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A S Y M P T O T I C STABILITY OF SOLUTIONS TO T H E 
EQUATIONS OF LINEAR ELASTICITY A N D 

THERMOELASTICITY IN V I S C O P O R O U S M E D I A 

Abstract. The systems of evolution equations modelling elasticity and thermoelas-
ticity of viscoporous bounded media are considered. The existence of co-semigroups of 
contractions defining solutions to the systems is proved. The asymptotic vanishing of 
energies of solutions when t —• oo is explained. 

1. Introduction and statement of problems 
An increasing interest is observed in recent years to determine the decay 

behavior of the solutions of several elasticity problems. In classical ther-
moelasticity theory the decay effects were studied in the book [12] and in 
papers [10], [14], [5]. In the papers [2], [17], [18] there was studied the decay 
of solutions of the one-dimensional elasticity models where besides of ther-
mal dissipation the porosity dissipation is taken into account. The similar 
kind of problems (indirect internal stabilization of coupled evolution equa-
tions) has recently been the focus of interest of other authors [1], [6]. Our 
goal in this paper is to establish the stabilization of solutions for two- and 
three- dimensional elasticity and thermoelasticity systems for viscoporous 
materials. 

Let us begin from evolution equations [4], [3] 

pdfu = divT, 
(1-1) 

Jdt<t> = di vh + g, 

where T denotes the stress tensor, u denotes the displacement vector, h 
denotes equilibrated stress vector, g denotes intrinsic equilibrated body force 
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and the scalar function (p denotes the change in the volume fraction from 
the reference configuration, (divT)j := djTij, n = 2,3, denotes the 
dimension of space and u has the same dimension. 

In the linear theory there are considered the following constitutive rela-
tions n 

T := o(u) + b(j)I, h:=aV4>, g := - b j ^ ell(u) ~ 70 + E , 

1=1 

where a(u) denotes the elasticity stress tensor, 
n l 

a(u)i j := A eu(u)ôij + 2fj.eij(u), eij(u) := -{djUi + diUj), 
l=i 

E denotes the dissipation friction and is taken to be equal E —rdt4>, I 

denotes the n x n unit matrix. 
The coefficients a, b , j , / i > 0, and for simplicity of the further considera-

tions we put p = 1 and J = 1. After subjecting the system (1.1) with initial 
and boundary conditions we obtain the following system for u and <f>. 
PROBLEM 1 . 

dfu = Aeu + bV(f) in D x R+, 

dt4> = aA(p — bdivu — j4> — rdt<j) i n D x R + , 

u = 0, Bcf) = 0 on dD x R + , 

u{0) = u°,dtu(0) = u\(f>(0) = <f)0,dt(t>{0) = <t>1 i n D. 

In the above D C Rn, denotes a bounded domain with boundary dD 
having regularity of class C2 , A e := f i A I + (/x + A)Vdiv denotes the elliptic 
Lamé operator, R + := (0, +oo), Bcf) = 4> or Bcf) = du(j), where v denotes the 
outer unit normal vector to dD. Physically D is the region occupied by the 
body in the reference configuration. 

To take into consideration also the thermal dissipation, the third equation 
is added to the system (1.1) 

( 1 . 3 ) pTodtr] = divq, 

where 77 denotes the entropy and q the heat flux (see [11]), To > 0 is a 
constant. From the classical linear theory we take the following constitutive 
relations for q and 77: 

q := dV6, pr) = 6 + Mdivu + Mi<f>, 

and for g in (1.1) we take 

g = - b ^ 2 ea(u) - 70 + M\Q + E , 

1=1 

where 9 denotes the temperature. The coefficients d,M,M\ > 0, and for 
simplicity we put Tq — 1. 
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After subjecting the system (1.1), (1.3) with initial and boundary condi-
tions we obtain the following system for u, </>, 9: 

P R O B L E M 2 . 

d^u = Aeu + bV(f> - MV6 i n D x R+, 

dfcp = aAcfi - bdivu - 7 ( / > - rdt<f> + Mx9 i n D x R+, 

(1 .4 ) dt9 = dA9 - Mdivdtu - Mxdt(f> i n D x 

u = 0, = 0, 6» = 0 on <9D x 

«(0) = u°, dtu(0) = it1 ,0(0) = <f)°,dt<f>(0) = 4>1,6{0) = 9° in D. 

The term —rdt4>, in equation for <f> in the systems, models the porous dis-
sipation called viscoporosity [4], however in models derived by Iesan [11] such 
term does not appear. In the Appendix 1 we give explanation that the dissi-
pative term in equations on </> appears naturally when one considers thermoe-
lasticity system taking into account microtemperatures [9], and then makes 
the decoupling which separates the system for microtemperatures from equa-
tions for u, <fi,6. Usually in the literature it is considered B<p = when u = 0 
on 3D, but there exist papers where also the operator B(f> — dv(f> is consid-
ered [2, 18]. In our paper we shall consider both possibilities for B: B(j) = <f> 
and B(f> = dy(p. We are able to prove one of our main results only for B(j> = <f>. 

The first topic in this paper is to establish the existence of co-semigroups 
of contractions defining solutions of Problems 1, 2. The second one is to 
explain when the energies of solutions asymptotically vanish when t —* 00. 
Under the authors knowledge these both questions were not rigorously stud-
ied yet. For the 1-dimensional models some results are obtained in [2, 18]. 
For solutions of Problem 1 there was proved the lack of uniform stabilization 
(that is the energy does not tend to 0 with exponential speed when t —• 00). 
For solutions of Problem 2 there was proved the uniform stabilization when 
the parameter r > 0. But when r = 0 there was proved lack of the uni-
form stabilization. This means that interaction between 4> and 9 weakens 
dissipativity effects introduced by the parabolic equation for 9, because for 
the classical 1-dimensional thermoelasticity we have the uniform stabiliza-
tion [16]. One can observe the positive feeedback interaction between and 
9 in the system (1.4). In analysis of thermoelaticity systems there exists a 
deep difference between 1-dimensional and many-dimensional models - see 
Remarks 2.10 in section 2 of this paper. 

The analytical difficulties involve the strong coupling of equations in the 
systems. Under the authors knowledge, in the mathematical literature, the 
problem of stabilization in the system of strong coupled hyperbolic equations, 
where the damping comes only from one part of the system (see system (1.2)) 
has not been solved. 
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The organization of paper is the following. In section 2 we formulate our 
main results. In section 3 there will be proved the existence of co-semigroup 
of contractions defining solutions of Problem 2. This same concept one can 
apply to Problem 1. The proof relies on Hille-Phillips theorem [7, 20]. For 
justification of conditions of the Hille-Phillips theorem in the context of 
Problem 2 we use scheme done in [10]. 

In section 4 we prove stabilization of solutions for Problem 1. We use the 
resolvent criterion done by Tomilov [21]. All results announced above will 
be obtained for both cases of the operator B. 

Section 5 is devoted to proving the stabilization of solutions for Problem 
2 when Bcj) = cj>. Here we adopt the scheme of proof done by Dafermos 
[5]. Authors were not able to apply the resolvent criterion to Problem 2 
successfully. Stabilization of solutions of Problem 1 for dimension n = 1 can 
be proved by the same method as we present in this paper, the verification 
of details we leave to the reader. As we have mentioned earlier, the 1-
dimensional Problem 2 was solved in [2, 18]. 

2. Main results 
In this paper we shall work under the following special conditions on 

A S S U M P T I O N 2 . 1 . We require A + n > 0, (A + /¿)7 > b2 when n = 2 and 
3A + 2/I > 0, (3A + 2/X)7 > 362 when n = 3. 

In the Appendix 2 we explain that conditions on coefficients, which we 
have formulated above are optimal for the linear model (1.2) to be physically 
realistic. 

We denote 
n 

a{u) : e(v) := try-(u)ey(u). 
¿1.7=1 

Recall that Ae(tt)j = 1 ^j<Jii{y)i ^ = • • • >n-
From the Sylvester theorem concerning positively defined matrices we 

derive: 
PROPOSITION 2 . 2 . I f b , x , f i , j satisfy Assumption 2.1 then there exist con-
stants ci, C2 > 0 such, that 

n 

a(u) : e(u) > a eij(u)> 
i,j =1 

n 
a(u) : e(u) + 260divu + 7</>2 > c2{4>2 + ^ elj(u))-

i,j=1 
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For sake of convenience we recall the classical Korn inequality. 
There exist constant c > 0, that for each v E H^(D)n 

\ £ 4 > - S iv-i2 , 
Di,j=1 D 

where |Vif := E L I lV^l2-
We shall consider H := H&(D)N x HQ(D) when B<p = cp and H := 

HQ(D)U x HL(D) when B<p = du<p. 

PROPOSITION 2 . 3 . The bilinear form 

J [aiu1) : e(u2) + aVcp1 • V</>2 + 7(pl<p2 + b^divu 2 + b^divu1] , 
D 

C< : = (u*,^), e Hl(D)n, ft £ HQ{D) when Bcp = </> and ft € Hl(D) 
when B<p = dv(p, i = 1 , 2 , defines the inner product in H. 

Sketch of the proof. From the second inequality of Proposition 2.2, and 
the Korn inequality we derive 
(2.1) (C, 0 > C j [|Vu|2 +| v</>|2 + <p\ c e H, 

D 
where c > 0 is constant. The proof can be closed. 

Let || • || denote the norm in H generated by the inner product defined 
in Proposition 2.3. 

Now we give definitions of weak solutions for Problems 1,2. 

DEFINITION 2.4. We say that £(•) e C(R+; H)NC1(R+; L2(D)N+1) solves 
Problem 1 in a weak sense when it satisfies 

1. C(0) = C(0) = ( u 1 , ^ in D, 
2. for each (v, xp)T <E H, 

^\(v-dtu(t) + 'iJ>dt<t>(t)) + (at),(v^)T)+r\i>dt<l>(t) = 0 in D'(R+). 
a t D D 

DEFINITION 2 . 5 . We say that (C(-),e(-)),((-) EC(R+,H)NC1(R+-L2(D)N+1), 
#(•) € C(R+; L2(D)) solves Problem 2 in a weak sense if it satisfies 

1. (C(O),0(O)) = (u0,<f>°ye°)T,dtm = (u\<Pl)T in D, 
2. for each (v,tp)T G H, X € H2(D) n HQ(D) 

(2 .2) dtu{t) + xpdt<p(t) + x m + MXd\vu(t)) + (at), (V, ^)T> 
at D 

+ j [(rip + MlX)dt(P(t) - d0(t)AX 

D 

—MOdivv - M\6(t)ip] = 0 in D'(R+). 
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To make investigations more clear we introduce the following Hilbert 
spaces: Hi := H x L2(D)n+1, endowed with the inner product (771,772)1 : = 
(Cl, C2) + \D [v1 • + V ] , m •= (Ci, K Ci e H, v*€ L2(D)n, # G 
L2(D),i = 1,2 and H2 : = H\ x L2(D) endowed with the inner product 

((1,(2)2 : = {m,m) 1 + 5 ^ E 2 , C I ••= (m^Y^I G G L2(D),Î = 1,2. 
D 

The norm in Hi generated by the inner product (•, we denote by || • ||j, i = 
1 , 2 . 

We distinguish the following dense linear subspaces Xi C Hi, i = 1,2: 
X1 := (H2(D)ilH^(D))n x (H2(D)DH^(D)) X H&(D)n x # ¿ ( . 0 ) when 

Bcj) = <f>, and 
Xi := (H2(D)nHÙ{D))nx(H2(D)n{d„<p = 0 on dD}) x H^(D)n x 

ff^D) when 5 0 = <9^0, 
X2 :=Xi x (H2(D)nH^D)). 
We formulate the main existence theorems. 

T H E O R E M 2 . 6 . Let the coefficients and the domain D satisfy condi-
tions imposed above. Then on Hi there exist a co-semigroup of contrac-
tions S\{t),t G R+ such that whenever (u(t),4>(t),v(t),i^(t))T := S\(t)r)o, 
T)o := {uQ,()P,ul,4>l)T then for t]q G X\, (u(-), 0(-)) i>s the unique strong so-
lution of Problem 1 and dtu(-) = v(-), dt(j>(-) = ip(-), Si(t)rjo G Xi, t G R+. 
For rjo G H\, (u(-), </>(•)) is the unique weak solution of Problem 1. 

T H E O R E M 2 . 7 . Under the same assumptions as in Theorem 2.6 there 
exist on H2 a CQ-semigroup of contractions S^T),T G R+ such that if 
{u{t),ct>{t),v{t),m,m)T •= SMCo, Co : = {uQ,4P,u\4>1,e(i)T then for 
Co G X2, (u(-), (/>(•), &(•)) is the unique strong solution of Problem 2 and 
dtu{-) = v(-),dt^(-) = </>(•), S2(t)Co G X2 ; t G R+. For Co G H2, 
[u(-), </>(•),&(•)) is the unique weak solution of Problem 2. 

In the following by solutions of Problems 1, 2 we shall mean their strong 
or weak solutions. We define energies: 

W ) ••= M T \ \ 2 + S [ I ^ ( I ) I 2 + 1 D T M 2 ] 

* D 

for solutions of Problem 1, and 

W ) ••= L\\wt),mT\\2 + \ [\dtu(t)\2+\OTM2+o2(t)} 
Z D 

for solutions of Problem 2. 
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D E F I N I T I O N 2 . 8 . We say that a bounded domain D c Rn, satisfies the 
condition (C) if for every s > 0, the problem 

—Av = sv in D, dm; = 0 in D, v = 0 on dD, 

has only one solution v = 0 6 Rn. 

Now we formulate our main result about the stabilization. 

T H E O R E M 2 . 9 . Let coefficients and the domain D satisfy conditions im-
posed above, and additionally D satisfies the condition (C). Then for en-
ergy of solutions of Problem 1 we have lim^—x^ Ei{t) = 0. For bound-
ary operator B(f> = (f> for the energy of solutions of Problem 2 we have 
l im^oo E2{t) = 0. 

We place here some comments concerning the results from Theorem 2.9. 
Using the classical methods based on the spectral analysis one observes 

that the energy of solution for the problem 

dfu = aA4> — 'y(j) — rdt(f> in D x R+, 
B<t> = 0 on dD x R+, 

4>(0) = (j)°, dt(f>(0) = (p1 in D, 
uniformly decays when t —* oo. 

This is due to the term —rdt<f> in the equation. In the equation for u 
in the system (1.2) we have not the term of such kind. But there is the 
interaction between u and 4> described by the coupling of the equations in 
(1.2). Theorem 2.9 says, that for domains D satisfying condition (C) this 
interaction causes the disappearance of the whole energy when t —> oo. We 
have established the indirect internal stabilization of elasticity waves in the 
viscoporous materials. 

R E M A R K 2 . 1 0 . (i) Let a domain D does not satisfy condition (C) (see 
[5, 14]), and let a nontrivial UQ solve the system from Definition 2.8 for 

some s > 0. Then {e~i^IituQ[x), 0), {e~i^rstUQ{x), 0,0) solve Problems 1, 2 
suitably. These solutions have no decaying properties when i —> oo. 

(ii) The results of paper [14] suggest that whenever domain D satisfies 
additionally the appropriate geometric conditions, then the decaying energy 
for solutions of Problem 2 may be uniform or polynomial. 

(iii) It will be very interesting to explain whether for solutions of Prob-
lem 1 the decaying of energy has logarythmic speed. 

3. Well posedness of problems 
The assertions of Theorems 2.6, 2.7 are true for both cases of the operator 

B. Because for B<p = du(p the investigations are a bit more difficult we 
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formulate proofs for such operator B. The same scheme of proofs holds 
when Dirichlet boundary operator is considered. 

For Q := (u1, </>*), i = 1,2 we put 

(Ci,C2)i2 := ^U 1 V + 0V 2 ) ||C|||2 := S(M2 + 02). 
D D 

We define operator: 

with domain D(A) = ( H 2 ( D ) n H¿{D))n x (H2{D) n {dv = 0 on dD}). 
It is evident that A : D(A) L2(D)n+1. 

P R O P O S I T I O N 3 . 1 . There exists constant ki > 0 such, that 

(3-1) 
(3.2) 

||CII2>fci||Clli2, 
(A(X)LI> HWCWLI, CED(A). 

Proof. The inequality (3.1) we obtain from (2.1) and the Poincaré inequality. 
For the completness we recall the Poincaré inequality: there exists constant 
c > 0 such, that \ D |Vv|2 > c\D M2 , v e (#¿(£>))n. 

Next we calculate {A(,()L2 = IICII2 when ( £ D(A) and (3.1) implies 
(3.2). . 

Proof of Theorem 2.7. Let us introduce operator 

/ 0 0 I 0 0 \ 
0 0 0 I 0 

L2 := Ae bV 0 0 - A f V 
—òdiv (aA - 71) 0 —rl , Mi 7 

\ 0 0 —Mdiv , - M i / , dA / 
with domain D(L2) := X2. It is easy to see, that is dense in H? and 
L2 '• X2 —̂• H2. For C G X2 we calculate 

(3.3) (L 2 (o , c ) 2 = - M ^ 2 - i i S i w i 2 ^ 0 -
D D 

The above inequality means that L2 is a dissipative operator. To show that 
L2 is maximally dissipative it is enough to prove (see [7]) the existence of 
A > 0 such that for every / G H2 the equation 

(3.4) (A/ - L2)C = / 

has a solution ( G To show this, first we check that ker(L2) = {0}. So 
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let us suppose that L2C = 0 for some ( G X<x. From the formula of L2 we 
deduce that v = 0, ip = 0 and 0 = 0 (because AO = 0 in D and 6 = 0 on 
3D) and for £ = ( u , ( f > ) T we get = 0. Because ||£||2 = = 0 

we have £ = 0 and injectivity is proven. Then we should prove that L2 is 
surjective. We must show that for every g = ( g 1 , . . . , g'y) r G H2 the equation 
L2C = g has a solution C € Xi- Prom the formula for L2 we deduce, that 
v = g1, if) = g2 and 0 is the solution of the Dirichlet problem for Poisson 
equation 

dAO = g5 + Mdivg1 + Mxg2 in D 0 = 0 on 3D. 

We must only prove the existence of £ G D(A) such, that 

(3-5) M = ~X 4 , 2 
g3 + MV0 

g4 + rg2 — M\9 

From Lax-Milgram theory thanks to inequality (3.2) we obtain the existence 
of weak solution £ G H of problem (3.5). From the theorem about regularity 
of weak solutions of elliptic systems (see [19], Theorem 4.18) we deduce that 
£ G D(A) and surjectivity is proven. Operator L^1 considered as operator 
from H2 to H2 is continuous. We take A G (0, ) and write equation 

11̂2 II 
(3.4) in the form (/ — AL^1)C = — L ^ f - Because AH-L^H < 1 the solution 
of this equation is equal 

00 

fc=0 

and we have maximal dissipativity of ¿2- From Hille-Phillips theorem [7] we 
obtain, that L2 is the generator of co-semigroup of contractions 62 (i); t G 
R+ on H2. Moreover, when Co £ X2, we have S^OCo G C(R+;X2) fl 
Cl{R-\.\H2). Since ( ( t ) := S'2(i)Co when Co G X2 is the only solution of 
system 

(3-6) f = L 2 C ; i > 0 C(0) = Co, 

from the formula for L2 we deduce that dtu(-) = v(-), dt4>( ) = ip(-) and 
u(-),0(-),0(-) is the strong solution solution of Problem 2. From (3.3) and 
(3.6) we obtain 

(3"7) itlmm2 = (~oiTX{t))2 = ^ ^ ^ 
D D 

2 
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It is easy to see that E2(t) = ^HCWHl- F r o m (3-7) we get 
t t 

(3.8) E2(t)-E2(s) = -r\\(dt4>(r))2-d\ j |V0(r)|2, 0 < s < t . 
s D S D 

For r/o £ H2 we consider sequence {Co; & £ C X2 convergent in H2 to 
Co- The corresponding strong solutions (uk, 4>k,0k) with initial data given by 
Co, k e N, will satisfy all conditions of Definition 2.5. From the contractivity 
of semigroup S2(-) we deduce, that lim^oo = S2(-)Co in C(R+; H2); 
Ck '•= S2(t)(,Q. We see that v = dtu, tp = dt4>- Moreover after writing 
(2.2) for (uk, 4>k, ®k) and passing in this equality with k —> oo we claim that 
(u, cf), 9) := limfc_KX)(nfc, (f)^, 0(the limit is considered in H x I?(D)) is the 
weak solution of Problem 2. This also imply that the energy of this weak 
solution equals E2(t) = ^H-S^KoH!- Because of the contractivity of S2(-) 
this yields that for energy of this weak solution we have E2(t) < E2(s), 
0 < s < t. Using the technique of proof from [7] one obtains the uniqueness 
of weak solution. The proof is complete. 

About the proof of Theorem 2.6. The concept of the proof of Theorem 
2.6 is the same as the one for Theorem 2.7. 

The generator L\ of co-semigroup of contractions S'i(i), t G R+ on Hi 
will be equal 

, I , 0 \ 
, 0 , 7 
, 0 , 0 

^ —6div , (aA — 71) , 0 , —rl y 

his domain D(L\) = X\. The energy of solutions of Problem 1 will be equal 
E\(t) = ^||Si(i)7?o||i. We omit the details of the proof. 

4. Stabilization of solutions of Problem 1 
In this section we give proof for the first part of Theorem 2.9. We prove 

results only for Dtp = dv<j). The case of the Dirichlet boundary operator one 
can handle by the same scheme of proof. 

We begin this section with proving results concerning the operator A 
(defined in Section 3). Let k 6 (0, fci) and consider the operator A 
A — kl (the number k\ > 0 was defined in Section 3). From (3.2) we derive 
(M,a)L>>(ki-km\\i2. 

The operator L\ is closed because it is the ̂ generator of co-semigroup of 
contractions [5, 19]. This implies that A and A are closed as well. Because 
A, A are symmetric this yields that they are selfadjoint. 

Li := 

0 
0 

Ae 

0 
0 

6V 
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Thejnequality written above and Lax-Milgram theory imply that there 
exists A"1 : L2(D)n+l —> D(A), which as the operator in L2(D)n+1 is com-
pact and selfadjoint. This yields that a(A) = ap(A) C [k\ — k, OO), and all 
eigenvalues have finite multiplicities. The different eigenvalues we enumerate 
according to the natural order: k\ — k < r\ < r2 < ..., lim^oo ri = oo. Let 
Pi denote the orthogonal projection operator in L2(D)n+1 onto the eigen-
subspace of A corresponding to ri,l G N. We can write A — 1 stnd 
for any s G R,A + (s — r j ) I = YlbLi(ri~rj+s + k)Pi. Because ri — r j , j , l G N 

are independent of k we can assume 

OO j-1 
(4.1) M ( J ( J { r j _ n } . 

j=2 1=1 

Let us define 

m,j(s) := inf{(s + k + n - r,)2 :l G N}, j G N. 

We have inequality 

\\(A + (s - r ^ m i l > mjisMWl, £ G D(A). 

This implies that whenever rrij(s) > 0 then there exists the resolvent oper-
ator R(rj — s; A) and 

(4-2) 1 1 ^ - ^ ) 1 1 < - 7 = 1 ™ 

where we understand R(rj — .s; A) as the operator in L2(D)n+1. 

P R O P O S I T I O N 4.1. Let k G (0; k\) satisfy the condition (4.1) Then for each 

j G N there exists Sj > 0 such that mj(sj) > 0 and , , < 1. 

Proof. We take arbitrary j £ N and denote ai — (k + ri — rj). We have 
chosen k such that 0 ^ {ai}- It is clear that ai —> oo when I —> oo and 
yt/m.j(s) = inf/e/v |a; + s|. We consider three cases. 

Case 1. ai > 0 for each l G N 

We take Sj = ^ > 0. Because y/rnj(sj) = inf;e/v |a/ + Sj1 = |ai we have 

o . âl 1 
• J = = ± < 1. 

y/ mj(sj) 2al 3 

This ends case 1. 
When ai < 0 for some l G N then we can choose n G N such, that 

0 G (an,an+1). 

Case 2a. — an < an+1. 
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We take Sj = — ̂ > 0 . We have 0 G (an + sj^n+i + s^^^anjan+i-Qf) 
so \Jrrij(sj) = inf;e/v |a\ + = — | a n . We check that 

o . 1 
b 3 _ 3 1 

= ^ < 1. 
y/mj(ai) 2 

Case 2b. — an > an+1. 
In this case we take s j = > o. We have 0 € (an + Sj, a n + i + Sj) 

= and v ^ T ) = infleN\ai + 8j\ = We 
calculate 

O-n+dn+l 
2 _ ~an+1 — an _ j 2an+i ^ 

y/mj(sj) ttn+1
2 °n fln+1 - a n a n + i - a 

Prom [20] (page 11) we recall: 

P R O P O S I T I O N 4 . 2 . LEI L be the generator of CQ-semigroup of contractions 
in a Hilbert space. Then {A € C : reX > 0} C p(L) and ||i2(A;L)|| < ^ for 
each A with re A > 0. 

Prom [21] we quote 

T H E O R E M 4 . 3 . LEI L be the generator of CQ-semigroup of contractions 
T(t),t G R+ in a Hilbert space Z. Whenever there exists a dense subset 
M C Z, such that 

(4.3) lim ^/aR(a + i/3- L)y = 0, y G M, (3 G R, a—>0+ 

then limi-yoo \\T(t)x\\z = 0 for each x G Z. 

Proof of Theorem 2.9 for Ei(-). Prom Section 3 we know that E\{t) = 
^||5i(i)?7o||i, 770 G H\. Because of Theorem 4.3 to prove l im^oo E\(t) = 0 
it is enough to verify that (4.3) is satisfied for L = Z = Hi, M = H\. 
We begin this verification. 

Prom Proposition 4.2 for each / G Hi and a > 0 there exists 77 = 
r](a,P) G Xi solving the system ((a + i(3)I — Li)r] = f . We rewrite this 
system in a more exact form. Let / = ( f 1 , • • •, fn)T, V = (£,v,ip)T, £ = 
(u, (j))T, A := a + i/3. Then we obtain: v = Xu — f1, ip = X<f> — f2 and claim 
that £ G D(A) and solves the equation 

(4.4) \ 2 Z + AZ + \BZ = F ( \ ) , 

where ' ^ j , F(X) := ( / 3 + A/1 , / 4 + (A + r ) / 2 ) . 

Let us denote £R := re£, FR(A) := reF(X), £/ := im$,, F/(A) := imF(X). 
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From (4.4) we derive 

(A - ß2)U + (a2 + aß)U - ( 2 a ß + ßBfö = FR(A), 

{A — ß2)ii + ( a 2 + a /3 )£ j + (2aß + ßB)£R = Fj{ A). 

Without loss of generality we can assume that a G (0 ,1) . Now we derive es-
timations for norms H v ^ l l and which will be essential for proving 
(4.3). 

We multiply the first equation in (4.5) by a £ R , the second equation by 
integrate over D, and make the summation by parts. This gives 

(4.6) | | v ^ | | 2 < / 3 2 | | ^ | | £ 2 + a J , 

where / : = | \D{FR(a) • + F / ( a ) • £j)|. 
We estimate 

I < I|Fä(«)HL2||^IIL2 + II^(«)IIL2||6IIL2 < 

< C m f W M l i * < CiC9)||/||i||i|| < Ci(/3)||/||i|M|i. 

FYom Proposition 4.2 : V = R(A; Lx)f, ||r?||i < 1|Ä(A;^i)||-|l/IU < <* _ 1ll /lli . 
which gives 

(4-7) I < a~1C\(ß)\\f\\2. 

From this and (4.6) we have 

(4.8) \\yfä\\2<P\\yfä\\b + CM\\f\\l 

To obtain the estimation of we derive first the inequality: 

(4-9) r\ß\\\^<t>\2 <C{ß)\\f\\2. 
D 

We multiply the first equation in (4.5) by — and the second equation by 
a£R. Then we integrate over D, and make the summation by parts. After 
proving the similar estimations as above for ineqaulity (4.7) we obtain (4.9). 

Now consider first case ß2 a{A). We rewrite the system (4.5) in the 
form 

= R(ß2; A) [(a2 + aß)y/~(a)U - 2 a ß ^ i - >/5Fä(A)] -

(4.10) \ v v / 
V ^ j = R(ß2', A) [ ( a 2 + a/?) + 2aßyfäR ~ \ / a F / ( A ) J + 

+rßR{ß-A) ( M . 
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Taking into account (4.9) we can derive from (4.10) the estimation 

(4.11) \ \ ^ ) y < c m \ f \ \ i , 
when a G (0, «o), ao = ao(P) > 0 is chosen sufficiently small. 

When (52 G &(A) we have fi2 = rj for some j G N. By Proposition 
4.1 we can choose Sj > 0 such, that mj(sj) > 0. The latter means that 
Sj — rj G p(A). This makes it possible to rewrite (4.5) in the following form: 

y/ciÇR- SjR(rj - 8j;A)y/â£R = Rfa - Sj\A) • [(a2 + 

~ v^FniX)] - r p R ^ -s j - ,A) f ° j , 
(4.12) ' 

y/a£i - SjR(rj - Sj;A)Va£r = Rfa - sy,A) • [(a2 + aP)y/a£I+ 

+ 2 - VâF/(A)] - r/3R{rj - sj; A) 

From (4.2) and Proposition 4.1 we get 

(4.13) | \ S j R ( r j - Sj-A)|| < - 7 ^ = < 1. 
V m j ( ' s j ) 

This allows us to use the Neumann series for (I — SjR{r3 — Sj] A)) - 1 , which 
together with (4.9) from (4.12) gives (4.11) for sufficiently small ug > 0. 

Arguing by contradiction, let us suppose that there exist e > 0, f3 G 
R, f G Hi and a sequence { ^ ¡ f c e J V } C (0, min{l, cto}) such, that 
limjfc-Kx, = 0, and \\Vakri(ak, /3)||i > e, k G N. Let us denote shortly 
Vk = T7(d!fc,/?), Afc = ak + i(3, and appropriately ik,Uk,(j>k,vk,^k,k G N. 
Estimations (4.8) and (4.11) allow us to conclude that there exists a sub-
sequnce of k G iV j which is convergent weakly in H and strongly 
in L2(D)n+l. The limit of such subsequence we denote by For the sim-
plicity of notation we assume that the whole sequence G i v | is 

convergent to We substitude into (4.4) instead of £ and after 
passing k —» oo we obtain 

(4.14) AÇ0 - /?2£° + i(3Bf = 0, 

in the weak sense. When (3 = 0 this gives = 0 in the weak sense which 
yields £ = 0. 

Now we consider case (3 ^ 0. The same arguments that have been used 
to derive (4.9) give us r|/?|||0°||£2 = 0, and hence <jP = 0. From (4.14) this 
allows to infer that u° satisfies 

-fiA u° = /32u° in D, divu0 = 0 in D, u° = 0 on dD. 
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Because of the condition (C) we have u° = 0 and hence = 0. 
Let us consider the system (4.4) for y/a£k once more. After taking the 

inner product in L2(D)n+l we derive 

= (Va*F(Afc) + A2kVa*Zk - A 

This gives limfĉ oo = 0 in H, and consequently lim^oo Va^r]k = 0 
in Hi. We have obtained the contradiction. The proof is closed. • 

5. Stabilization of solutions for Problem 2 
In this section we give proof for the second part of Theorem 2.9. Every-

where in this section we have the boundary condition <p = 0 on dD. 
We begin with making the following auxiliary observations. According 

to the theory of elliptic systems [19] we can define: 

D E F I N I T I O N 5 . 1 . Let v e H%(D)n, w e L2(D)n, R,h,ip e L2(D) be given 
and u, (f>, 9 solve the following problem 

A e u 4- bV(j) - MV0 = w, 

aA<f) — bdivu — 7 <p + M\9 = rip + h in D, 

dAd = Mdivv + Mitp + R, 

« = 0 ,0 = 0,0 = 0 on dD. 

We define the operator 
P : D{L32~l) -> D(L32), j e N by the formula 

P(v, w, ip, h, R) := ( u , v , ( j > , i p , 9 ) . W e p u t D ( L § ) = H2. 
P R O P O S I T I O N 5 . 2 . Let (u, <f>, 9) solve the Problem 2, and 

t t t 

U l ( t ) : = j « ( * ) + «?, <h(t) :=\<P(s) + 0?, 0! + 
0 0 0 

where (v%,u0,<fi,<f>0,6%) = P(u°,u1,/,<p1,9°), and (u°, u1, <f>\ 9°) G X2 

is the initial data for (u,<f>,9). Then (u\ ,<p\,9\) solves the Problem 2 with ini-
tial conditions «i(0) = it?, ¿%iti(0) = u°, (pi(0) = dt<pi{<S) = <p°, 0i(O) = 
0?, and (ui(i),«(i),0i(i),^(i),0i(i)) = P{u(t),dtu(t), <p(t),dt(p(t),9(t)), 
t e R+. 

The proof is based on straightforward calculations, the details are omit-
ted. 

Proof of Theorem 2.9 for -E^O)- We adopt the scheme of proof done by 
Dafermos in [5]. We shall consider separately the terms standing in ^ ( O 
and prove that they tend to 0 when t —> 00. 
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The principal considerations will be proved under the assumption that 
the initial data belongs to D(Ll+J), J G {0} U N. The case when the initial 
data belong to H2 will be investigated at the end of the proof. When the 
initial data belong to D{L^J) then («9¡u, dl<f>, d\9), i = 1,..., 2 + J also solve 
the Problem 2 in a strong sense with the apprioprate initial conditions. Their 
energies are denoted by E^it), i = 1,..., 2 + J, t £ R+. The equality: 

E^+d\\ \Vdid(s)\2 + r\ J IVtf+Vtol2 - Ef{0), 
0 D 0 D 

where t > 0, i = 1,..., 2 + J 

still holds. Our further considerations will be separated into parts and for-
mulated as propositions. 

PROPOSITION 5.3. 

lim d\4>(t) = 0 in L2(D),i = 1,... ,2 + J. 
t—>00 

Proof of Proposition 5.3. Let us denote /¿(i) := \D \d\(j>{t)\2, ¿ = 1,2,..., 
2 + J.. From inequalities E2{t) < E2{0), EÎf\t) < E^j){0), t > 0, j = 

1,..., 2 + J we get h{t) < E2(0), fj+1(t) < E{J\0), t > 0,3 = 1,..., 2 + J 

and from (3.8), (5.1) we claim that U € Lx([0,00)), i = 1,2,..., 3 + J. The 
Cauchy inequality and the above estimations allow us to write 

< 2 v ® ) v 7 m ( i ) < C < 00, í > 0, ¿ = 1,..., 2 + J. 

This yields lim^oo /¿(i) = 0, i = 1,..., 2 + J because /¿, i = 1,..., 2 + J 
are uniformly continuous and integrable on (0,00). Proof of Proposition 5.3 
is finished. • 

PROPOSITION 5.4. 

lim a/afc0(í) = 0 in L2(D), t = l , . . . ,n, j = 0,l, fc = 0,..., 1 + J. t—> 00 

Proof of Proposition 5.4. Denote gi{t) := \Vdltd{t)\2, Z = 1,..., 1 + J, 
t € R+. From (3.8), (5.1) we infer g¡ e Z^QO,00)), / 6 0,..., 1 + J. Again 
from inequalities for energies (used in the proof of Proposition 5.3) together 
with the Poincaré inequality we derive 

2 2 
\ dlt+16(t) < 4 + 1 ) ( 0 ) , 5 div3+1u(i) <cEl2+1(0), 
D D 

I = 0,..., 1 + J, c > 0 is constant. 
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Then using the equation for 9 in the system (1.4) we get 

(5.2) 

(5.3) 

D 

i = o , . . . , 1 + J , t > o. 

From this, the estimations written above, and known estimations for 
ft, I = 1 , . . . , 2 + J we obtain that | jtgi{t)\ < c\ < oo, I = 0 , . . . , 1 + J , 
t € R+, c\ > 0 is a constant. This implies lim^oo 9i{t) — 0, I = 0 , . . . , 1 + J . 

Since d[0(t) G HQ(D), I = 0 , . . . , 1 + J from the Poincaré inequality 
we obtain the assertion of Proposition corresponding to j = 0. Proof of 
Proposition 5.4 is finished. • 

P R O P O S I T I O N 5 . 5 . 

lim divu(i) = 0 weakly in HQ(D) and strongly in L2(D). t—> oo 

Proof of Proposition 5.5. Consider (tii(-), 0i(-)> ^i(')) defined in Propo-
sition 5.2. Taking into account the equation for 9\ in (1.4) and dtu\ = u, we 
immediately show that divu(t) € HQ(D)u, t > 0. From the same equation 
for 0i we derive for * € C^(D): 

\ [dMt)x + dve!(i)Vx + M&MQx] = -M 5 divu(i)x, 
D D 

and 

J [dtdjOi(t)x - dV0i(i)VÔ,x - M&MWjX] = -M j djdivu(t)X, 
D D 

j = l . . . n . 

From Propositions 5.3, 5.4 applied to #i(-)></>i(-) we conclude that the 
left hand sides in the equalities written above tend to 0 when i —• oo. This 
gives the weak convergence of divu(i) —> 0 in HQ(D) when £ —> oo. Since 
the inclusion HQ(D) C L2(D) is compact we have second assertion. Proof 
of Proposition 5.5 is finished. • 

P R O P O S I T I O N 5 . 6 . 

lim ¿ ( 4 ) = 0 in Hl{D). 
t—»oo 
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Proof of Proposition 5.6. Using the equation for 0 in (1.4) we get 

(5.4) a J \V<j>(t)\2 = j ([Mi0(f) - 8$<f>{t) - Mivu(f) 

D-rdtmm-i\\m\h{D) 

< J ([Mi0(t) - <92<Kf) - Mivu(f) - r$0( i ) ] 0(f)). 
D 

Prom inequality E2(t) < E2(0),t> 0 we get ||</>(f)|||2(D) < 1~1E2(0). 
From Propositions 5.3-5.5 we observe that the right hand side in (5.4) 

has the limit 0 when f —• oo. This yields that lim^oo V< (̂f) = 0 in L2(D)N. 
Proof of Proposition 5.6 is finished. • 

We define w(t),t G as the solution of the problem : 
(5.5) A ew{t) = -bV(j){t) + MV0(f) in D w(t) = 0 on dD. 
PROPOSITION 5 . 7 . 

(5.6) lim wit) = 0 in HUD)u, and 
t—>oo 

lim dlw(t) = 0 weakly in Hl(D)n and strongly in L2(D)n, 
(5.7) t-«30 

/or Z = 1 , . . . , 1 + J. 
Proof of Proposition 5.7. From Proposition 2.2 and Korn inequality we 
infer that the bilinear form \D <R(f) : e(g),f,g £ HQ(D)11, defines the inner 
product in H^(D)N. 

From (5.5) we derive 

J a(diw(t)) : e(X) = I \-bdltcf>(t) + Md\e{t)] divX, X € H^{D)n, 
D d 

for I = 0 , . . . , 1 + j. 
Because of Propositions 5.3, 5.4 this yields lim^oo d[w(t) = 0 weakly in 
H^(D)n (hence strongly in L2 (£>)"), I = 0,... ,1 + J. Using (5.5) once more 
we get 

\ a(w(t)) : e(w(t)) = -b j <f>{t)dxvw(t) - M \ V0(t)w(t). 
D D D 

From Propositions 5.4, 5.6 and the convergence proved above we claim that 
the right hand side in this equality tends to 0 when f —> oo. This establishes 
that lim^oo w(t) = 0 in HQ(D)H. Proof of Proposition 5.7 is finished. • 

Now we define v := u — w. From the equation for u in 1.4 we claim that 
v solves the problem 

dfv = Aev-dfw in D x R+, v = 0 on D x R+, 
•u(O) = u°- w(0),dtv(0) = u1 - dtw{0) in D. 
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Here we are in the same position as in Lemma 5.4 in [5]. Arguing in the 
same way as in the proof of Lemma 5.4 in [5] we obtain lim^oo dtv(i) = 0 
in L2(D)n, l i m ^ v{t) = 0 in H&(D)n. 

The proof is rather long, so we address the reader to paper [5]. In this 
proof the condition (C) on the domain D is essential. 

We have proved that lim^oo E2(t) = 0 when initial data belongs to 
D{L\+J), J > 1. Consider now the initial data £o G H2 and take £o G 
D(L'2+J)- The solution with initial data £o we denote by £(•), its energy by 
E2{-) and let E^it) denote the energy of solution with initial data £o — 
We have the inequality 

E2(t)<2[E2(t) + El(t) . 

Because of the inequality E\ (t) < E\ (0) this gives 

(5.8) E2{t) < 2£ 2 ( i ) + 2£21(0). 

Since D{L\+J) is dense in H2 (see [19]), for each e > 0 we can choose 
& G D ( L l + J ) such, that ^ ( 0 ) < f . 

Since lim^oo E2(t) = 0 we get from (5.8) that l i m s u p ^ ^ E2{t) < e for 
every e > 0. The proof is finished. • 

R E M A R K 5 . 8 . In the formula for energy E\(t) we have the term 
2b \D (f>(t)divu(t). In the proof given above we have estimated first divu(i) 
from equation for 6(-) and then \<f)(t)\2 was estimated. 

In system (1.2) 6 does not appear. So this scheme of proof does not 
work for Problem 1. The application of the resolvent criterion for Problem 2 
remains as the open problem. Solving it will give the unified solution for 
both Problem 1 and Problem 2. 

6. Final remarks 
From the form of systems (1.1), (1-3) we deduce that besides the bound-

ary conditions considered in this paper also the following (so called free 
boundary condition) can be considered: 

T -v = f , qv = h on FN x R+, 
where (T • v)i := Y!k=iTikvk, Q" •= Yd^^u I V C dD, f denotes the 
vector of external force and /o the external heat supply. 

There is no problem for proving the existence of co-semigroups describing 
the solutions (see [8]). But under the knowledge of the authors there does 
not exist works in which the stabilization is proved when there are taken 
into considerations f — 0 and /o = 0. 
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In our paper [8] we solved the problem, such as Problem 1 but with 
the boundary conditions T • u = —dtu on F^ x R+ (the so called feedback 
stabilization) and u = 0 on r D x R+, TD uTN = dD, TDnTN = 0, To ^ 0, 
T N + 0 and du(f) = 0 on dD x R+. 

We have proved the uniform stabilization of the energy of solution. The 
methods which we have used are quite different from the ones presented in 
this paper. 

For the ideas useful for solving stabilization problems with the Neumann 
type boundary conditions one should look into literature cited in our pa-

Appendix 1 
In the model proposed by Grot [9] the termoelasticity system describes 

the evolution of quantities (u, (p, 0, w) where u, (ft, 0 are the same as in (1.4) 
and w £ Rn represents microtemperatures. The governing equations of the 
system are following: 

where A e is the elliptic Lamé operator, Ó > 0. 
As in Problem 2 the system is considered in the domain (t, x) £ (0, oo) x D 

and is subjected by boundary and initial conditions. For u, (p, 6 the boundary 
conditions are the same as in Problem 2 and for w it is considered w = 0 
on (0, oo) x dD. In the system (A.l) there is no dissipation term —rdt(f) in 
the equation for </> similarly as in models proposed by Iesan [11], Taking the 
idea from [10] we propose the following decoupling, separating the equation 
for w from the system for (u,4>,0). Let w be the solution of the following 
elliptic problem: 

per [8], 

(A.l) 

8$u - Aeu + bVcp - MV9 
d\4> — aA(f> — bdivu — 7 <j> + M\6 — <5divw 
dt6 = dA9 - Mdivdtu - MM + hdivw 
dtw = A ew — kzVO — 5Vdt<f> — k^w 

A ew — k2W = SVdt4> in D, w — 0 on dD. 

We put the solution w = 5(Ae — k2)D1Vdt<fi into the system for u,<fi,9 
instead of w, denote O = div(Ae — V, and write the decoupled system: 

(A.2) 

d\u = Aeu + ÒV0 - MV9 
d^4> = aA~4> - bdivu - - 620dtA> + M{9 
dte = dA6 - Mdivdtu - MM + kx50dv$ 
dtw = Aew — k^VO - dVdt(f> — fouJ. 
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This system is subjected with the same boundary and initial conditions 
as in the system (A.l). 

For / G HQ(D) we immediately show 

\ f O f = \ ( ( A e - k2)-DlVf) • V / > 0. 
D D 

The boundedness of O in HQ(D) is clear. We see that the term 820dt<j> 

introduces dissipation into the equation for (p. Let T(t), t G R, denote the 
semigroup for system (A.2) and T(t) for system (A.l). Our conjecture is: 
the operator T(t) - T(t) is compact on C([0,T],H) for each T > 0; H is a 
suitable Hilbert space. The work on this problem is in progress. Our aim in 
this Appendix is only to explain that the dissipation in equation on <f> appears 
when one considers the full thermoelasticity system with microtemperatures. 

Appendix 2 
Let us notice first, that Assumption 2.1 is necessary to construct semi-

groups Si(-), i = l,2 and then state and solve problems about stabilization. 
The first conditions A + ¿j > 0 when n = 2 and 3A + 2fi > 0 when n = 3 are 
generally assumed in linear hyperelasticity theory. So we investigate only 
what would happen when the second condition (A + /¿)7 > b2 when n = 2 
and (3A + 2^)7 > 3b2 when n = 3 were not satisfied. We focus on the system 
(1.2). The well posedness of Problem 1 follows from [13]. From the paper 
[15] for solutions of Problem 1 we obtain: when -Ei(O) < 0 then there exist 
ci,c2 > 0, dependent of initial data, such that 

t 

J [|dtu(t)\2 + | dt<t>(t)\2} | dt<j>(s)\2dxds > CieC2t, t > 0 . 
D 0 D 

We establish that initial data for which -Ei(O) < 0 can exist when the 
second condition in Asssumption 2.1 is not satisfied. Let us consider n = 2, 
(A+/i)7 < b2 and take the initial data: ul = 0,4>l = 0, u° = Vv, <j>° = sdivu0, 
v G CQ°(D), S G R. After calculations we get 

<r(u°) : e(«°) + 2b<f>°divu° + 7 ( / ) 2 + a|V0°| 
2 

= 2N J 2 ( D F V ) 2 + Mdxdiv)2 + (A + 2 sb + S2J)(AV)2 + a| VAw|2. 
¿=i 

Observe first that for v G \D(did2v)2 = \Ddfvd%v. Then we 
put s = — K For i?i(0) we obtain: 

EI(0) =(N+-{(FX + A ) 7 - b2)\ j (Aw)2 + a j |AVt;|2. 
\ ^ ' D D 
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If (/1 + A)7 - b2 < 0 we see that -Ei(O) —>• — oo when 7 0+, therefore 
obtaining negative values of i?i(0) is possible. In the light of the result from 
[15], cited above, this means that the system (1.2) is physically not realistic 
when second condition in Asssumption 2.1 is not satisfied. 
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