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ON A BOUNDARY VALUE PROBLEM FOR 
A THIRD ORDER DIFFERENTIAL INCLUSION 

Abstract. We consider a boundary value problem for third order nonconvex differ-
ential inclusion and we obtain some existence results by using the set-valued contraction 
principle. 

1. Introduction 
This paper is concerned with the following boundary value problem 

(1.1) x"' + k2x' e F(t,x), a.e. ( [ -1 ,1]) , ar(—1) = x(l) = x ' ( l ) = 0 

where F(.,.) : [—1,1] x M —> V(M.) is a set-valued map and k € [—7r, 7r]. 
The present note is motivated by a recent paper of Bartuzel and Frysz-

kowski ([1]), where it is considered problem (1.1) and a version of the Filippov 
Lemma for this problem is obtained. The aim of our paper is to present two 
additional results obtained by the application of the set-valued contraction 
principle due to Covitz and Nadler ([10]). 

The first result follows a classical idea by applying the set-valued con-
traction principle in the space of solutions of the problem. The second result 
is also a Filippov type theorem concerning the existence of solutions to prob-
lem (1.1). Recall that for a differential inclusion defined by a Lipschitzian 
set-valued map with nonconvex values, Filippov's theorem consists in prov-
ing the existence of a solution starting from a given "quasi" solution. This 
time we apply the contraction principle in the space of derivatives of solu-
tions instead of the space of solutions. In addition, as usual at a Filippov 
existence type theorem, we obtain an estimate between the starting "quasi" 
solution and the solution of the differential inclusion. The idea of applying 
the set-valued contraction principle in the space of derivatives of the solu-
tions belongs to Bressan, Cellina and Fryszkowski ([2]) and it was used for 
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the first time by Tallos ([11, 13]) in deriving Filippov type results. Other 
similar results concerning differential inclusions may be found in [4-9] etc.. 

The Filppov type result we propose in our approach is an alternative 
to the one in [1], The two results are not comparable since the hypotheses 
concerning the quasi solution are different. Moreover, the methods used in 
their proofs are also different: the proof of the result in [1] follows Filippov's 
construction, while in our approach we obtain a "pointwise" estimate from a 
norm estimate. 

For the motivation of the study of problem (1.1) we refer to [1] and 
references therein. 

The paper is organized as follows: in Section 2 we recall some preliminary 
facts that we need in the sequel and in Section 3 we prove our main results. 

2. Preliminaries 
In this short section we sum up some basic facts that we are going to use 

later. 
Let (X,d) be a metric space and consider a set valued map T on X 

with nonempty values in X. T is said to be a A-contraction if there exists 
0 < A < 1 such that: 

djí(T(x), T(y)) < Ad(x, y) Vz, yeX, 
where du(-,-) denotes the Pompeiu-Hausdorff distance. Recall that the 
Pompeiu-Hausdorff distance of the closed subsets A, B C X is defined by 

dH(A, B) = max{<f (A, B),d*(B, A)}, d*(A, B) = sup{d(a, B); a G A}, 

where d(x, B) = infy£B d(x, y)-
The set-valued contraction principle ([10]) states that if X is complete, 

and T : X —* V(X) is a set valued contraction with nonempty closed values, 
then T(.) has a fixed point, i.e. a point z £ l such that z G T(z). 

We denote by Fix{T) the set of all fixed points of the set-valued map T. 
Obviously, Fix(T) is closed. 

PROPOSITION 2 .1 . ([12]) Let X be a complete metric space and suppose 
that T i , T 2 are A-contractions with closed values in X. Then 

<ÍH(FÍX(TI), FIX(T2)) < - ^ - s u p d(Ti(z) ,T 2 (z)) . 
1 — A zex 

Let I = [—1,1]. By a solution of problem (1.1) we mean a function 
x ( . ) e W : = W 1 ' 3 ^ ) n H¿(I) satisfying (1.1). 

As usual, we denote by C(I, M) the Banach space of all continuous func-
tions from I to M with the norm ||x(.)||c = supte/ a n d Ll(I,R) the 
Banach space of integrable functions u(.) : I R endowed with the norm 
IKOII i = l-i \u{t)\dt. 



(l-CQ8fc(l+x))(l-COgfc(l-t)) — 1 < X < Í < 1 
k2(l—cos2k) — — — ' 

( l - coafc ( l+a : ) ) ( l - cos fe ( l - t ) ) - ( l - coafc (x - t ) ) ( l - cos2fc ) 
k2(l—cos2k) 

if - 1 < t < X < 1. 
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For each x(.) G W define 

S^Z :={/(•)€ ¿HAR); f(t)eF(t,x(t)) a.e. (/)}• 
L E M M A 2 . 2 . ([1]) If /(.) : [—1,1] —> R is an integrable function and 
k G [—7T, 7r] then the equation 

x'" + k2x' = f(t) a.e. (I), 
with the boundary conditions x{—1) = a;(l) — x'{l) = 0 has a unique solution 
given by 

i 
x{t) = J G(t, s)f(s)ds, 

- l 

where G(.,.) is the associated Green function. Namely, 

G(t,x) = 

Moreover, if k 0 

0 < G(t,x) < GQ := n ) v ( t , i ) e / x R . sm¿k 
In order to study problem (1.1) we introduce the following hypothesis 

on F. 
H Y P O T H E S I S 2 . 3 . (i) F(.,.) : I x R —» V(R) has nonempty closed values 
and for every F(.,x) is measurable. 

(ii) There exists L(.) € L1(/, R+) such that for almost all t G /, F(t, •) is 
L(t)-Lipschitz in the sense that 

dH(F(t,x),F(t,y))<L(t)\x-y\ V x,yeR 
and d(0, F(t, 0)) < L(t) a.e. (/). 

Denote LQ := L(s)ds and assume that k ^ 0. 

3. The main results 
We are able now to present a first existence result for problem. (1.1). 

T H E O R E M 3 . 1 . Assume that Hypothesis 2.3 is satisfied, F(.,.) has compact 
values and GQLQ < 1. Then the problem (1.1) has a solution. 
Proof. We transform the problem (1.1) in a fixed point problem. Consider 
the set-valued map T : C(/,M) V(C(I,R)) defined by 

T(x) := { < ) G C(/,R); v(t) := J G(t, s)f(s)ds, f G S F , x } . 
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Note that since the set-valued map F(., x(.)) is measurable with the mea-
surable selection theorem (e.g., Theorem III. 6 in [3]) it admits a measurable 
selection /( .) : I —> R. Moreover, from Hypothesis 2.3 

\f(t)\ < L(t) + L(t)\x(t)\, 

i.e., / ( . ) G L\I,R). Therefore, SF,X + 0. 
It is clear that the fixed points of T(.) are solutions of problem (1-1). We 

shall prove that T(.) fulfills the assumptions of Covitz Nadler contraction 
principle. 

First, we note that since SFiX ^ 0, T{x) ^ 0 for any x(.) G C(/ ,R) . 
Secondly, we prove that T(x) is closed for any x(.) G C(I, R). 
Let {xn}n>0 € T(x) such that xn(.) in C(/ ,R) . Then x*(.) G 

C(I, R) and there exists fn £ SF,X such that 
l 

Xnit) = \ G(t,s)fn(s)ds. 
-1 

Since F(.,.) has compact values and Hypothesis 2.3 is satisfied we may 
pass to a subsequence (if necessary) to get that /„(.) converges to / ( . ) £ 
L 1 ( / , R) in Ll(I, R). 

In particular, / £ 5V]X and for any t G I we have 
l 

sn(i) -x*(t) = j G(t,s)f(s)ds, 
- l 

i.e., x* G T(x) and T(x) is closed. 

Finally, we show that T(.) is a contraction on C(I, R). 
Let £i(.),£2(.) G C(/,M) and v\ G T(x 1). Then there exists /1 G SptXl 

such that 
1 

Vl(t)= \ G{t,s)f1(s)ds, t£l. 
- 1 

Consider the set-valued map 

G{t) := F(t,Xl(t)) n {x G R; |/i(i) - x\ < L(t)\xi{t) - x2{t)\}, t e l . 

From Hypothesis 2.3 one has 

dH(F(t, Xl (i)), F(t, x2(t))) < L(t) \Xl(t) - x2(t) |, 

hence G(.) has nonempty closed values. Moreover, since G(.) is measurable, 
there exists /2(.) a measurable selection of G(.). It follows that ¡2 G SF,X2 

and for any i £ / 

\h{t) - /2(t)| < L{t)\Xl{t) - s2(t)|. 
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Define 
1 

v2{t) = j G(t,s)f2(s)ds, t e l , 
-1 

and we have 
l l 

|vi(i) -U2(i)l < S |G(i,s)|.|/i(s)-/2(s)|ds<Go i \h(s)-h(s)\ds 
- 1 - 1 

1 
< Go 5 L(s)|xi(s) - x2(s)\ds < GQLQ\\Xi - x2\\c-

- l 

So, ||vi -V2\\C< GQLQ\\X\ - x2\\c-
From an analogous reasoning by interchanging the roles of x\ and x2 it 

follows 
dH(T{Xl),T(x2)) < GoLoll^i - ^lie-

Therefore, T(.) admits a fixed point which is a solution to problem (1.1). 

The next theorem is the main result of this paper. As one can see it 
is, in fact, no necessary to assume that F(.,.) has compact values as in 
Theorem 3.1. 

THEOREM 3.2. Assume that Hypothesis 2.3 is satisfied and GQLQ < 1. Let 
y(.) € W be such that there exists q(.) € L1(/,M+) with 

d{y"'(t) + k2y'(t), F(t, y(t))) < q(t) a.e. (I). 

Then for every e > 0 there exists x(.) a solution of problem (1.1) satisfying 
for all t € I 

\x(t)-y(t)\< 1_C£qLo S q(t)dt + e. 

Proof. For u(.) £ L1 (/, R) define the following set valued maps 
l 

Mu(t) = F(t, J G(t, s)u(s)ds), t € I, 
- l 

T{u) = {0(.) G L\I, R); 4>{t) e Mu(t) a.e. (/)}. 

It follows from Lemma 2.2 that x(.) is a solution of problem (1.1) if and 
only if x'"{.) + k2x'{.) is a fixed point of T(.). 

We shall prove first that T{u) is nonempty and closed for every u G 
L1(/,M). The fact that the set valued map Mu(.) is measurable is well 
known. For example the map t —> ^ G(t, s)u(s)ds can be approximated by 
step functions and we can apply Theorem III. 40 in [3]. Since the values of 
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F are closed with the measurable selection theorem (Theorem III.6 in [3]) 
we infer that Mu(.) admits a measurable selection (f>. One has 

l 
\4>{t)\ <d(0,F(t,0)) + dH(F(t,0),F(t, \ G(t, s)u(s)ds)) 

- l 
l 

< L(t)(l + Go j |u(s)|ds), 
- l 

which shows that 4> G L1(7, M) and T(u) is nonempty. 
On the other hand, the set T(u) is also closed. Indeed, if <pn € T(u) and 

I 1 11 —̂  0 then we can pass to a subsequence <f>nk such that (pnk (t) —> (¡>(t) 
for a.e. t E I, and we find that (f> € T(u). 

We show next that T(.) is a contraction on Ll(I,R). 
Let u,v € Ll(I, R) be given and <f> € T(u). Consider the following 

set-valued map: 
l 

H(t) = Mv(t) n {x £ R; 14>{t) -x\< L(t)\ \ G(t, s)(u(s) - u(a))ds|}. 
- l 

Prom Proposition III.4 in [3], H(.) is measurable and from Hypothesis 
2.3 ii) H(.) has nonempty closed values. Therefore, there exists ip(.) a mea-
surable selection of H(.). It follows that ip £ T(v) and according with the 
definition of the norm we have 

l 1 1 

- l - l - l 
l l 

= i ( S ¿ ( i ) | G ( i , « ) | d i ) K s ) - u ( a ) M a < C ? o i o | | « - w | | i . 

We deduce that 

d(<f>,T(v)) <G0L0\\u- «IK. 

Replacing u by v we obtain 

dH{T(u),T{v))<GQLo\\u-v\\u 

thus T(.) is a contraction on Ll(I, R). 
We consider next the following set-valued maps 

Fx(t,x) = F(t,x) + q(t)[-1,1], (t,x) £l x R, 
l 

M^(t) = F1(t, J G(t,s)u(s)ds), 
- l 

r 1 (u) = {t/;( .)GL1(/ ,R); # ) 6 M i ( t ) a.e. (I)}, u{.)£L\l, R). 
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Obviously, Fi (.,.) satisfies Hypothesis 2.3. 
Repeating the previous step of the proof we obtain that Ti is also a 

G o L o - c o n t r a c t i o n on L1( / ,M) with closed nonempty values. 
We prove next the following estimate 

1 
(3.1) d H (T(«) ,T i («) ) < J q(t)dt. 

- l 
Let (f> G T(u) and define 

H,{t) = Ml{t) n {z G R; I<f>(t) -z\< q(t)}. 

With the same arguments used for the set valued map H(.), we deduce 
that Hi(.) is measurable with nonempty closed values. Hence let rjj(.) be a 
measurable selection of Hi(.). It follows that ip G Ti(u) and one has 

l l 
H 0 - v i i i = 5 m ) - m \ d t < j q(t). 

As above we obtain (3.1). 
We apply Proposition 2.1 and we infer that 

1 J dH(Fix(T),Fix(Ti)) < - — q ( t ) d t . 
1 - GqLQ 

Since v{.) = /'(.) + k2y'{.) G Fix{Ti) it follows that for any e > 0 there 
exists u{.) G Fix(T) such that 

We define x(t) = G(t, s)u(s)ds, t G I and we have 
i r i 

| X ( i ) - y ( i ) | < 5 |G(M)|.NS)-^)MS< ° J q(t)dt + e 
1 - ko-ko 

which completes the proof. 

R E M A R K 3 . 3 . The assumption in Theorem 3.2 is satisfied, in particular, 
for y(.) = 0 and therefore, via Hypothesis 2.3, with q(.) = L(.). In this case, 
Theorem 3.1 provides an existence result for problem (1.1) together with a 
priori bounds for the solution. 

References 

[1] G. Bartuzel, A. Pryszkowski, Filippov Lemma for certain differential inclusion of third 
order, Demonstratio Math. 41 (2008), 337-352. 



730 A. Cernea 

A. Bressan, A. Cellina, A. Fryszkowski, A class of absolute retracts in spaces of 
integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413-418. 
C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, 
Berlin, 1977. 
A. Cernea, Existence for nonconvex integral inclusions via fixed points, Arch. Math. 
(Brno) 39 (2003), 293-298. 
A. Cernea, An existence theorem for some nonconvex hyperbolic differential inclu-
sions, Mathematica (Cluj) 45 (68) (2003), 121-126. 
A. Cernea, An existence result for nonlinear integrodifferential inclusions, Comm. 
Appl. Nonlinear Anal. 14 (2007), 17-24. 
A. Cernea, On the existence of solutions for a higher order differential inclusion 
without convexity, Electron. J. Qual. Theory Differential Equations 8 (2007), 1-8. 
A. Cernea, On the existence of mild solutions of a nonconvex evolution inclusion, 
Math. Commun. 13 (2008), 107-114. 
A. Cernea, An existence result for a Fredholm-type integral inclusion, Fixed Point 
Theory 9 (2008), 441-447. 
H. Covitz, S. B. Nadler jr., Multivalued contraction mapping in generalized metric 
spaces, Israel J. Math. 8 (1970), 5-11. 
Z. Kannai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. 
Math. (Szeged) 61 (1995), 197-207. 
T. C. Lim, On fixed point stability for set valued contractive mappings with applica-
tions to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441. 
P. Talllos, A Filippov-Gronwall type inequality in infinite dimensional space, Pure 
Math. Appl. 5 (1994), 355-362. 

FACULTY OF MATHEMATICS AND INFORMATICS 
UNIVERSITY OF BUCHAREST 
Academiei 14 
010014 BUCHAREST, ROMANIA 
E-mail: acernea@fmi.unibuc.ro 

Received October 1, 2008; revised version March 25, 2009. 


