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ON VU-INSTABILITY OF NON-LINEAR MATRIX
LYAPUNOV SYSTEMS

Abstract. We prove necessary and sufficient conditions for P-instability of trivial
solutions of linear matrix Lyapunov systems and also sufficient conditions for ¥-instability
of trivial solutions of non-linear matrix Lyapunov systems.

1. Introduction

The importance of Matrix Lyapunov systems, which arise in a number
of areas of control engineering problems, dynamical systems, and feedback
systems are well known. In this paper we focus our attention to the first
order non-linear matrix Lyapunov systems of the form

(1.1) X'(t) = A@)X (t) + X (t)B(t) + F(t, X (1)),
where A(t), B(t) are square matrices of order n, whose elements a;;, b;j,
are real valued continuous functions of ¢ on the interval Ry = [0, 00),

and F(t,X(t)) is a continuous square matrix of order n defined on (R4 x
R™*™) such thatF(¢t,0) = O, where R™*"™ denote the space of all n x n real
valued matrices. The continuity of A, B, and F ensures the existence of a
solution of (1.1).

Akinyele [1] introduced the notion of ¥-stability, and this concept was ex-
tended to solutions of ordinary differential equations by Constantin [3]. Later
Morchalo (9] introduced the concepts of ¥-(uniform) stability, ¥-asmyptotic
stability of trivial solutions of linear and non-linear systems of differential
equations. The study of instability of solutions of system of differential equa-
tions was motivated by Coppel [4]. Further, the concepts of ¥-(uniform) sta-
bility and W-instability to non-linear Volterra integro-differential equatons
were studied by Diamandescu [[5], [6]]. Recently, Murty and Suresh Ku-
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mar [12] extended the concepts of ¥-boundedness and ¥-stability to matrix
Lyapunov systems.

The purpose of our paper is to provide conditions for U-instability of
trivial solutions of the Kronecker product system associated with the linear
as well as non-linear matrix Lyapunov system (1.1).

This paper is well organized as follows. In section 2 we present some basic
definitions, notations and properties relating to W-stability and Kronecker
products and obtain the general solution of corresponding non-linear Kro-
necker product system associated with (1.1). Further, we prove two lemmas
which are useful for latter discussion. In section 3 we obtain necessary and
sufficient conditions for W-instability of trivial solutions of the corresponding
linear Kronecker product system and the results are illustrated with suitable
examples. In section 4 we study W-instability of trivial solutions of non-linear
Kronecker product system.

This paper extends some of the results (Theorem 1. and Theorem 2.) of
Diamandescu [6] developed for linear equations to matrix Lyapunov systems.

2. Preliminaries

In this section we present some basic definitions and results which are
useful for later discussion.

Let R™ be the Euclidean n-dimensional space. Elements in this space are
column vectors, denoted by u = (u3,ug,...us)* (* denotes transpose) and
their norm defined by

|Jull = max{|u1], fuzl, ... [un|}-
For a n x n real matrix, we define the norm

|A] = sup ||Az].
<1

Let ¥y : Ry — (0,00), k = 1,2,...7n,...n% be continuous functions, and

let U = diag[¥y, s, ..., Uy
Then the matrix W(t) is an invertible square matrix of order n2, for each
t>0.

DEFINITION 2.1. [12] Let A € R™*™ and B € RP*? then the Kronecker
product of A and B written A ® B is defined to be the partitioned matrix

allB alzB . e alnB
A ® B = ang a22B . e aan
amlB am2B . . . amnB

is an mp X ng matrix and is in R™P*™4,
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DEFINITION 2.2. [12] Let A = [a;j] € R™*", we denote

[A1] [ a1, |
Az az;

A=VecA=| . ,where A;=1| . | (1< j< n).
[An] [am; ]

Regarding properties and rules for Kronecker product of matrices we refer
to Murty and Suresh Kumar [12].

Now by applying the Vec operator to the non-linear matrix Lyapunov
system (1.1) and using the above properties, we have

(2.1) X'(t) = HOX (1) + G, X (1)),
where H(t) = (B* ® I,) + (I, ® A) is a n? x n? matrix and G(t, X (t)) =
Vec(F(t,X(t))) is a column matrix of order n2.

The corresponding linear system of (2.1) is
(2.2) X'(t)y = H(t)X ().

DEFINITION 2.3. The trivial solution of (2.1) is said to be ¥U-stable on Ry
if for every € > 0 and every ty in R, there exists § = §(e,t9) > 0 such that
any solution X (¢) of (2.1) which satisfies the inequality ||¥(to)X (to)|| < 6,
also satisfies the inequality ||¥(t)X(t)|| < € for all ¢ > to. Otherwise, the
system is said to be W-unstable.

LEMMA 2.1. Let Y(t) and Z(t) be the fundamental matrices for the systems

(2.3) X'(t) = A() X (t),
and
(24) (X)) = B*(t)X"(t)

respectively. Then the matriz Z(t) ® Y(t) is a fundamental matriz of (2.2)
and every solution of (2.2) is of the form X(t) = (Z(t) @ Y(t))c, where c is
a n?-column vector.

Proof. For proof, we refer to Lemma 1 of [12]. =

THEOREM 2.1. Let Y(t) and Z(t) be the fundamental matrices for the
systems (2.3) and (2.4), then any solution of (2.1), satisfying the initial con-
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A~

dition X (tg) = X, is given by
(2.5) X(t) = (Z@t) @Y ($))(Z™ (to) @ Y ! (t0)) Xo

t
+ (2t @Y (1))NZ 7 (s) @Y 1(s))G(s, X (s))ds.
to
Proof. First we show that any solution of (2.1) is of the form
X(t) = (Z(t) ® Y(t))c+ X(t), where X(¢) is a particular solution of (2.1)
and is given by
¢
X(t) = S(Z(t) QY () Z(s) @ Y (s))G(s, X (s))ds.
to .
Here we observe that, X (to) = (Z(to) ® Y(to))c = Xo, ¢ = (27} (to) ®
Y ~1(tg))Xo. Let u(t) be any other solution of (2.1), write w(t) = u(t)— X( ),
then w satisfies (2.2), hence w = (Z(t)®Y (t))c, u(t) = (Z() @Y (t))e+ X (¢).
Next we consider the vector X (t) = (Z(t) ® Y (t))v(t), where v(t) is an
arbitrary vector to be determined, so as to satisfy equation (2.1). Consider

X'(t)Z( Z(t) @Y (1) v(t) + (Z() @Y (1)) (2)
HHX () + G, X (1) = HO)(Z() @ Y()u(t) + (Z() ® Y (£)' (1)
é((t)® ())() G(t, X (1))
= (1) = (Z7 () @ Y (1)G(t, X (1))

t
= v(t) = S(Z_l(s) ® Y‘l(s))G(s,f{(s))ds.
to
Hence the desired expression follows immediately. =

Now we prove two lemmas which are useful in the proof of main theorem.

LEMMA 2.2. Let Y (¢) and Z(t) be invertible matrices which are continuous
functions of ¢t on R4 and let P be a projection. If there exists a continuous
function ¢ : Ry — (0,00) and a positive constant K such that

t
feeumZH) @Y ()P(Z7Hs) @Y ()T (s)|ds < K, V t>0,
0

and

[ ¢(s)ds = oo,
0

then there exists a constant L > 0 such that
[U(t)(Z(t) ® Y (1))P| < Le %064y ¢ >0,
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and hence
tllglo T (Z(t)®Y(t)P|=0.

Proof. The result is obvious, when P = 0.
For P # 0, let £(t) = |U(¢t)(Z(t)®Y (t))P|~1, for t > 0. From the identity

(J¢()(s)ds ) w () (2(0) @ Y (1) P
0

=§ETOEZORY®)P(Z7Hs) 9 Y Hs) T H(s)
0

-U(s)(Z(s) @Y (s))PE(s)ds,
for t > 0, it follows that

(T¢()es)ds) w2t © Y ()P
0

< JOEDZO Y ))P(ZH(s) @Y (s))T7 ()]
0
-[®(s)(Z(s) @ Y (s)) Pl¢(s)ds,
for t > 0. Here the scalar function g(t) = §; ¢(s)¢(s)ds satisfies the inequality
gETI O <K, ¥ £20,

and also

It follows that
g(t) > glt)eR 1<% for ¢ >4 >0
and hence
1W(t)(Z(t) @ Y(£))P| = £1(t) < Kg~'(t) < Kg_1(t1)e—%§:1 C(s)ds.

for all t > t; > 0. Since |¥(¢)(Z(t) ® Y(¢))P| is a continuous function on
[0,t1], and §3° {(s)ds = oo, it follows that there exists a positive constant L
such that

W(£)(Z(t) ® Y (£))P| < Le"® %$6)ds |y ¢ > 0,
and hence

Jim [9(2)(Z() ® Y (£))P| = 0.

LEMMA 2.3. Let Y (t) and Z(t) be invertible matrices which are continuous
functions of t on Ry and let P be a projection. If there ezists a constant
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K > 0 such that
t
Tz o Y(R)P(Z7 ()@Y (s)) T (s)|ds < K, Y t >0,
0

then for any vector u € R" such that Pu # 0,
limsup (|¥(¢)(Z(t) @ Y (t)) Pul| = .
t—o0

Proof. Let g(t) = |¥(t)(Z(t) ® Y(t))Pu|~", for t > 0. For 0 < t < T,
consider

T

(T 9(s)ds) () (Z(t) @ Y () Pu
t

T
= [ ¥O)(Z(OBY (1) P(Z7(s)®Y ~H(5) ¥ (s)¥(s)(Z(5)®Y (8)) Pug(s)ds,

it follows that
T

(J9(s)ds) 2t (2(1) @ Y (£)) P
t

T
<JERZH) @Y ()P(Z7Hs) @ Y () ¥ (s)]
[®(s)(Z(s) ® Y (s))Pullg(s)ds.
The scalar function g satisfies the inequality

T
g () S g9(s)ds < K, forall 0<t<T,
t

it follows that §7° g(s)ds exists. Hence litm inf g(t) = 0, which implies
—00

liiriilc)lp 1¥(t)(Z(t) @Y (¢t))Pu| =00. m

3. ¥-instability of linear systems

In this section we study W-instability of trivial solution of the linear
system (2.2). The conditions for W-instability of the trivial solution of (2.2)
can be expressed in terms of the fundamental matrices of (2.3) and (2.4).

THEOREM 3.1. Let Y(t) and Z(t) be the fundamental matrices of (2.3)
and (2.4) respectively. Then the trivial solution of (2.2) is ¥-unstable on
R, if and only if there is a projection P such that |¥(¢)(Z(t) @ Y (t))P| is
unbounded on R .
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Proof. Suppose that the trivial solution of (2.2) is ¥-unstable on Ry. Then
| (t)(Z(t)®Y (t))| is unbounded on Ry (Theorem 3 of [12]) and consequently
there exists a projection P such that |¥(¢)(Z(t) ® Y (¢))P| is unbounded
on R,.

Conversely, suppose that |¥(t)(Z(t) ® Y (t))P| is unbounded on Ry. To
the contrary, let us assume that the trivial solution of (2.2) is ¥-stable, then
for every € > 0 and typ > 0, there exists a § = &(¢,tp) > 0 such that any
solution X (¢) of (2.2) which satisfies the inequality | ¥(¢)X (to)|| < (e, to)
exists and satisfies the inequality || ¥ ()X (¢)]| < e, for all ¢ > tq.

Let o > 0 and X € R™ such that |¥(t)(Z(to) ® Y (to))P| # 0 and

1 Xoll < 6% (20)(Z(t0) ® Y (t0)) P|™" = do,

we have
19 (t0)(Z(to) ® Y (t)) PXol| < 6.

It follows that
N ()(Z(t) ® Y (£)) PXoll < e,
for all ¢ > to. Thus, for v € R™, ||v|| < 1, we have
1T()(Z(t) ® Y (t))Pdov|l < €, for all t > g,

and also

|W()(Z(t) ® Y (t))P| < b5, for all t > to,
which is a contradiction. Hence the trivial solution of (2.2) is W-unstable
on Ry . =

EXAMPLE 3.1. Consider the linear matrix Lyapunov system corresponding
to (1.1) with

2 0 {10
A(t):l:;f)l L ,B(t)_[o _2].

Then the fundamental matrices of (2.3), (2.4) are

t+1 0 e 0
0 1]’Z(t):[0 6—2t]'

t+1

Y(t) =

Now the fundamental matrix of (2.2) is

et+1) 0 0 0

0 & 0 0

ZH ey = 0 0 (t+1)e2 0
0 0 0 e
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Let
—t
\/et+—1 0 0 0 1 0 0 0
U(t) = 0 e e(;)t 0 and P — 0 00
0 0 7 O 0 010
0 0 0 &% 0000
Then, we have
Vvit+1 0 0 0
0 0 00
U Z(t) Y ()P =
1) Y©) © oo
0 0 0 0

Clearly |¥(t)(Z(t) ® Y (t))P| = v/t + 1 is unbounded on R, from Theorem
3.1 the trivial solutions of linear system (2.2) is U-unstable on R..

THEOREM 3.2. If there exists a projection P # 0 and a positive constant
K such that the fundamental matrices Y (t) and Z(t) of (2.3) and (2.4) re-
spectively, satisfies the inequality

o0

ez @Y ()P(Z7 () @ Y 1(s)) ¥ (s)|ds < K, for all t >0,

t
then the trivial solution of (2.2) is W-unstable on R,.

Proof. Suppose to the contrary, assume that the trivial solution of (2.2)
is W-stable on R,. Therefore, for ¢ > 0 and ¢y > 0, there exists a § =
8(e, to) > 0 such that any solution X (t) of (2.2) which satisfies the inequality
(1(t)X (to)|| < 8(e, to) exists and satisfies the inequality ||¥(¢)X ()| < e, for
all ¢ > to.

Without loss of generality, we may take Y (0) = I,, Z(0) = I, (else, we
replace Y (t) with Y (¢)Y~1(0), Z(t) with Z(¢t)Z~1(0) and P with (Z(0) ®
Y(0))P(Z71(0) ® Y~1(0))). Clearly Z(0) ® Y(0) = I,,.

For ty = 0, we can choose X'o € R™ such that X'o = PX'O and 0 <
| (0)Xo|l < 8(e,0). Then, | T(t)X(t)|| < ¢, for all t > 0. On the other
hand,

V()X (t) = TEN(Z(H)RY (1)(Z7H(0)eY 71 (0))Xo = Y(t)(Z(1)®Y (t)) PXo.
From Lemma 2.3, it follows that
lirn sup 1 ()(Z(t) ® Y () PXo|| = oo,

which is a contradiction. Thus, the trivial solution of (2.2) is W-unstable
on Ry =
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Example 3.2. In Example 3.1, if we take A = I, and B = —I5, then the
fundamental matrix of (2.2) is (Z(t) ® Y (t)) = I4. Let

t+1 0 0 0 1 000
0 1+t 0 0 0100
U(t) = + 1 and P =
0 0 z7 O 0000
0 0 0 g 0000
Then we have
Y0 00
. 1 1 0 00
PANZE)®Y()P(Z7(s)®Y (s)¥ 7 (s) = s
0 0 00
0 0 00

Therefore
T 1
J @ 2O @YE)P(Z ()@Y (s)) ¥ (s)lds = TS h
t
for all t > 0.
Thus, from Theorem 3.2 the trivial solution of (2.2) is ¥-unstable on Ry.

4. V-instability of non-linear systems

In this section we obtain sufficient conditions for W-instability of non-
linear matrix Lyapunov systems.

THEOREM 4.1. Suppose that:

(i) There exist supplementary projections Py and Ps, Py # 0 and a constant
K > 0 such that the fundamental matrices Y (t), Z(t) of (2.3) and (2.4)
respectively, satisfies the condition

HE(Z@) @Y ()PUZ 7 (s) ® Y ! (s) T (5)|ds
0

+ OSO [)(Z(t) @Y (1) P2(Z 71 (s) ® Y 7!(s)) ¥ (s)lds < K,

for allt > 0. R
(ii) The function G(t, X (t)) satisfies the inequality
@G, XO) < ¢@) 1 LBX )],

. ; 2 : .
for every continuous X : Ry — R™, where ¢(t) is a continuous non-
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negative bounded function on Ry such that
[$()| <M, forall t=>0,

where M is a positive constant.
(i) MK < 1.

Then, the trivial solution of (2.1) is W—unstable on R .

Proof. Suppose to the contrary, assume that the trivial solution of (2.1) is
V-stable on R. Therefore, for every € > 0 and any ¢y > 0, there exists § =
d(e,to) > 0 such that any solution X (¢) of (2.1) which satisfies the inequality
(o)X (to)|| < & exists and satisfies the inequality || U(¢)X(¢)|| < ¢, for all
t>0.

Without loss of generality, we assume that Y (0) = I,, Z(0) = I,,, then
Z(0) ® Y(0) = I,2. For to = 0, we can choose X(0) € R™ such that
P X(0) =0 and ||T(0)X(0)|| < 6(¢,0). Then | ¥(¢t)X (¢)| <e, for all t > 0.

Consider the function

t
u(t) = X(t) - {(Z2(t) @ Y1) PL(Z7'(5) ® Y 1(5))G (5, X (5))ds
0
[o 9}

+ 1z eYt)P(Z27 () ®Y}(s))G(s, X (s))ds, t>0.
t
For 0 <t < 7, we have
[(2() ® V() Po(2~(5) & ¥ (s)) G, X(s))ds|
t

<O JIEOEZ@) @ Y (@) P(Z7H(s) @Y ()T (s))]
1 E(s)G(s, X (5))llds
< [T 1TO(ZE) @ Y (1)) PAZ 7 () ® Y ()T (s)]

¢(s)[1¥(s) X (5))l|ds

< MelU2)| [ [T @)(Z2(t) @ Y () Po(Z7(s) © Y1 (s)) ¥ (s)|ds.
From hypothesis (i), it follows that

[(Z2@) @Y () P27 (s) © Y ~H(5))G(s, X(s))ds
t
is convergent. Clearly, the function u(t) exists and is also continuously dif-
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ferentiable on R, . Consider
t

(8) = X'(t) - {(Z() ® Y (£)) Pu(Z7 " (s) © Y ()G (s, X (5))ds
0

—(Z®) @Y () PU(Z7H ) @ YTH(E)G(t, X (2))
+{(z Y)Y P(Z7(s) @ Y (s))G(s, X (s))ds

—(ZB) @Y () P(Z7} (1) @ Y ()G (t, X (1))
H()X(t) +G(t, X())
—(ZB)®Y () [P+ P (Z71(t) @ Y1 (t))G(t, X (1))

(g Z(t) ® Y ()P (Z7(s) ® Y1(5))G(s, X (5))ds
0

8

- 2O 8YOREZ () @Y (:)G(s, X(9)ds)

_H() (t), forall t>0.

Therefore, u(t) is a solution of the linear system (2.2) on R;. Since

e@u®l < 1TE)X@)

+{TOZO @ Y())PU(Z7H () @Y () (5)]I1E(s)C(s, X (s))lds
0
+ @) Z@) @Y () PAZ7(s) ® Y ()T ()| ¥ ()G (s, X (3)) I ds
Se+{[E(ZMH @Y W)PUZH(s) ©Y T (s) T (5)[(s)1(5) X (s)llds
0

S WO(ZE) @Y ) PAZ 7 (s) @Y ()T (5)l() 1 ¥ (s) X (s) | ds
<e(l+ MK), for t >0, |

it follows that the solution u(t) is ¥-bounded on R;.
On the other hand,

u(t) = (Z() ®Y (H)(Z71(0) ® Y ~1(0))u(0)
= (Z2(t) © Y (1)) [Pru(0) + Pou(0)] = (Z(t) @ Y (£)) Pou(0).
Let Pyu(0) # 0, then from Lemma 2.3, we have
liﬁilp ¥ (t)u(t)]] = oo
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which is a contradiction. Thus, Pru(0) = 0 and hence u(t) =0 on Ry.
Therefore
t
Xt)= {2t oY (®)P(Z 7 (s) ® Y (5))G(s, X(5))ds
0

- OSO(Z(t) RY())P(Z7 (s) ® Y (5))G(s, X (s))ds, t>0.

Consider

()X (2)l]
< 2O YM))PUZ ! (s) @Y ()T ()1 (s)G(s, X (5))llds
0

+ § E(Z@) @ Y (0)PaZ 7 (s) @ Y H(5)) T (5)[[1 ¥ ()G (s, X (s))l1ds

< 22O @Y ()PI(Z 7 (s) @Y ()T (s)I9(s) 1T (s) X ()l ds
0

+ T @Y () PZ7H(s) @ Y 1)U (s)] ¢(s) [1T(s)X(s)]ds

< MK||®@®)X (@), for t >0,

which leads to a contradiction. Hence, the trivial solution of (2.1) is ¥-
unstable on R;. =u
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