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ON A NON-LOCAL PARABOLIC PROBLEM

Abstract. The aim of this paper is to investigate the existence of solutions of a
nonlocal parabolic problem. The method of upper and lower solutions and the classical
maximum principle are used to obtain our results.

1. Introduction
In [4], Deng studied the following nonlocal boundary-value problem

ur = Au+ f(z,u), zeQt>0;
(Py) u(t,x) = S &(z,y)u(y, t)dy, =€ oQ,t>0;
Q
(0, z) = up(x), z €4},

where Q is a bounded domain in R?, 8Q € C?, f(z,u) is C? in  and C!in
u with f(z,0) = 0, and ®(z,y) is a continuous function defined for z € 41,
y €.

He first established the comparison principle for (P;). Then he showed
the local existence of the solution and he discussed its long time behavior,
assuming
(1.1) § @2(2,9)dy < 1/

Q
The results obtained in [4] generalize the result of [6].
In [10], Yin considered a problem similar to (P;), namely,

us — Lu = f(t,z,u), in D,
(P2) u(t,z) = | ®(z,y)ult,y)dy, (t,z)€Tlr,
Q
u(0, ) = up(z), for allz € Q;
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where Dr = (0,T) x ©, I'r = (0,T) x 69, Dr = (0,T)xQ, T > 0,
® € C[00 x O, R],
0? - 0
L:= ii(t, o) =——=— bi(t, ) —,
Z aij (t,) dz;0zj * Z it ) Ox;
3,j=1 i=1
a;j,b; € C*(0 < @ < 1) and L is a uniformly elliptic operator in Dp.
He proved the uniqueness and the global existence of a solution of (F»)
under the conditions
(1.2) ®(t,z) > 0 and S P(z,y)dy < p< 1.
Q

In general the condition (1.1) is stronger than (1.2).
This result is based on the comparison principle with nonlocal conditions
combined with the existence and uniqueness of a solution for the problem

ut — Lu = g(t,z), in Dr,
(Ps) u(t,z) = h(t,z), inTr,
u(0,z) = up(z), forz €.

It has been pointed out in [10] without proof that problem (F3) has a unique
solution under condition (1.2). He assumed only that A is continuous in Dry.
In this paper, we consider the problem

u — Au = f(t,z,u), (t,z) € Dr,
P) | et +oult,) = | 2o p)ultn)duly), (.)€ T,
Q
(0, ) = up(x), for all z € Q,

where f : [0, +00[ x 2 xR — R is Holder continuous, ® is Holder continuous
and i denotes a Radon measure, 0 € Rt and g is the normal derivative.

We establish the global existence of solutions under the classical maxi-
mum principle and the lower and upper solutions for a linear parabolic prob-
lem. The study of the problem with nonlocal conditions is of significance.
Such problems have applications in physics and other areas of applied math-
ematics. For example, nonlocal conditions can be applied in the theory of
elasticity with better effect than the initial or Darboux conditions. The
nonlocal conditions were introduced in [3] for studying of linear parabolic
problems. Nonlinear differential problems of parabolic type with nonlocal
conditions together with their physical interpretations were considered by
Byszewski in [2]. For other results on parabolic differential equations, we
refer to [5], [8] and [11]; and for parabolic systems with time delays, [9]
and [11].
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2. Maximum principle for linear problems and lower and upper
solutions

Let © be a smooth open bounded domain in R™. We denote by
(C™(Dr),||-|l,,) the Banach space of m-the continuously differentiable func-
tions in D7, and by C?!(Dr) the class of functions u € C(Dr) such that the
derivative of the form D2 € C°(Dr). For k € N, (CH“’HTQ(ET)) denotes
the Holder space of exponent a € (0,1), with the norm |ul|, ., -

In this paper, we will assume that €2 is sufficiently smooth, the function
f(t,z,u) is continuous in Dy x R, and locally Lipschitz with respect to u.
We suppose f satisfy:

there exists a function 6 : Dy — R, which is bounded for all (¢,z) € Dr
such that

(2.1) ft,z,u) — f(t,z,v) > —0(t,z)(u —v), if u> v, u,v€R.
Also, we assume that the density ® is in Cl+°’1_+2—a(5:p) satisfying the com-

patibility condition:

(2.2) %uo(m) + oup(z) = S ®(0, x)uo(y)du(y), = € 09.
Q

We first define the upper and lower solutions.

DEFINITION. A function U* € C?!(Dr) N C%Dr) is called an upper
solution of problem (P) if

Up — AU* > f(t,z,U") in Dy,
0
b—nU*(t’ x)+oU*(t,z) > S ®(z,y)U*(y,t)du(y) on I'p,
Q
U*(0,z) > up(x) for z € Q.

A lower solution Uy, is defined similarly by reversing the above inequalities.

Throughout this paper, we assume that ®(t,z) > 0 and {, &(z,y)dy # 0
for x € JN. First, we give the following fundamental maximum principle.

LEMMA 2.1. (Lemma 2.1, p. 54, [7]). Let u € C*1(Dr) N C%(Dr) be such
that
ur — Au+ Mu >0 n Dr,

0
aw—Aw—kaZO on I'r,

u(0,z) > 0 for z € 9,

where ¢ > 0 and M = M(t, ) is a bounded function in Dr. Then u(t,z) >0
in Dr. Moreover u(t,x) > 0 in Dy unless it is identically zero.
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Now, we consider the following linear parabolic problem:

ut — Au+ Mu = g(t, ) in Dr,
(L) -a%u(t,a:) + ou(t,z) = h(t,z) on I'r,
u(z,0) = ugp(x) in ©,

where ¢ > 0 and M is a positive constant.

THEOREM 2.2. (Theorem 1.3-1, p. 31, [11]). Assume g € C®%(Dy),
ug € C?*%(Q) and h € CHO"HTQ(D_T) verifying condition (2.2). Then the
problem (L) has a unique solution u in C2+°"2¥(—5T). In addition, there
ezists a positive constant independent of u such that ||ulj24+a < C.

3. Global existence: lower and upper solutions

In [10], Yin established the existence of solution of (P,) under the condi-
tion (1.2) by using comparison principle and monotone iterative method. In
this section, our purpose is to obtain the global existence of (P). We employ
the method of lower and upper solutions, the maximum principle and the
integral representation of the solution. The uniqueness of the solution is also
proved. Then under some additional conditions, we construct the lower and
upper solutions of the problem (P) and as a result, the global existence is
obtained.

THEOREM 3.1. Assume that condition (2.1) and (2.2) hold. Let U.,U* €
C*Y(Dr)NC(Dr), be respectively the lower and upper solutions of (P) such
that U, < U*. Then (P) has at least a solution u such that U, < u < U™*.

Proof of Theorem 3.1. From hypothesis (2.1), there exists a positive
constant M > 0 such that the function s — f(¢,z,s) + Ms is increasing in
R for all (t,x) € Dr.

Let (un)n>0 be a sequence defined by:

(

Up = U*a
0 .
~Unt1 — Atny1 + Mug1 = go(t,z) in Dr,
(3.1) ¢ %
a_nun+1(ta SL‘) + 0'Un+1(t, :I:) = h’n(ta 1") on PTa
| un+1(0, %) = uo(z) in ,

where gn(t, ) = f(t, z, un) + Muy, and hn(.’L‘, y) = é@(ib, Y)un(t, y)d/‘(y)'
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The sequence (uy) is well defined in C%!(Dr) N C%(Dr). In fact, the
problem (3.1) is a linear problem with respect un41. Hence using Theorem
2.2 in section 2, we will obtain for each n, a unique solution:

Unt1 € O 5% (D) c C*Y(Dr) N C°(Dy).

First, we will show that U, < u,, < U*, for all n.

It suffices to show that u, < U*, for all n. The other inequality will be
obtained similarly.

From problem (3.1) and the definition of U*, we will show that u, — U*
verify
(0
a(unﬂ —U*) = A(un+1 = U*) + M(upt1 = U¥)

< (f(t,z,un) + Mup) — (f(t,z,U*) + MU*) in Dr,

{ G- nt1 = U")(t.2) + {ums — U*)(t.0)
< | &(z,y)(un — U*)(t, y)dp(y) on I'r,
Q
| (Un+1 —U™)(0,2) <0 in Q.

If we suppose u, < U*, using (2.1), we will see that w = up41 — U* verify

0
—w—Aw+ Mw<0 in D,

a
a—nw(t,m) +ow(t,z) <0 onI7,
w(z,0) <0 in Q.

Now, by Lemma. 2.1 in section 2, we deduce that w < 0 in Dy and the proof
can be easily completed by induction arguments.

Now, the solution u,; of problem (3.1) has the following integral repre-
sentation (Lemma 4.2, p. 63, [7] ):

t

Uns1(t,x) = {T(t,2;0,8)up(£)dé + {dr \ D(z, t; 7, &) gn(r, £)dE
Q 0 Q

t
+{dr | T(t,2;7,€)Un(r,£)dE,
0 onN

where I' is the fundamental solution of the parabolic operator

Ly = (us — A+ M), in Dr,
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and ¥, is the density of single larger potential. The density ¥, verify the
integral equation:

t

U, (t,z) =2{dr | Z—F(t,w;r, §) + oT(t,2;7,€) | Un(r,€)dE — 2hn(t, ).
0o aqotol

We note H(t,z;€,7) = (?)—17; + o) (¢, z;7,£).

_Hence, we conclude that u,; and ¥,,; are respectively bounded in
C(Dr) and C(09).

By Ascoli-Arzela Theorem, we will see that (u,) and (¥,,) have respec-
tively subsequences (unk) and (¥,x) such that

Uny, — uin C(Dr) and ¥y, — ¥in C(69Q).

After passing to the limit in the integral representation, we obtain that

t

u(t,z) = | T(t,2;0,8)uo(z)(€)dE + {dr {T(t, z;€,7)g(r,€)dE
Q 0 Q

+{dr | D(t, 7, €)0(r, £)dE,
0 N

and
t

U(t,z) =2{dr | H(t,z;7,)U(r,£)dE — 2h(t,z),
0 on

where g(7,€) = f(&,7)+Mu(r,£), and h(z,y) = é@(z, y)u(t,y)du(y) which

shows that u is a solution of (P).

Before proving the uniqueness of the solution, under some additional
conditions, it is necessary to construct a lower and upper solutions of (P) by
iterative method. Staring from a suitable initial iteration g it is possible to
construct a sequence {u,} successively from the modified nonlocal problem
(3.1). Denote the sequences with ug = U, and ug = U* by {u,} and {@,}
respectively, and refer to them as upper and lower sequences. We show that
under some conditions each of the two sequences converges monotonically
to a unique solution of (P). To achieve this goal we prove the following
theorem:

THEOREM 3.2. Let the assumptions of Theorem 3.1 hold and the con-
dition (1.2) be satisfied. Then the two sequences {u,} and {U,} are well
defined in C*1 (D7) N C°(Dr) for each n and converges monotonically to u
and u, respectively. Moreover, u and U are minimal and mazimal solutions

of (P).
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Proof of Theorem 3.2. Clearly, Theorem 3.1 guarantees that there exists
a unique solution u € C%!(Dr) N C%(Dr) of (3.1). We claim that

U.(t,z) <u(t,z) <U*(t,z), in D,

whenever u(z,t) is a solution of (3.1).
Let w =up —u; = U* —u;. By (3.1),

(LMw:wt—Aw+Mw= %(U*—ﬂl)—A(U*—ﬁ1)+M(U*—E1)
= (f(t,z,U*) + MU*)) — (f(t,z,%) + M@)) >0 in Dr,
| mutta) + ou(t,) = | 8z )" ~W)(EDduly) 20 onlr,
Q
\ w(0,z) = U*(0,z) — up(z) > 0 in Q.

In view of Lemma 2.1, w(t,z) > 0 for all (¢t,z) € Dr, which shows that
T < Up.
A similar argument, using the property of a lower solution, gives u; > u,.
Let wV) =7 — U, it follows again from Lemma 2.1, that w® > 0. The
above conclusions show that

Uy < u; < U < Up.

The above conclusion of the Lemma 2.1 follows by the principle of induction.
We conclude that {u,} and {%,} are monotonic and uniformly bounded on
Dt such that

Ui £ Upy1 S, SUp SUpyy < U*a in ET-

By standard argument, we claim that there exist uandu such that
4,7 € C%1(D7) N C°(Dr) and

lim @,(¢t,z) =a(t,z) and lim T,(t,z) = ul(t,z).
n—+o0

n—-+00
Furthermore u, and @ satisfy (P) with u =% = u.
To complete the proof, we need to show that u and u are respectively

maximal and minimal solutions of (P), these can be easily proved by induc-
tion.

THEOREM 3.3. Assume that (1.2) and (2.1) hold, and further
limy——co f(t,z,u) > 0 and lim,,_,, o f(t,z,u) <O.
Then there ezists a unique solution of (P) for any T > 0.

Proof of Theorem 3.3. To prove the existence of the solution, we only
need to find the lower and upper solutions of (P). Let a < 0 < b be constant
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such that
f(t,:c,a) > O,f(t,il?,b) <0in DT)
and
a < ug(z) <bon Q.

Then a and b are lower and upper solution of (P)respectively.
To prove the uniqueness, it is enough to show u = % on Dr.
Set w = (u — W)?, since u < @, f(t,,u) satisfies (2.1), we get

(32) wy — Aw = 2(u — ) (u — ) — Alu— )

= 2(u — u)(u; — Ue)(y; — Ayy — (U — A))
—2V(u - u)(Vu - Vu)
< 20(t,z)w < 2Nw,
such that AN € Ry; 0(t,xz) < N, for all (¢,z) € Dr

(3.3) w(0,z) =0, for all z € Q,

and on I'p,

) D)y 0w e
=2u—1u —a(y—ﬂ) o(u —u)?
=2(v—1u) ma— (v —1u)
B _Ou—-1) o _
)
< 2(u— 1) | ®(z,y)(u(t, y) — Ut y))du(y)

0

(3.2) and (3.3) imply w(t,z) < 0 in Dr and from (3.4) w(t,z) = 0 on I',
which implies w = @ on D, the proof is thus complete.
As a consequence of Theorem 3.3, we can obtain the invariance properties

of the solution of (P).

THEOREM 3.4. Assume that (2.1) and (2.2) hold. Let there exist positive
constants a,b with a < 0 < b such that

ft,z,a) >0, f(t,z,b) <0 in Dr
and
oa < S &(z,y)dy < ob onI'p.
Q

Then for any uo with a < ug(x) < b, problem (P) has a unigue solution
u(t,x) such that a < u(t,x) <bin Dr.

Proof of Theorem 3.4. It is easy to verify that a,b are respectively the
lower and upper solutions of (P). The conclusion follows from Theorem 3.3.
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4. Long time behavior of solution

In [6], Friedman showed that if | |®(z,y)|dy < 1, for any = € § and
f(z,u) = c(z)u, (¢ < 0), then the solution of (P;) decays. Moreover [10]
proved that, under condition (1.1) with f(z,u) is decreasing in u and for
C>0,a>0,

(4.1) U(t) = maz glu(t,z)| < Ce™®, fort > 0.

Under the assumption (1.2) and uf(t,z,u) < 0 for all (t,z) € Dr, [10]
showed that (4.1) is also true for the solution of (P;). In this section, we
also show that (4.1) is true for any solution u(t,z) of (P), under the same
condition (1.2) we employ the same method used in the proof of [6, Theorem
2.3].

Assume that

(4.2) uf(t,z,u) <0, for all (¢,z) € Dr.

THEOREM 4.1. Assume that (4.2) holds. If condition (1.2) is satisfied, then
for any solution u of (P), (4.1) is true.

Proof of Theorem 4.1. Under the same method used in the proof of [6,
Theorem 2.3], we only need to prove

(4.3) limy, 100 [u(t, z)| < pM, for all z € (Q,
where M > 0 is such that
(4.4) lup(z)] < M, for all z € Q.

Theorem 3.4, implies that |u(t,z)] < M in D7 and we have
(4.5) [u(t, 2)] < | § 19(a,w)ult, v)dy| < pM.
Q

Consider the function ¢(z) = e*® — e**1| where R is any positive number

satisfying R > 2z, for all € Q and ) is a positive constant to be determined
later. The function ¢ satisfies

o1 — Ap = X2e* > 1 in D,
we can take A sufficiently large so that
(4.6) pr — Dp > a,
where a = in Ieﬁe’\xl. Moreover, set
ag =inf,cqp(c), and o = sup, gyo(z)

and consider the function

(4.7) U(t,z) =M <¢(§Z’) ) e+ pM,
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where v is a positive constant to be determined later. By (4.6),
v
(4.8) U, — AV —f(t,z,T) > —’yM(—éx—))e_'yt-i—M(ag)e_”t—f(t,x, ).
0 0
If we take v = 3t, we obtain

¥, — AV — f(t,z,¥) >0, in Dr,
U(0,z) > p+ M > M, Vz € Q,
%\Il(t,a:) + U(t,z) > pM, onI'r.

By standard results on the asymptotic behavior of the solution of parabolic
equations [5, Chapter 6] it follows that

lu(t, z)| < U(t,z) < pM + M%e‘"’t, on Dr
0

from which (4.3) follows, and the proof is therefore complete.
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