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Aurelian Cernea

ON A BOUNDARY VALUE PROBLEM FOR
A THIRD ORDER DIFFERENTIAL INCLUSION

Abstract. We consider a boundary value problem for third order nonconvex differ-
ential inclusion and we obtain some existence results by using the set-valued contraction
principle.

1. Introduction

This paper is concerned with the following boundary value problem
(1.1) 2"+ k% € Ft,z), ae ([-L1]), z(-1)=2(1)=2'(1)=0
where F(,.): [-1,1] x R — P(R) is a set-valued map and k € [, 7].

The present note is motivated by a recent paper of Bartuzel and Frysz-
kowski ([1]), where it is considered problem (1.1) and a version of the Filippov
Lemma for this problem is obtained. The aim of our paper is to present two
additional results obtained by the application of the set-valued contraction
principle due to Covitz and Nadler ([10]).

The first result follows a classical idea by applying the set-valued con-
traction principle in the space of solutions of the problem. The second result
is also a Filippov type theorem concerning the existence of solutions to prob-
lem (1.1). Recall that for a differential inclusion defined by a Lipschitzian
set-valued map with nonconvex values, Filippov’s theorem consists in prov-
ing the existence of a solution starting from a given “quasi” solution. This
time we apply the contraction principle in the space of derivatives of solu-
tions instead of the space of solutions. In addition, as usual at a Filippov
existence type theorem, we obtain an estimate between the starting “quasi”
solution and the solution of the differential inclusion. The idea of applying
the set-valued contraction principle in the space of derivatives of the solu-
tions belongs to Bressan, Cellina and Fryszkowski ([2]) and it was used for
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the first time by Tallos ([11, 13]) in deriving Filippov type results. Other
similar results concerning differential inclusions may be found in [4-9] etc..

The Filppov type result we propose in our approach is an alternative
to the one in [1]. The two results are not comparable since the hypotheses
concerning the quasi solution are different. Moreover, the methods used in
their proofs are also different: the proof of the result in [1] follows Filippov’s
construction, while in our approach we obtain a “pointwise” estimate from a,
norm estimate.

For the motivation of the study of problem (1.1) we refer to [1] and
references therein.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use
later.

Let (X,d) be a metric space and consider a set valued map T on X
with nonempty values in X. T is said to be a A-contraction if there exists
0 < A < 1 such that:

du(T(2),T(y)) < Md(z,y) Vz,y € X,

where dg(.,.) denotes the Pompeiu-Hausdorff distance. Recall that the
Pompeiu-Hausdorff distance of the closed subsets A, B C X is defined by

du(A, B) = max{d*(4, B),d*(B,A)}, d*(A, B) =sup{d(a,B);a € A},
where d(x, B) = inf,cp d(z, y).

The set-valued contraction principle ([10]) states that if X is complete,
and T : X — P(X) is a set valued contraction with nonempty closed values,
then T'(.) has a fixed point, i.e. a point z € X such that z € T'(z).

We denote by Fiz(T') the set of all fixed points of the set-valued map T.
Obviously, Fiz(T) is closed.

PROPOSITION 2.1. ([12]) Let X be a complete metric space and suppose
that Ty, Ty are A-contractions with closed values in X. Then

1 5 sup d(T1(2), To(2).

dg(Fiz(Th), Fiz(T2)) < T
Let I = [-1,1]. By a solution of problem (1.1) we mean a function
z(.) € W := WI3(I) n H}(I) satisfying (1.1).
As usual, we denote by C(I,R) the Banach space of all continuous func-
tions from I to R with the norm ||z(.)||c = sup;¢; |2(¢)| and LY(I,R) the
Banach space of integrable functions u(.) : I — R endowed with the norm

llu( )l = §1, u(t)|dt.
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For each x(.) € W define
Ske = {f() € L(L,R); f(t) € F(t,z(t)) ae ()}
LEMMA 2.2. ([1)) If f(.) : [-1,1] — R is an integrable function and
k € [-m, 7| then the equation
2 + K2 = f(t) a.e (I),

with the boundary conditions x(—1) = (1) = 2'(1) = 0 has a unique solution
gwen by
1

2(t) = | G(t,9)f(s)ds,

-1
where G(.,.) is the associated Green function. Namely,

1—cosk(1+4x))(1—cosk{1—t R
( (192(11)c(os2k) 1-9) if —-1<z<t<1,
G(t,.’L‘) — (l—cosk(1+z))(1—coslzgil—_t)c)ogz(’lc)—cosk(z—t))(1—cos2k)

if —1<t<z<1.
Moreover, if k£ # 0
k%(5v/5 — 11)
sin2k
In order to study problem (1.1) we introduce the following hypothesis
on F.

HypoTHESIS 2.3. (i) F(.,,.): I x R — P(R) has nonempty closed values
and for every z € R F(.,z) is measurable.

(ii) There exists L(.) € L*(I,Ry) such that for almost all t € I, F(t,-) is
L(t)-Lipschitz in the sense that

du(F(t,z), F(t,y)) < L(t)lz —y| ¥ z,y R

and d(0, F(t,0)) < L(t) a.e. (I).
Denote Lg := 81_1 L(s)ds and assume that k # 0.

0<G(t,z) <Gy := V(t,z)elxR.

3. The main results
We are able now to present a first existence result for problem. (1.1).

THEOREM 3.1. Assume that Hypothesis 2.3 is satisfied, F(.,.) has compact
values and GoLo < 1. Then the problem (1.1) has a solution.

Proof. We transform the problem (1.1) in a fixed point problem. Consider
the set-valued map T : C(I,R) — P(C(I,R)) defined by

1
T(z) := {v(.) €C(LR); w(t):= | G(t,s)f(s)ds, fe sp,x}.

~1
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Note that since the set-valued map F(., z(.)) is measurable with the mea-
surable selection theorem (e.g., Theorem III. 6 in [3]) it admits a measurable
selection f(.): I — R. Moreover, from Hypothesis 2.3

[F ()] < L(t) + L(B)|2(t)],
ie., f(.) € L'(I,R). Therefore, Sp, # 0.

It is clear that the fixed points of T'(.) are solutions of problem (1.1). We
shall prove that T'(.) fulfills the assumptions of Covitz Nadler contraction
principle.

First, we note that since Sg; # 0, T(z) # 0 for any z(.) € C(I,R).

Secondly, we prove that T'(z) is closed for any z(.) € C(I,R).

Let {zp}n>0 € T(z) such that z,(.) — z*(.) in C(I,R). Then z*(.) €
C(I,R) and there exists f, € Spy such that

1
ZTn(t) = S G(t, s) fu(s)ds.

-1

Since F'(.,.) has compact values and Hypothesis 2.3 is satisfied we may
pass to a subsequence (if necessary) to get that f,(.) converges to f(.) €
LY(I,R) in L\(I,R).

In particular, f € Sr, and for any ¢t € I we have

1
zn(t) = 2*(t) = | G(t,5)f(s)ds,
-1
ie., z* € T(z) and T(z) is closed.
Finally, we show that T(.) is a contraction on C(I,R).
Let z1(.),z2(.) € C(I,R) and v1 € T(z1). Then there exists f; € Spz,

such that
1

vi(t) = S G(t,s)fi(s)ds, tel.

-1
Consider the set-valued map
G(t) = Flt, s () N {e € Ry [fi(t) — 7] < L(O)[za(t) — a2(®)]}, te L.
From Hypothesis 2.3 one has
dp (F (¢, 21(2)), F(¢,22(t))) < L(t)|21(t) — z2(2)),

hence G(.) has nonempty closed values. Moreover, since G(.) is measurable,
there exists fa(.) a measurable selection of G(.). It follows that fo € Spg,
and for any t € 1

|£1(t) = fa(t)] < L(B)|z1(t) — za(t)]-
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Define
1

v(t) = | G(t,s)fa(s)ds, tel,
-1
and we have
1 1
o1(8) —v2(t)] < § 1G(t,8)|.1fi(s) — fa(s)lds < Go | [fi(s) = fa(s)lds
-1 -1
1
S Go S L(S)l.’L‘l(s) - xg(s)|ds S GOLOH-'L'I — :L‘gllc.
-1
So, |lvr — v2|lc < GoLollz1 — z2llc-
From an analogous reasoning by interchanging the roles of z; and z it
follows

dp (T (21), T(x2)) < GoLollz1 — x2llc-
Therefore, T(.) admits a fixed point which is a solution to problem (1.1).

The next theorem is the main result of this paper. As one can see it
is, in fact, no necessary to assume that F(.,.) has compact values as in
Theorem 3.1.

THEOREM 3.2. Assume that Hypothesis 2.3 is satisfied and GoLg < 1. Let
y(.) € W be such that there exists q(.) € L*(I,R,.) with

dy"'(t) + K/ (t), F(t,y(1)) < q(t) a.e. (I).

Then for every e > O there exists z(.) a solution of problem (1.1) satisfying
foralltel

G 1

0 — | qt)dt +e.

0 ~y01 < g §

GoLo
Proof. For u(.) € L!(I,R) define the following set valued maps
1
M,(t) = F(t, S G(t,s)u(s)ds), tel,
-1
T(u) = {¢(.) € L"(L,R); &(t) € My(t) ace. (I)}.
It follows from Lemma 2.2 that z(.) is a solution of problem (1.1) if and
only if z”'(.) + k?2'(.) is a fixed point of T(.).
We shall prove first that T'(u) is nonempty and closed for every u €
LY(I,R). The fact that the set valued map M,(.) is measurable is well

known. For example the map ¢ — 81_1 G(t, s)u(s)ds can be approximated by
step functions and we can apply Theorem III. 40 in [3]. Since the values of
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F are closed with the measurable selection theorem (Theorem III.6 in [3])
we infer that M, (.) admits a measurable selection ¢. One has
1
|6(t)] < d(0, F(£,0)) + di (F(t,0), F(t, § G(t,s)u(s)ds))
-1
1
< L)1+ Go | Juls)lds),
-1
which shows that ¢ € L!(I,R) and T(u) is nonempty.

On the other hand, the set T'(u) is also closed. Indeed, if ¢, € T'(u) and
l{¢n—@||1 — 0 then we can pass to a subsequence ¢y, such that ¢n, (t) — ¢(t)
for a.e. t € I, and we find that ¢ € T'(u).

We show next that T'(.) is a contraction on L'(I,R).

Let u,v € LY(I,R) be given and ¢ € T(u). Consider the following
set-valued map:

1
H(t) = M,(t)n{z €R; |o(t) —z| < L(®)| | G(¢,5)(u(s) — v(s))ds]}.
-1

From Proposition II1.4 in [3], H(.) is measurable and from Hypothesis
2.3 ii) H(.) has nonempty closed values. Therefore, there exists 1(.) a mea-
surable selection of H(.). It follows that ¢ € T(v) and according with the
definition of the norm we have

1 1 1
e =l = § 1o(t) —p®)dt < | L&)(§ IG(E, )| |u(s) — v(s)|ds)dt
-1 -1 -1
1 1
= | ( i L(t)lG(t,s)|dt)|u(s) — u(s)|ds < GoLollu — vl}r.
-1 -1

We deduce that
d(¢,T(v)) < GoLol|v — vil1.
Replacing « by v we obtain
dg(T'(u),T(v)) < GoLollu — vlf1,
thus T'(.) is a contraction on L!(I,R).
We consider next the following set-valued maps

Fi(t,z)=F(t,z) + qt)[-1,1], (t,z) €I xR,
1
ML) = Fu(t, | G(t, s)u(s)ds),

-1

Ti(u) = {¢() € L"ILR); o(t) € My(t) ae (D)}, u()€LY(R).



Third order differential inclusion 729

Obviously, Fi(.,.) satisfies Hypothesis 2.3.

Repeating the previous step of the proof we obtain that 77 is also a
GoLo-contraction on L!(I,R) with closed nonempty values.

We prove next the following estimate

1
(3.1) dn(T(), Ty(w) < | q(t)dt.
-1
Let ¢ € T(u) and define
Hi(t) =M;()n{z €R; |g(t) - 2| < q()}-

With the same arguments used for the set valued map H(.), we deduce
that Hj(.) is measurable with nonempty closed values. Hence let ¢(.) be a
measurable selection of Hi(.). It follows that 1 € T1(u) and one has

1 1
16— wlls = | 16() —p(e)lae < | a(0).
-1 -1
As above we obtain (3.1).
We apply Proposition 2.1 and we infer that
1 1
dg(Fiz(T), Fi <— .
w(Fiz(T), Fiz(T1)) < [ Gols _&1 q(t)dt

Since v(.) = y"'(.) + k*y/(.) € Fiz(Ty) it follows that for any £ > 0 there

exists u(.) € Fiz(T) such that

1 : €
— < - iy
llo—ull < g5 _Slq(t)dt+ &
We define z(t) = Sl_l G(t,s)u(s)ds, t € I and we have
1
Go

1
| q(t)dt+ ¢
-1

lz(t) —y()| < _81 |G(¢, 5)|-lu(s) — v(s)|ds < 1-Gilo
which completes the proof.

REMARK 3.3. The assumption in Theorem 3.2 is satisfied, in particular,
for y(.) = 0 and therefore, via Hypothesis 2.3, with ¢(.) = L(.). In this case,
Theorem 3.1 provides an existence result for problem (1.1) together with a
priori bounds for the solution.
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