if

(u(t), (1), v(t), ¥(t),0(t))T = S2(t)Co, Co := (u®, ¢°,ul,¢",8°)7 then for
o € Xo,(u(-),9(:),0(:) is the unique strong solution of Problem 2 and

Owu() = v(),09(") = ¥(), S2t)Co € Xz, t € Ry. For o € Ha,
(u(-), &(-),8(-)) is the unique weak solution of Problem 2.

In the following by solutions of Problems 1, 2 we shall mean their strong
or weak solutions. We define energies:

Ba(t) o= 5 116(0), 9112+ § (000 + |0us(t) ]
D
for solutions of Problem 1, and
Bo(t) = 2]I(u(t), 60)7 I + § (00 + 100 + (0]
D

for solutions of Problem 2.



Elasticity in viscoporous media 763

DEFINITION 2.8. We say that a bounded domain D C R™, satisfies the
condition (C) if for every s > 0, the problem

—-Av=sv in D, divv=0 in D, v=0 on 08D,
has only one solution v =0 € R™.
Now we formulate our main result about the stabilization.

THEOREM 2.9. Let coefficients and the domain D satisfy conditions im-
posed above, and additionally D satisfies the condition (C). Then for en-
ergy of solutions of Problem 1 we have limy_, E1(t) = 0. For bound-
ary operator B¢ = ¢ for the energy of solutions of Problem 2 we have

We place here some comments concerning the results from Theorem 2.9.
Using the classical methods based on the spectral analysis one observes
that the energy of solution for the problem

Otu=aAdp—vp—1d¢ in D xRy,
B¢=0 on 0D xRy,

$(0) = ¢°,0:4(0) =¢' in D,
uniformly decays when t — o0.

This is due to the term —r3d;¢ in the equation. In the equation for u
in the system (1.2) we have not the term of such kind. But there is the
interaction between u and ¢ described by the coupling of the equations in
(1.2). Theorem 2.9 says, that for domains D satisfying condition (C) this
interaction causes the disappearance of the whole energy when ¢t — co. We
have established the indirect internal stabilization of elasticity waves in the
viscoporous materials.

REMARK 2.10. (i) Let a domain D does not satisfy condition (C) (see
[5, 14]), and let a nontrivial ugy solve the system from Definition 2.8 for

some s > 0. Then (eii\/‘ﬁtuo(x),ﬂ), (eii\/’_‘gtuo(m),0,0) solve Problems 1, 2
suitably. These solutions have no decaying properties when ¢ — oo.

(i) The results of paper [14] suggest that whenever domain D satisfies
additionally the appropriate geometric conditions, then the decaying energy
for solutions of Problem 2 may be uniform or polynomial.

(iii) It will be very interesting to explain whether for solutions of Prob-
lem 1 the decaying of energy has logarythmic speed.

3. Well posedness of problems

The assertions of Theorems 2.6, 2.7 are true for both cases of the operator
B. Because for B¢ = 0,¢ the investigations are a bit more difficult we
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formulate proofs for such operator B. The same scheme of proofs holds
when Dirichlet boundary operator is considered.
For ¢; = (u?, ¢%),7 = 1,2 we put

()2 = [ u®+ 867 [[¢]32 = [ (lul® + ¢?).

D D

We define operator:

Ao -A. —bV
T\ bdiv , —aA+qI
with domain D(A) = (H%(D) N HY{(D))" x (HXD)N {8, =0 on OD}).
It is evident that A : D(A) — L?(D)"+L.

PROPOSITION 3.1. There exists constant k1 > 0 such, that

(3.1) K17 > kalICIf2, C€H

(3.2) (A¢, Q)2 > k1llC|l32, ¢ € D(A).

Proof. The inequality (3.1) we obtain from (2.1) and the Poincaré inequality.
For the completness we recall the Poincaré inequality: there exists constant
¢ > 0 such, that {5 [Vv|2 > ¢, [vf%, v € (H(D))™

Next we calculate (A¢,()z2 = ||¢]|* when ¢ € D(A) and (3.1) implies
(3.2). m

Proof of Theorem 2.7. Let us introduce operator

0o, 0 R | I |
0o, 0 .0 , I ., 0

Lo=| A, A 0, 0o ., —Mv |,
—bdiv , (aA—~I) , 0 , —-rI , DMI
o, 0  _Mdiv , -MI , dA

with domain D(Lg) := Xo. It is easy to see, that X5 is dense in Hy and
Lo : Xo — Hs. For ( € X we calculate

(3.3) (L2(0), )y = —r {? —d | [VO* < 0.
D D

The above inequality means that Lo is a dissipative operator. To show that
L is maximally dissipative it is enough to prove (see [7]) the existence of
A > 0 such that for every f € Hs the equation

(3.4) (M —-L)¢=f
has a solution ¢ € X5. To show this, first we check that ker(Lg) = {0}. So
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let us suppose that Lo¢ = 0 for some { € X5. From the formula of Ly we
deduce that v = 0,9 = 0 and § = 0 (because A8 =0 in D and § = 0 on
OD) and for £ = (u,#)T we get A6 = 0. Because ||¢||?> = (4£,£)2 =0
we have £ = 0 and injectivity is proven. Then we should prove that Lo is
surjective. We must show that for every g = (g!,...,4%)7 € H; the equation
Ly¢ = g has a solution ( € X2. From the formula for L, we deduce, that
v = g', ¥ = ¢% and @ is the solution of the Dirichlet problem for Poisson
equation

dAG = ¢° + Mdivg! + Myg? in D 6=0 on 4D.
We must only prove the existence of £ € D(A) such, that

3
g°+ MV
(3.5) Af = — 4 0 .
g +rg:— M0

From Lax-Milgram theory thanks to inequality (3.2) we obtain the existence
of weak solution £ € H of problem (3.5). From the theorem about regularity
of weak solutions of elliptic systems (see [19], Theorem 4.18) we deduce that
& € D(A) and surjectivity is proven. Operator L considered as operator

from Hs to Hj is continuous. We take A € (0, 5 1||) and write equation

(3.4) in the form (I — AL;')¢ = —L;*f. Because /\HL2 !l] < 1 the solution
of this equation is equal

¢=-L; (Z(/\L 1)k f )eX2,

and we have maximal dissipativity of Ly. From Hille-Phillips theorem [7] we
obtain, that Lo is the generator of cg-semigroup of contractions Sq(t);t €
R, on Hy. Moreover, when {5 € X2, we have S2(-)¢o € C(R4;X2) N
C'(R4; Hs). Since ((t) := Sa(t){o when (o € Xp is the only solution of
system

Zg LG ¢>0  ¢(0) = (o,

from the formula for Ly we deduce that d:u(-) = v(-), 0¢p(:) = ¥(-) and
u(-), ¢(-),6(-) is the strong solution solution of Problem 2. From (3.3) and
(3.6) we obtain

(3.7 IO = (TG0 = (Lac). o),
r{ 00— d | Vo).

D D

(3.6)
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It is easy to see that Ea(t) = 2[/¢(2)]|3. From (3.7) we get

(3.8)  Ex(t) — Ea(s) = —r | {(Bip(r) dS S [VO(r)]?, 0<s<t.
sD

For ng € Hy we consider sequence {<0 ke N } C Xo convergent in Hs to
Co. The corresponding strong solutions (u*, ¢*, #%) with initial data given by
C(’f, k € N, will satisfy all conditions of Definition 2.5. From the contractivity
of semigroup S(-) we deduce, that limy_,.0 (x(-) = S2(-)¢o in C(Ry; Ho);
(k= So(t)¢k. We see that v = Qu, v = Oy¢. Moreover after writing
(2.2) for (uk, Pk, O%) and passing in this equality with £ — oo we claim that
(u, @, 0) := Himy_,o0 (U, Pk, Ox) (the limit is considered in H x L?(D)) is the
weak solution of Problem 2. This also imply that the energy of this weak
solution equals E»(t) = 3||S2(t)¢ol|3. Because of the contractivity of Sa(-)
this yields that for energy of this weak solution we have Fy(t) < Es(s),
0 < s < t. Using the technique of proof from [7]| one obtains the uniqueness
of weak solution. The proof is complete.

About the proof of Theorem 2.6. The concept of the proof of Theorem
2.6 is the same as the one for Theorem 2.7.

The generator Ly of cg-semigroup of contractions Si(t),t € R, on H;
will be equal

0o, 0 I, 0
L= 0 , 0 , 0, I ,
Ae 9 bv 9 0 ) 0
~bdiv , (aA—~I) , 0 , —rl

his domain D(L;) = X;. The energy of solutions of Problem 1 will be equal
Eq(t) = 3|1S1(t)nol|3. We omit the details of the proof.

4. Stabilization of solutions of Problem 1

In this section we give proof for the first part of Theorem 2.9. We prove
results only for B¢ = 0,¢. The case of the Dirichlet boundary operator one
can handle by the same scheme of proof.

We begin this section with proving results concerning the operator A
(defined in Section 3). Let k € (0,k;) and consider the operator A :=
A — kI (the number k; > 0 was defined in Section 3). From (3.2) we derive
(A& &) 2 = (k1 — K)I€]172

The operator L is closed because it is the generator of co-semigroup of
contractions [5, 19]. This implies that A and A are closed as well. Because
A, A are symmetric this yields that they are selfadjoint.
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The inequality written above and Lax-Milgram theory imply that there
exists A~1: L2(D)™*! — D(A), which as the operator in L2(D)"Jr1 is com-
pact and selfadjoint. This yields that o(A) = ap(A) C [k1 — k,0), and all
eigenvalues have finite multiplicities. The different elgenvalues we enumerate
according to the natural order: k1 —k <r; <7y <..., limy_,oo 7y = 00. Let
P, denote the orthogonal projection operator in L?(D)"*! onto the eigen-
subspace of A corresponding to r;,l € N. We can write A= S oo, miP and
forany s € R, A+ (s—r;)I = 3.2, (ri—rj+s+k)P,. Because r;—rj,j,l € N
are independent of £ we can assume

oo j—1

(4.1) ke YU Lr -}

j=21=1
Let us define
mj(s) == inf{(s+k+mr—r))?: 1€ N}, jEN.
We have inequality
I(A+ (s = r)DElI72 2 my(s)llElf72, € € D(A).

This implies that whenever m;(s) > 0 then there exists the resolvent oper-
ator R(r; — s; A) and

1
m;(s)’

where we understand R(r; — s; A) as the operator in L(D)"!.

(4.2) [R(r; — s; A)|| <

PROPOSITION 4.1. Let k € (0; k1) satisfy the condition (4.1) Then for each
J € N there exists s; > 0 such that m;(s;) > 0 and ﬁ <1
Proof. We take arbitrary j € N and denote a; = (k + r; — r;). We have
chosen k such that 0 ¢ {a;}. It is clear that a; — oo when | — oo and
m;(s) = infjen |a; + s|. We consider three cases.
Case 1. gy >0 foreachl e N
We take s; = 4 > 0. Because \/m;(s;) = infien |a; + 5;| = 3a1 we have

G -2 1,
(<) 3a: 3
m;(sj) 3m

This ends case 1.

When a; < 0 for some [ € N then we can choose n € N such, that
0e (an,an+1).

Case 2a. —a, < @p41-
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We take s;=—9 >0. We have 0 € (an+ 5, ant1+5;) =(3an, ans1 — %)
so v/m;(s;) = infien |a; + s;5] = —3an. We check that

S % 1,
2
m;i(s;) —3an 2

Case 2b. —a, > an41-
In this case we take s; = M > 0. We have 0 € (an+ 85, @n+1+8;)

= (-t Sotife) and \/Tsj infien la; + 8] = 222 We

calculate

An+an41
85 e S 1 2an+1 <1 a
m;(s;)  m—m Unt+1 — Gp Qntl — Gn

From [20] (page 11) we recall:

PROPOSITION 4.2. Let L be the generator of co-semigroup of contractions
in a Hilbert space. Then {A € C :reX >0} C p(L) and ||R(N\; L)|| < % for
each \ with rex > 0.

From [21] we quote

THEOREM 4.3. Let L be the generator of co-semigroup of contractions
T(t),t € Ry in a Hilbert space Z. Whenever there ezists a dense subset
M C Z, such that

(4.3) liI(I)l vaR(a+i8;L)y=0, yeM,B€R,
a—U

then limy_,o ||T(t)z||z = 0 for each z € Z.

Proof of Theorem 2.9 for F;(-). From Section 3 we know that Ej(t) =
%||Sl(t)n0||1, no € Hy. Because of Theorem 4.3 to prove limy_,o Eq1(t) = 0
it is enough to verify that (4.3) is satisfied for L = L;, Z = H;, M = H;.
We begin this verification.

From Proposition 4.2 for each f € H; and a > 0 there exists n =
n(a, B) € Xi solving the system ((a + i8)] — L1)np = f. We rewrite this
system in a more exact form. Let f = (f1,...,fM7T, n = (&v,9)7T, € =
(u, )T, X := a + iB. Then we obtain: v = Au — f1, 9 = A¢ — f? and claim
that £ € D(A) and solves the equation

(4.4) NE 4+ AL+ ABE = F(\),

0, 0 ),m) = (FSAML A (A1) f).
0o, rl

Let us denote &g := ref, Fr(\) :=reF()\), & :=im§, Fr(\) :=imF(\).

where B := (
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From (4.4) we derive
(A= )R + (o + aB)ér — (208 + BB)Er = Fr(N),

(A— B+ (o + aB)ér + (208 + BB)Er = Fi(A).
Without loss of generality we can assume that « € (0,1). Now we derive es-
timations for norms ||\/a€|| and ||v/a€]| L2, which will be essential for proving
(4.3).

We multiply the first equation in (4.5) by ag, the second equation by

o, integrate over D, and make the summation by parts. This gives

(4.6) l[Vet|? < BPlIvVagill + o,
where I := | {,(Fr(a) - &r + Fr(a) - &1)|.
We estimate
I <||Fr(o)||L,|l€RIIL, + 1 Fr(e)L, lérllL, <
< CONE L, < CLB)IfIIIEN < CrB) filalinlla-
From Proposition 4.2 : 7 = R(X; L1) f, [|nl{r < [|R(A; LI f1l < e YIS,
which gives
(4.7) I1<a ' ai(B)IfIIF
From this and (4.6) we have

(4.8) IVeag|l? < B2|Vetllz: + CLB)IIfIIE.

[

To obtain the estimation of ||/af||3, we derive first the inequality:
(4.9) riBl | Vael® < COIIfIE.

D

(4.5)

We multiply the first equation in (4.5) by —a€; and the second equation by
afr. Then we integrate over D, and make the summation by parts. After
proving the similar estimations as above for ineqaulity (4.7) we obtain (4.9).

Now consider first case 3% ¢ o(A). We rewrite the system (4.5) in the
form

Vatr = R(8% 4) (o + af)V/(@)6r — 208vaEr — VaFr()] -
—7r 2. O
BR(8 ,A>( s )

(4.10)
Vagr = R A) |(@® + af) {a)ér + 208vatr — VaFi(N)] +

LrBR(6% A) ( \/% , ) .
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Taking into account (4.9) we can derive from (4.10) the estimation

(4.11) IVeklrz < C(B)Ifll1,

when a € (0, ap), a9 = ao(B) > 0 is chosen sufficiently small.

When 3% € o(A) we have 32 = r; for some j € N. By Proposition
4.1 we can choose s; > 0 such, that m;(s;) > 0. The latter means that
s; —1; € p(A). This makes it possible to rewrite (4.5) in the following form:

Valr — sjR(r; — sj; A)vValr = R(r; — sj; A) - [(@® + aB)vabr—

—2apalr — aFr(N)] — rBR(r; — sj; A) ( \/%qb ) :
Va€r — s;R(r; — s5; A)valr = R(r; — sj3 A) - [(&® + af)vag+

0
+2avobr — VaFi(\)] — rBR(r; — s;; A) ( Jas ) ~

(4.12)

From (4.2) and Proposition 4.1 we get
Sj
m;(s5)
This allows us to use the Neumann series for (I — s;R(r; — s;; A))~!, which
together with (4.9) from (4.12) gives (4.11) for sufficiently small ap > 0.
Arguing by contradiction, let us suppose that there exist ¢ > 0, 8 €
R, f € H; and a sequence {ak;k € N} C (0,min{1,ap}) such, that
limg 0o @* = 0, and ||Va¥*n(c®*,B)|l1 > ¢,k € N. Let us denote shortly

M = n(ak,ﬂ)7 Ak‘ = ak + 7//8’ and appropriately gk’uk‘, ¢kavk,¢kak € N.
Estimations (4.8) and (4.11) allow us to conclude that there exists a sub-

(4.13) [|s; R(r; — s5; A)|] < < 1.

sequnce of {\/akfk, ke N } which is convergent weakly in H and strongly
in L2(D)™*!. The limit of such subsequence we denote by £°. For the sim-
plicity of notation we assume that the whole sequence {\/akék ,keN } is

convergent to £°. We substitude vak¢F into (4.4) instead of € and after
passing k — oo we obtain

(4.14) AE® — p%€° +iBBE* =0,
in the weak sense. When 3 = 0 this gives A¢® = 0 in the weak sense which
yields £ = 0.

Now we consider case 3 # 0. The same arguments that have been used
to derive (4.9) give us 7|3|||#°||z2 = 0, and hence ¢° = 0. From (4.14) this
allows to infer that u° satisfies

—,uAuoz,BzuO in D, divud=0 in D, 4«°=0 on 4D.
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Because of the condition (C) we have u® = 0 and hence £° = 0.
Let us consider the system (4.4) for \/a& once more. After taking the
inner product in L2(D)"*! we derive

[Vaker|? = (AVakg, Vakey)
= (VaFF(Ag) + NVakgy, — A\ BVake;, Vakey) a.

This gives limy_,o Vak€; = 0 in H, and consequently limg_o, Vakn, = 0
in Hy. We have obtained the contradiction. The proof is closed. =

5. Stabilization of solutions for Problem 2

In this section we give proof for the second part of Theorem 2.9. Every-
where in this section we have the boundary condition ¢ = 0 on 9D.

We begin with making the following auxillary observations. According
to the theory of elliptic systems [19] we can define:

DEFINITION 5.1. Let v € H} (D)™, w € L*(D)", R, h,v € L?*(D) be given
and u, ¢, 8 solve the following problem
Aeu+ bV — MVO = w,
alA¢ — bdivu —yop+ M@ =rp+h in D,
dAg = Mdivv + My + R,
u=0,0=0,§=0 on 9ID.

We define the operator P : D(Lg_l) — D(Lg), j € N by the formula
P(v,w, v, h, R) := (u,v,¢,%,0). We put D(L3) = H.

PROPOSITION 5.2. Let (u,®,8) solve the Problem 2, and

t t t

ui(t) == Ju(s) +u}, () :={o(s)+ 47, 61 :=10(s)+6%,

0 0 0
where (ul,u?, ¢, 4°,69) = P(u’,ul, ¢%, ¢',6°), and (u%,u', ¢, ¢!,6%) € X
is the initial data for (u,¢,0). Then (uy, ¢1,61) solves the Problem 2 with ini-
tial conditions u(0) = uY, Ayu;(0) = u°, ¢1(0) = ¢?, 8,01(0) = ¢°, 6:(0) =
82, and (u1(t),u(t), 1(t),9(1),61(t)) = P(u(t),dult), ¢(t),04(t),0(t)),
teR,.

The proof is based on straightforward calaculations, the details are omit-
ted.

Proof of Theorem 2.9 for Fy(-). We adopt the scheme of proof done by
Dafermos in [5]. We shall consider separately the terms standing in Es(-)
and prove that they tend to 0 when ¢ — oc.



772 P. Glowinski, A. Lada

The principal considerations will be proved under the assumption that
the initial data belongs to D(L3™), J € {0} U N. The case when the initial
data belong to Hy will be investigated at the end of the proof. When the
initial data belong to D(L3"7) then (8}u, 8ip, 8}6),i = 1,...,2+J also solve
the Problem 2 in a strong sense with the apprioprate initial conditions. Their
energies are denoted by E;)(t), i=1,...,24 J,t € Ry. The equality:

. t ) t } ;
EY) +d{ [ [Vai8(s)]? + 7| | VOt g(s)[2 = ES(0),
(5‘1) 0D 0D

where t>0,i=1,...,24+J
still holds. Our further considerations will be separated into parts and for-

mulated as propositions.

PROPOSITION 5.3.

tlim(‘),fd)(t)zo in L*(D),i=1,...,24+J.
—00

Proof of Proposition 5.3. Let us denote fi(t) := {,, [0ip(t)|%, i = 1,2,.. .,
2 + J.. From inequalities Eo(t) < E2(0), EY(t) < EL(0), t > 0, j =

1,...,24J we get fi(t) < Ex(0), fin1(t) <EP(0),t>0,5=1,...,2+J
and from (3.8), (5.1) we claim that f; € L*([0,00)),i=1,2,...,3+ J. The
Cauchy inequality and the above estimations allow us to write

!%fi(t) <2V firit) C <00, t>0,i=1,...,2+J.

This yields limy o fi(t) = 0,7 =1,...,2+ J because f;, i =1,...,2+J
are uniformly continuous and integrable on (0, 00). Proof of Proposition 5.3
is finished. =

PROPOSITION 5.4.
Jim Hokot)=0 in L*D), i=1,...,n,j=01,k=0,...,14+J.
—00

Proof of Proposition 5.4. Denote g;(t) := |V8£0(t)|2, l=1,...,1+J,
t € Ry. From (3.8), (5.1) we infer g; € L*([0,00)), [ € 0,...,1+ J. Again
from inequalities for energies (used in the proof of Proposition 5.3) together
with the Poincaré inequality we derive

o o] < BS0), §|avelu)| < B 0),
D D

l=0,...,1+J, ¢c>0is constant.
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- Then using the equation for 8 in the system (1.4) we get

d 1 2 M_, )
(5.2) Zat)=~2 { [3 |a§+10(t)} +—9, +19(t)dival T u(t)
D

(5.3) +%8£+19(t)6§+1¢(t)] , 1=0,...,1+J,t>0.

From this, the estimations written above, and known estimations for
fi,l =1,...,2+ J we obtain that |g§gl(t)l <ec <00, l=0,...,1+J,
t € Ry, ¢y > 01is a constant. This implies lim;, 00 gi(t) =0,1=0,...,1+J.

Since 80(t) € H}(D), 1 = 0,...,1 + J from the Poincaré inequality
we obtain the assertion of Proposition corresponding to j = 0. Proof of
Proposition 5.4 is finished. =

PROPOSITION 5.5.

tlim divu(t) =0 weaklyin H}(D) and stronglyin L*(D).

—00

Proof of Proposition 5.5. Consider (u;(-),#1(-),601(-)) defined in Propo-
sition 5.2. Taking into account the equation for ; in (1.4) and Jyu; = u, we
immediately show that divu(t) € H3(D)™, t > 0. From the same equation
for 6, we derive for x € C§°(D):

| 1861 (t)x + dVOL (&) VX + M1y ()x] = — M | divu(t)x,
D D

and

| [0:0;01(t)x — dVO1(t)VO;x — M18,$:(t)0;x] = —M | 8;divu(t)x,
D D
j=1...n

From Propositions 5.3, 5.4 applied to 64(-),#1(-) we conclude that the
left hand sides in the equalities written above tend to 0 when ¢ — oo. This
gives the weak convergence of divu(t) — 0 in H}(D) when t — oo. Since
the inclusion H}(D) C L?(D) is compact we have second assertion. Proof
of Proposition 5.5 is finished.

PRropPoOSITION 5.6.

Jim ¢(t) =0 in H(D).
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Proof of Proposition 5.6. Using the equation for ¢ in (1.4) we get
(54)  a§|Ve@)® = | ([MO(t) — B2¢(t) — bdivul(t)
D

D
~r0d(t)] (1)) = Y(O)[72(p)
< [ ([M0(e) - 976(t) - baivu(t) — raL8(1)] 6(1).
D
From inequality E2(t) < E5(0),t > 0 we get ||¢(t) ”L2(D < vy 1E5(0).
From Propositions 5.3-5.5 we observe that the right hand side in (5.4)
has the limit 0 when ¢ — co. This yields that lim;_,o, Vé(t) = 0 in L?(D)™.
Proof of Proposition 5.6 is finished.

We define w(t),t € R, as the solution of the problem :
(56.5) Acw(t) = —bVe(t) + MVO(t) in D w(t)=0 on ID.
PROPOSITION 5.7.
(5.6)  Jlimw(t)=0 in HYD)", and

tlim Ow(t) =0 weaklyin HY(D)* and stronglyin L*(D)™,

for I=1,...,1+J
Proof of Proposition 5.7. From Proposition 2.2 and Korn inequality we
infer that the bilinear form §{, o(f) : €(g), f,g € H}(D)", defines the inner
product in H}(D)".
From (5.5) we derive

[ o(Bhu(t)) : e(x) = § [-b8lo(t) + MAlO(t)| divx, x € HY(D)",
D d

(5.7)

for [=0,...,1+].
Because of Propositions 5.3, 5.4 this yields lim;_,o, Slw(t) = 0 weakly in
H} (D)™ (hence strongly in L?(D)"), 1 =0,...,1+J. Using (5.5) once more
we get
S a(w(t)) : e(w(t)) = —b S o(t)divw(t) — M S Vo(t)w(t).
D D D
From Propositions 5.4, 5.6 and the convergence proved above we claim that
the right hand side in this equality tends to 0 when ¢t — oo. This establishes
that lim;_,, w(t) = 0 in H}(D)". Proof of Proposition 5.7 is finished. =
Now we define v := u — w. From the equation for u in 1.4 we claim that
v solves the problem

Fv=Av—0w in DxRy, v=0 on DxRy,
v(0) = u® — w(0), Bw(0) = u' — Bw(0) in D.
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Here we are in the same position as in Lemma 5.4 in [5]. Arguing in the
same way as in the proof of Lemma 5.4 in [5] we obtain lim;_, G;v(t) =0
in L2(D)™, limy—o0 v(t) = 0 in H3 (D)™

The proof is rather long, so we address the reader to paper [5|. In this
proof the condition (C) on the domain D is essential.

We have proved that lim;oo E2(t) = 0 when initial data belongs to
D(L¥), J > 1. Consider now the initial data & € H, and take & €
D(L3*7). The solution with initial data &o we denote by & ( -), its energy by
E5(-) and let E}(t) denote the energy of solution with initial data & — &o.
We have the inequality

Bx(t) <2 [Ba(t) + B3(t)] .
Because of the inequality Ei(t) < E3(0) this gives
(5.8) Ex(t) < 2E5(t) + 2E}(0).
Since D(L3*7) is dense in Hy (see [19]), for each ¢ > 0 we can choose
€0 € D(L3M) such, that E}(0) < £
Since lim;—,o E;(t) = 0 we get from (5.8) that limsup,_,., F2(t) < € for
every € > (. The proof is finished. =

REMARK 5.8. In the formula for energy FEi(t) we have the term
26§, ¢(t)divu(t). In the proof given above we have estimated first divu(t)
from equation for 6(-) and then §, |¢(t)|? was estimated.

In system (1.2) € does not appear. So this scheme of proof does not
work for Problem 1. The application of the resolvent criterion for Problem 2

remains as the open problem. Solving it will give the unified solution for
both Problem 1 and Problem 2.

6. Final remarks

From the form of systems (1.1), (1.3) we deduce that besides the bound-
ary conditions considered in this paper also the following (so called free
boundary condition) can be considered:

T-v=f, gqu=fo on I'nxRy,
where (T -v); ==Y ¢ Tk, qv =Y ;- qvi, I'n C 8D, f denotes the
vector of external force and fy the external heat supply.

There is no problem for proving the existence of cy-semigroups describing
the solutions (see [8]). But under the knowledge of the authors there does
not exist works in which the stabilization is proved when there are taken
into considerations f =0 and fy = 0.
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In our paper [8] we solved the problem, such as Problem 1 but with
the boundary conditions 7 - v = —8u on I'y x Ry (the so called feedback
stabilization) and u =0 on Tp x Ry, TpUTy = 8D, TpNT'y =0, Tp # 0,
I'y#0and 8,6 =00ndD x R,.

We have proved the uniform stabilization of the energy of solution. The
methods which we have used are quite different from the ones presented in
this paper.

For the ideas useful for solving stabilization problems with the Neumann
type boundary conditions one should look into literature cited in our pa-

per [8].

Appendix 1

In the model proposed by Grot [9] the termoelasticity system describes
the evolution of quantities (u, ¢, 8, w) where u, ¢, 6 are the same as in (1.4)
and w € R" represents microtemperatures. The governing equations of the
system are following:

02u = Aqu+bVe — MVE
024 = alAp — bdivu — y¢ + M0 — sdivw
08 = dAG — MdivOyu — M10:¢ + kidivw

Ow = Agw — k3sVO — 6V O — kow

(A1)

where Ze is the elliptic Lamé operator, ki, ko, k3,9 > 0.

As in Problem 2 the system is considered in the domain (¢, z) € (0, 00)x D
and is subjected by boundary and initial conditions. For u, ¢, # the boundary
conditions are the same as in Problem 2 and for w it is considered w = 0
on (0,00) x AD. In the system (A.1) there is no dissipation term —rd.¢ in
the equation for ¢ similarly as in models proposed by Iesan [11]. Taking the
idea from [10] we propose the following decoupling, separating the equation
for w from the system for (u,®,0). Let w be the solution of the following
elliptic problem:

Aew — kow =6VO¢ in D, w=0 on ID.

We put the solution @ = §(A, — k2) ' VOi¢ into the system for u, ¢, 0
instead of w, denote O = div(ze - kg)l_)lV, and write the decoupled system:
O = A +bVe — MVE
O2h = aAp — bdivi — v¢ — §200;6 + M10
88 = dAG — Mdivdya — M8, + k1608,

W = AT — k3V8 — 6V 8,6 — ko

(A.2)
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This system is subjected with the same boundary and initial conditions
as in the system (A.1).
For f € H}(D) we immediately show

} fOf = § (Be ~ k2)p'VS) -V 2 0.

D D
The boundedness of O in H}(D) is clear. We see that the term 6208;¢
introduces dissipation into the equation for ¢. Let T(t), t € R, denote the
semigroup for system (A.2) and T'(¢) for system (A.1). Our conjecture is:
the operator T(t) — T(t) is compact on C([0,T], H) for each T > 0; Hisa
suitable Hilbert space. The work on this problem is in progress. Our aim in
this Appendix is only to explain that the dissipation in equation on ¢ appears
when one considers the full thermoelasticity system with microtemperatures.

Appendix 2
Let us notice first, that Assumption 2.1 is necessary to construct semi-
groups S;(+), ¢ = 1,2 and then state and solve problems about stabilization.
The first conditions A + g > 0 when n = 2 and 3\ + 2p > 0 when n = 3 are
generally assumed in linear hyperelasticity theory. So we investigate only
what would happen when the second condition (A + u)y > b? when n = 2
and (3X\+2u)y > 3b% when n = 3 were not satisfied. We focus on the system
(1.2). The well posedness of Problem 1 follows from [13]. From the paper
[15] for solutions of Problem 1 we obtain: when E;(0) < 0 then there exist
c1,c¢2 > 0, dependent of initial data, such that
t
S [|(9tu(t)|2 + ]8t¢(t)|2} + rS S |8,¢(s)|2dzds > C1e°?t, t>0.
D 0D
We establish that initial data for which E;(0) < 0 can exist when the
second condition in Asssumption 2.1 is not satisfied. Let us consider n = 2,
(A+p)y < b? and take the initial data: u! = 0, ¢! = 0,u° = Vo, ¢ = sdivu?,
v € C§P(D),s € R. After calculations we get

o (u®) : e(u) + 2b¢°divu® + v(¢°)? + a| V¢’
=24 2(62 + 44(D109v) 4+ (A + 2sb + s27)(Av)? + a| VA%

Observe first that for v € C§°(D), §p (810:v)? = §,, 8?v0%v. Then we
put s = —%. For E;(0) we obtain:

Ey(0) = (u + % ((p+ Xy - b2)) S (Av)? +a S |AV]2.

D D
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If (u+ Ay —b% < 0 we see that E;(0) — —oco when v — 0, therefore
obtaining negative values of E;(0) is possible. In the light of the result from
[15], cited above, this means that the system (1.2) is physically not realistic
when second condition in Asssumption 2.1 is not satisfied.
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