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ON A NON-LOCAL PARABOLIC PROBLEM 

Abstract. The aim of this paper is to investigate the existence of solutions of a 
nonlocal parabolic problem. The method of upper and lower solutions and the classical 
maximum principle are used to obtain our results. 

1. Introduction 
In [4], Deng studied the following nonlocal boundary-value problem 

Ut = A n + f ( x , u), x £il,t > 0; 

m ) ) u(t,x) = \$(x,y)u(y,t)dy, x € dQ,t > 0; 
n 

«(0,x) = uo(x), x € f i , 

where is a bounded domain in Kn, dQ. £ C2 , f ( x , u ) is in x and C1 in 
u with f(x, 0) = 0, and y) is a continuous function defined for x € dQ., 
y e n . 

He first established the comparison principle for (-Pi). Then he showed 
the local existence of the solution and he discussed its long time behavior, 
assuming 
(1.1) \&(x,y)dy< 1/\Q\. 

a 
The results obtained in [4] generalize the result of [6]. 

In [10], Yin considered a problem similar to (Pi), namely, 

( f t ) 

' ut — Lu = f(t,x,u), in DT, 

u{t, x) = \ y)u(t, y)dy, (t, x) G T t , 
Î2 

u(0, x) = UQ(X), for allx G Q; 
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where DT =_(0,T) x ft, r T = (0,T) x D T = (0,T) x fi, T > 0, 
$ e C [ 0 f i xi2,R], 

IJ=1 1=1 
ciij,bi G C a (0 < a < 1) and L is a uniformly elliptic operator in Dt-

He proved the uniqueness and the global existence of a solution of (P2) 
under the conditions 

(1.2) x) > 0 and J $(x, y)dy < p < 1. 
n 

In general the condition (1.1) is stronger than (1.2). 
This result is based on the comparison principle with nonlocal conditions 

combined with the existence and uniqueness of a solution for the problem 

ut- Lu = g(t, x), in DT, 

(-P3) u(t,x) = h(t,x), in 

u(0, x) = uo{x), for x € fI. 
<. 

It has been pointed out in [10] without proof that problem (P3) has a unique 
solution under condition (1.2). He assumed only that h is continuous in DT-

In this paper, we consider the problem 

(P) 

•ut - Au = f(t,x, u), 
d 

(t, x) e DT, 

—u(t, x) + au(t, x) = \ y)u(t, y)d/j,{y), (t, x) G r T ) 
Q 

u(0,x) = UQ(X), for all x G fi, 

where / : [0, +00[ x fi x M —> M is Holder continuous, $ is Holder continuous 
and denotes a Radon measure, a € M+ and ^ is the normal derivative. 

We establish the global existence of solutions under the classical maxi-
mum principle and the lower and upper solutions for a linear parabolic prob-
lem. The study of the problem with nonlocal conditions is of significance. 
Such problems have applications in physics and other areas of applied math-
ematics. For example, nonlocal conditions can be applied in the theory of 
elasticity with better effect than the initial or Darboux conditions. The 
nonlocal conditions were introduced in [3] for studying of linear parabolic 
problems. Nonlinear differential problems of parabolic type with nonlocal 
conditions together with their physical interpretations were considered by 
Byszewski in [2]. For other results on parabolic differential equations, we 
refer to [5], [8] and [11]; and for parabolic systems with time delays, [9] 
and [11]. 
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2. Maximum principle for linear problems and lower and upper 
solutions 
Let be a smooth open bounded domain in W1. We denote by 

(Cm(DT), ||.||m) the Banach space of m-the continuously differentiable func-
tions in DT, and by C2,1(DT) the class of functions u G C(DT) such that the 
derivative of the form D2X G C°(DT). For k G N, (CK+A^(DR)) denotes 
the Holder space of exponent a G (0,1), with the norm ||,u||/c+Q • 

In this paper, we will assume that fi is sufficiently smooth, the function 
f(t,x,u) is continuous in DT X M, and locally Lipschitz with respect to u. 
We suppose / satisfy: 

there exists a function 6 : DT —> M-|-which is bounded for all (t, x) G DT 
such that 

(2.1) f(t,x,u) - f(t,x,v) > -6(t,x)(u- v), if u>v, a , » e l . 

Also, we assume that the density $ is in C1+a'-^r{DT) satisfying the com-
patibility condition: 

d f 

( 2 . 2 ) + <JUQ(x) = \ $ ( 0 , x)u0(y)dfi(y), x G dfl. 
drl n 

We first define the upper and lower solutions. 

DEFINITION. A function U* G C'2 , 1(DT) n C°(DT) is called an upper 
solution of problem (P) if 

'u?-AU*>F(t,x,U*) in DT, 

< x) + aU*(t, x) > \ y)U*(y, t)d^y) on r T , 
drl n 
U*{0, x) > UQ(X) for X G Q. 

A lower solution [/*, is defined similarly by reversing the above inequalities. 

Throughout this paper, we assume that $( i , x) > 0 and JQ y)dy ^ 0 
for x G dQ.. First, we give the following fundamental maximum principle. 

L E M M A 2 . 1 . (Lemma 2.1, p. 54, [7]). Let u G C2^{DT) n C°(DT) be such 
that 

u t - Au + Mu >0 in DT, 

< —w - Aw + Mw >0 on TT, 
dt 

^ «(0,x) > 0 for x e i l , 

where a > 0 and M = M(t, x) is a bounded function in DT- Then u(t, x) > 0 
in DT• Moreover u(t,x) > 0 in DT unless it is identically zero. 
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Now, we consider the following linear parabolic problem: 

UT — Ait + Mu = g(t, X) in DT, 

(.L) —u(t,x) + au(t,x) = h(t,x) on TT, 
or] 
U(x, 0) = UQ(X) 

where a > 0 and M is .a positive constant. 

in Q, 

T H E O R E M 2 . 2 . (Theorem 1.3-1, p. 31, [11]). Assume g E Ca^(DT), 
u0 € C'2+a(n) and h € Cl+a^(DT) verifying condition (2.2). Then the 
problem (L) has a unique solution u in In addition, there 
exists a positive constant independent of u such that ||u||2+Q < C. 

3. Global existence: lower and upper solutions 
In [10], Yin established the existence of solution of (P2) under the condi-

tion (1.2) by using comparison principle and monotone iterative method. In 
this section, our purpose is to obtain the global existence of (P). We employ 
the method of lower and upper solutions, the maximum principle and the 
integral representation of the solution. The uniqueness of the solution is also 
proved. Then under some additional conditions, we construct the lower and 
upper solutions of the problem (P) and as a result, the global existence is 
obtained. 

T H E O R E M 3.1. Assume that condition (2.1) and (2.2) hold. Let U*,U* e 
C2,1(DT) H C(DT), be respectively the lower and upper solutions of (P) such 
that U* <U*. Then (P) has at least a solution u such that U* < u < U*. 

Proof of Theorem 3.1. Prom hypothesis (2.1), there exists a positive 
constant M > 0 such that the function s —»• f(t,x,s) + Ms is increasing in 
R for all (i, x) G DT. 

Let (un)n>0 be a sequence defined by: 

(3.1) 

uo = U*, 

un+1 - Au n + i + Mun+1 = gn(t, x) in DT, 

un+i(t,x) + aun+i(t,x) = hn(t, x) on I> , 

u n + i (0 ,x ) = uQ{x) in fi, 

where gn(t, x) = f(t, x, un) + Mun and hn(x, y) = $ y)un(t, y)dfi(y). 
n 
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The sequence (UN) is well defined in C2,1(DT) H C°(DT)- In fact, the 
problem (3.1) is a linear problem with respect un+1. Hence using Theorem 
2.2 in section 2, we will obtain for each n, a unique solution: 

UN+1 G c2+A'2-¥(DT) c c2'L(DT) n C°(DT). 

First, we will show that U* <un < U*, for all n. 
It suffices to show that un < U*, for all n. The other inequality will be 

obtained similarly. 
Prom problem (3.1) and the definition of U*, we will show that un — U* 

verify 

| ( u n + 1 - U*) - A(u n + i - U*) + M{un+l - U*) 

< (f(t, X, un) + Mun) - (f(t, X, U*) + MU*) in DT, 

— (un+i - U*)(t, x) + a(un+1 - U*)(t, x) 
or) 

< \ y)(un - U*){t, y)d/i(y) on TT, 

(u n + i — U*)(0,x) < 0 i n i l 

If we suppose un <U*, using (2.1), we will see that w = un+1 — U* verify 

r ^ 
—w - Aw + Mw < 0 in DT, 

! —w(t,x) + aw(t,x) < 0 on TT, 
or] 

w(x, 0) < 0 inO. 

Now, by Lemma 2.1 in section 2, we deduce that w < 0 in DT and the proof 
can be easily completed by induction arguments. 

Now, the solution un+\ of problem (3.1) has the following integral repre-
sentation (Lemma 4.2, p. 63, [7] ): 

t 
un+1 (t, x) = J T(t, x; 0 , + \dr\ T{x, i; r , Z)9n{r, 

n o n 
t 

+ \dr J r(i,x;r,0«'n(r,0de, 
o an 

where F is the fundamental solution of the parabolic operator 

Lm = (ut - A + M), in DT, 
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and *J/n is the density of single larger potential. The density verify the 
integral equation: 

t 
tt„(t,z) = 2 jdr 5 

0 dii 

We note H(t,x^,r) = + aT)(t,x-,r,0-
Hence, we conclude that u n + 1 and i 'n+i are respectively bounded in 

C ( D T ) a n d C(dfl). 

By Ascoli-Arzela Theorem, we will see that (un) and have respec-
tively subsequences (unk) and (^„¿j such that 

unk uin C(Dt) and <£nfc f i n C(dQ). 

After passing to the limit in the integral representation, we obtain that 
t 

u{t,x) = j T(t,x; 0 , 0 « o ( x ) ( Z ) d t + Jdri T(t,x;r)5(r,Z)d£ 
n o n 

t 
+ \dr \ r(t,x-,T,s)*(T,z)dt, 

o an 
and 

t 
V{t,x) = 2\dT 5 H ( t , x ; T , Z ) * ( T , t ) d £ - 2 h { t , x ) , 

0 dfi 
where g(r, £) = /(£, t ) + Mu(t, £), and h(x, y) = $ y)u(t, y)dfj,(y) which 

iJ 
shows that u is a solution of (P). 

Before proving the uniqueness of the solution, under some additional 
conditions, it is necessary to construct a lower and upper solutions of (P) by 
iterative method. Staring from a suitable initial iteration uq it is possible to 
construct a sequence {un} successively from the modified nonlocal problem 
(3.1). Denote the sequences with uo = U* and uq = U* by \un} and {un} 
respectively, and refer to them as upper and lower sequences. We show that 
under some conditions each of the two sequences converges monotonically 
to a unique solution of (P). To achieve this goal we prove the following 
theorem: 

THEOREM 3.2. Let the assumptions of Theorem 3.1 hold and the con-
dition (1.2) be satisfied. Then the two sequences {un} and {un} are well 
defined in C2,1(Dt) H C°(Dt) for each n and converges monotonically to u 
and u, respectively. Moreover, u and u are minimal and maximal solutions 
of(P). 

or 
— ( i , x ; r , £) + c r r ( i , x ; r , f ) * n ( T , Z ) d t - 2 h n { t , x ) . 
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Proof of Theorem 3.2. Clearly, Theorem 3.1 guarantees that there exists 
a unique solution u G C2-L{DT) n C°(DT) of (3.1). We claim that 

U*(t,x) < u(t,x) < U*(t, x), in DT, 

whenever u(x,t) is a solution of (3.1). 
Let w = uo — u\ = U* —u\. By (3.1), 

* Q 
LMW = wt - Aw + Mw = -([/"*- til) - A(U* - UI) + M(U* - u\) 

= (f(t, x, U*) + MU*)) - ( f ( t , X,Hi) + Mux)) > 0 in DT, 
< d , 

—w(t, x) + aw(t, x) = \ y){U* - ui)(t, y)dfi(y) > 0 on r T , 
dr) n 
w(0,x) = U*(0,x) — uo(x) > 0 inii . 

In view of Lemma 2.1, w(t,x) > 0 for all (t, x) e DT, which shows that 
ui < ub. 

A similar argument, using the property of a lower solution, gives « j > UQ. 
Let w ^ = u\ — it follows again from Lemma 2.1, that u/1) > 0. The 

above conclusions show that 

Mo ^ Mi < < uo-

The above conclusion of the Lemma 2.1 follows by the principle of induction. 
We conclude that {n „ } and {u n } are monotonic and uniformly bounded on 
DT such that 

U* < Mn+1 < MN < «n < UN+1 < U*, in DT-

By standard argument, we claim that there exist wandu such that 
U,UE C2^{DT) n C°(DT) and 

lim un(t,x) = u(t, x) and lim un(t,x) — u(t,x). 
n—>+oo n—>+oo 

Furthermore u, and u satisfy (P ) with u = u = u. 
To complete the proof, we need to show that u and u are respectively 

maximal and minimal solutions of (P) , these can be easily proved by induc-
tion. 

THEOREM 3.3. Assume that (1.2) and (2.1) hold, and further 

limu-^_00/(i, x, u) > 0 and l im u ^ + 0 0 f ( t , x, u) < 0. 

Then there exists a unique solution of (P) for any T > 0. 

Proof of Theorem 3.3. To prove the existence of the solution, we only 
need to find the lower and upper solutions of (P) . Let a < 0 < b be constant 
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such that 
f(t,x,a) >0,f(t,x,b) <OmDT, 

and 
a < uo(x) < b on fi. 

Then a and b are lower and upper solution of (P) respectively. 
To prove the uniqueness, it is enough to show u = u on Dy. 
Set w = (u — u)2, since u<u, f(t, x, u) satisfies (2.1), we get 

(3.2) Wt — A w — 2 (u — u)(u — u)t — A (u — u) 
= 2(u - u)(ut - ut){ut - Au t - {ut ~ Au t)) 

-2V(u-u)(Vu-Vu) 
< 2G(t,x)w < 2Nw, 

such that 3N € M+; 6(t, x) < N, for all (t, x) € DT 

(3.3) w(0,x) = 0, for all x G O, 
and on IV, 
.„ dw(t,x) . . d(u — u)2 . 
(3.4) —K-^—L + aw(t,x) = — - + a(u-uf 

V V 

= 2 — - + C 7 ( U - U ) 2 

,rd(u — u) a, ,, 
V z 

< 2(u - It) j i/)(«(i, y) - u(i, y))dfi(y) 
n 

(3.2) and (3.3) imply io(i,a;) < 0 in DT and from (3.4) w(t,x) = 0 on T r , 
which implies u = u on Dt, the proof is thus complete. 

As a consequence of Theorem 3.3, we can obtain the invariance properties 
of the solution of (P). 
T H E O R E M 3 . 4 . Assume that ( 2 .1 ) and (2 .2 ) hold. Let there exist positive 
constants a, b with a < 0 < b such that 

f(t, x, a) > 0, f(t,x,b) < 0 in DT 

and 
era < ^ y)dy < ab on Ty. 

n 
Then for any UQ with a < UQ{X) < b, problem (P) has a unique solution 
u(t, x) such that a < u(t, x) <b in DT-
Proof of Theorem 3.4. It is easy to verify that a, b are respectively the 
lower and upper solutions of (P). The conclusion follows from Theorem 3.3. 
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4. Long time behavior of solution 
In [6], Friedman showed that if |<&(x,y)\dy < 1, for any x € fi and 

f(x,u) = c(x)u, (c < 0), then the solution of (P i ) decays. Moreover [10] 
proved that, under condition (1.1) with f(x,u) is decreasing in u and for 
C > 0, a > 0, 

(4.1) U(t) = maxxeU\u{t,x)\ < Ce~at, for t > 0. 

Under the assumption (1.2) and uf(t,x,u) < 0 for all (t, x) £ Dt, [10] 
showed that (4.1) is also true for the solution of {Pi)- In this section, we 
also show that (4.1) is true for any solution u(t,x) of ( P ) , under the same 
condition (1.2) we employ the same method used in the proof of [6, Theorem 
2.3], 

Assume that 

(4.2) uf(t, x, u) < 0, for all (t, x) € DT. 

THEOREM 4.1. Assume that (4.2) holds. If condition (1.2) is satisfied, then 

for any solution u of (P), (4.1) is true. 

Proof of Theorem 4.1. Under the same method used in the proof of [6, 
Theorem 2.3], we only need to prove 

(4.3) lim^+oo |u(i,x)| < pM, for all x € i), 

where M > 0 is such that 

(4.4) \uo(x)\ < M, for all x £ il. 

Theorem 3.4, implies that \u(t,x)\ < M in Dt and we have 

(4.5) |«(i,aOI< i Mx,y)u(t,y)dy < pM. 
n 

Consider the function <p(x) = eXR — eXxi, where R is any positive number 
satisfying R > 2x\, for all x £ 0 and A is a positive constant to be determined 
later. The function (p satisfies 

<pt-A<p = \2eXxi > eXxi in DT, 

we can take A sufficiently large so that 

(4.6) (pt - A<p > a, 

where a = in f x e^eX x i . Moreover, set 

«0 = infx€aip(x), and <*i = supx&^ip{x) 

and consider the function 

(4.7) $ ( t , i ) = M ^ j e " T < + i)M1 
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where 7 is a positive constant to be determined later. By (4.6) 

(4.8) - A ^ - f ( t , x, V) > -7M e~yt 

If we take 7 = we obtain ' an ' 

f ) . 

V T - A V - F ( t , X , * ) > 0 , i n DT, 

, x ) > p + M > M , VxeO, 
d 
- V ( t , x ) + V(t,x) > pM, o n r T . 
V 

By standard results on the asymptotic behavior of the solution of parabolic 
equations [5, Chapter 6] it follows that 

I u ( t , x)| < 9(t, x)<pM + M—e~ 7 i , on DT 

from which (4.3) follows, and the proof is therefore complete. 
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