

Aurelian Cernea

ON A BOUNDARY VALUE PROBLEM FOR A THIRD ORDER DIFFERENTIAL INCLUSION

Abstract. We consider a boundary value problem for third order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.

1. Introduction

This paper is concerned with the following boundary value problem
(1.1) $x''' + k^2 x' \in F(t, x)$, a.e. $([-1, 1])$, $x(-1) = x(1) = x'(1) = 0$
where $F(\cdot, \cdot) : [-1, 1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a set-valued map and $k \in [-\pi, \pi]$.

The present note is motivated by a recent paper of Bartuzel and Frysztakowski ([1]), where it is considered problem (1.1) and a version of the Filippov Lemma for this problem is obtained. The aim of our paper is to present two additional results obtained by the application of the set-valued contraction principle due to Covitz and Nadler ([10]).

The first result follows a classical idea by applying the set-valued contraction principle in the space of solutions of the problem. The second result is also a Filippov type theorem concerning the existence of solutions to problem (1.1). Recall that for a differential inclusion defined by a Lipschitzian set-valued map with nonconvex values, Filippov's theorem consists in proving the existence of a solution starting from a given "quasi" solution. This time we apply the contraction principle in the space of derivatives of solutions instead of the space of solutions. In addition, as usual at a Filippov existence type theorem, we obtain an estimate between the starting "quasi" solution and the solution of the differential inclusion. The idea of applying the set-valued contraction principle in the space of derivatives of the solutions belongs to Bressan, Cellina and Frysztakowski ([2]) and it was used for

2000 *Mathematics Subject Classification*: 34A60, 26A24.

Key words and phrases: boundary value problem, differential inclusion, contractive set-valued map, fixed point.

the first time by Tallos ([11, 13]) in deriving Filippov type results. Other similar results concerning differential inclusions may be found in [4–9] etc..

The Filippov type result we propose in our approach is an alternative to the one in [1]. The two results are not comparable since the hypotheses concerning the quasi solution are different. Moreover, the methods used in their proofs are also different: the proof of the result in [1] follows Filippov's construction, while in our approach we obtain a “pointwise” estimate from a norm estimate.

For the motivation of the study of problem (1.1) we refer to [1] and references therein.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use later.

Let (X, d) be a metric space and consider a set valued map T on X with nonempty values in X . T is said to be a λ -contraction if there exists $0 < \lambda < 1$ such that:

$$d_H(T(x), T(y)) \leq \lambda d(x, y) \quad \forall x, y \in X,$$

where $d_H(., .)$ denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \quad d^*(A, B) = \sup\{d(a, B); a \in A\},$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

The set-valued contraction principle ([10]) states that if X is complete, and $T : X \rightarrow \mathcal{P}(X)$ is a set valued contraction with nonempty closed values, then $T(.)$ has a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$.

We denote by $Fix(T)$ the set of all fixed points of the set-valued map T . Obviously, $Fix(T)$ is closed.

PROPOSITION 2.1. ([12]) *Let X be a complete metric space and suppose that T_1, T_2 are λ -contractions with closed values in X . Then*

$$d_H(Fix(T_1), Fix(T_2)) \leq \frac{1}{1 - \lambda} \sup_{z \in X} d(T_1(z), T_2(z)).$$

Let $I = [-1, 1]$. By a solution of problem (1.1) we mean a function $x(.) \in W := W^{1,3}(I) \cap H_0^1(I)$ satisfying (1.1).

As usual, we denote by $C(I, \mathbb{R})$ the Banach space of all continuous functions from I to \mathbb{R} with the norm $\|x(.)\|_C = \sup_{t \in I} |x(t)|$ and $L^1(I, \mathbb{R})$ the Banach space of integrable functions $u(.) : I \rightarrow \mathbb{R}$ endowed with the norm $\|u(.)\|_1 = \int_{-1}^1 |u(t)| dt$.

For each $x(\cdot) \in W$ define

$$S_{F,x} := \{f(\cdot) \in L^1(I, \mathbb{R}); \quad f(t) \in F(t, x(t)) \quad a.e. (I)\}.$$

LEMMA 2.2. ([1]) *If $f(\cdot) : [-1, 1] \rightarrow \mathbb{R}$ is an integrable function and $k \in [-\pi, \pi]$ then the equation*

$$x''' + k^2 x' = f(t) \quad a.e. (I),$$

with the boundary conditions $x(-1) = x(1) = x'(1) = 0$ has a unique solution given by

$$x(t) = \int_{-1}^1 G(t, s) f(s) ds,$$

where $G(\cdot, \cdot)$ is the associated Green function. Namely,

$$G(t, x) = \begin{cases} \frac{(1 - \cos k(1+x))(1 - \cos k(1-t))}{k^2(1 - \cos 2k)} & \text{if } -1 \leq x \leq t \leq 1, \\ \frac{(1 - \cos k(1+x))(1 - \cos k(1-t)) - (1 - \cos k(x-t))(1 - \cos 2k)}{k^2(1 - \cos 2k)} & \text{if } -1 \leq t \leq x \leq 1. \end{cases}$$

Moreover, if $k \neq 0$

$$0 \leq G(t, x) \leq G_0 := \frac{k^2(5\sqrt{5} - 11)}{\sin^2 k} \quad \forall (t, x) \in I \times \mathbb{R}.$$

In order to study problem (1.1) we introduce the following hypothesis on F .

HYPOTHESIS 2.3. (i) $F(\cdot, \cdot) : I \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ has nonempty closed values and for every $x \in \mathbb{R}$ $F(\cdot, x)$ is measurable.

(ii) There exists $L(\cdot) \in L^1(I, \mathbb{R}_+)$ such that for almost all $t \in I$, $F(t, \cdot)$ is $L(t)$ -Lipschitz in the sense that

$$d_H(F(t, x), F(t, y)) \leq L(t)|x - y| \quad \forall x, y \in \mathbb{R}$$

and $d(0, F(t, 0)) \leq L(t)$ a.e. (I).

Denote $L_0 := \int_{-1}^1 L(s) ds$ and assume that $k \neq 0$.

3. The main results

We are able now to present a first existence result for problem (1.1).

THEOREM 3.1. *Assume that Hypothesis 2.3 is satisfied, $F(\cdot, \cdot)$ has compact values and $G_0 L_0 < 1$. Then the problem (1.1) has a solution.*

Proof. We transform the problem (1.1) in a fixed point problem. Consider the set-valued map $T : C(I, \mathbb{R}) \rightarrow \mathcal{P}(C(I, \mathbb{R}))$ defined by

$$T(x) := \left\{ v(\cdot) \in C(I, \mathbb{R}); \quad v(t) := \int_{-1}^1 G(t, s) f(s) ds, \quad f \in S_{F,x} \right\}.$$

Note that since the set-valued map $F(., x(.))$ is measurable with the measurable selection theorem (e.g., Theorem III. 6 in [3]) it admits a measurable selection $f(.) : I \rightarrow \mathbb{R}$. Moreover, from Hypothesis 2.3

$$|f(t)| \leq L(t) + L(t)|x(t)|,$$

i.e., $f(.) \in L^1(I, \mathbb{R})$. Therefore, $S_{F,x} \neq \emptyset$.

It is clear that the fixed points of $T(.)$ are solutions of problem (1.1). We shall prove that $T(.)$ fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since $S_{F,x} \neq \emptyset$, $T(x) \neq \emptyset$ for any $x(.) \in C(I, \mathbb{R})$.

Secondly, we prove that $T(x)$ is closed for any $x(.) \in C(I, \mathbb{R})$.

Let $\{x_n\}_{n \geq 0} \in T(x)$ such that $x_n(.) \rightarrow x^*(.)$ in $C(I, \mathbb{R})$. Then $x^*(.) \in C(I, \mathbb{R})$ and there exists $f_n \in S_{F,x}$ such that

$$x_n(t) = \int_{-1}^1 G(t, s)f_n(s)ds.$$

Since $F(., .)$ has compact values and Hypothesis 2.3 is satisfied we may pass to a subsequence (if necessary) to get that $f_n(.)$ converges to $f(.) \in L^1(I, \mathbb{R})$ in $L^1(I, \mathbb{R})$.

In particular, $f \in S_{F,x}$ and for any $t \in I$ we have

$$x_n(t) \rightarrow x^*(t) = \int_{-1}^1 G(t, s)f(s)ds,$$

i.e., $x^* \in T(x)$ and $T(x)$ is closed.

Finally, we show that $T(.)$ is a contraction on $C(I, \mathbb{R})$.

Let $x_1(.), x_2(.) \in C(I, \mathbb{R})$ and $v_1 \in T(x_1)$. Then there exists $f_1 \in S_{F,x_1}$ such that

$$v_1(t) = \int_{-1}^1 G(t, s)f_1(s)ds, \quad t \in I.$$

Consider the set-valued map

$$G(t) := F(t, x_1(t)) \cap \{x \in \mathbb{R}; |f_1(t) - x| \leq L(t)|x_1(t) - x_2(t)|\}, \quad t \in I.$$

From Hypothesis 2.3 one has

$$d_H(F(t, x_1(t)), F(t, x_2(t))) \leq L(t)|x_1(t) - x_2(t)|,$$

hence $G(.)$ has nonempty closed values. Moreover, since $G(.)$ is measurable, there exists $f_2(.)$ a measurable selection of $G(.)$. It follows that $f_2 \in S_{F,x_2}$ and for any $t \in I$

$$|f_1(t) - f_2(t)| \leq L(t)|x_1(t) - x_2(t)|.$$

Define

$$v_2(t) = \int_{-1}^1 G(t, s) f_2(s) ds, \quad t \in I,$$

and we have

$$\begin{aligned} |v_1(t) - v_2(t)| &\leq \int_{-1}^1 |G(t, s)| \cdot |f_1(s) - f_2(s)| ds \leq G_0 \int_{-1}^1 |f_1(s) - f_2(s)| ds \\ &\leq G_0 \int_{-1}^1 L(s) |x_1(s) - x_2(s)| ds \leq G_0 L_0 \|x_1 - x_2\|_C. \end{aligned}$$

So, $\|v_1 - v_2\|_C \leq G_0 L_0 \|x_1 - x_2\|_C$.

From an analogous reasoning by interchanging the roles of x_1 and x_2 it follows

$$d_H(T(x_1), T(x_2)) \leq G_0 L_0 \|x_1 - x_2\|_C.$$

Therefore, $T(\cdot)$ admits a fixed point which is a solution to problem (1.1).

The next theorem is the main result of this paper. As one can see it is, in fact, no necessary to assume that $F(\cdot, \cdot)$ has compact values as in Theorem 3.1.

THEOREM 3.2. *Assume that Hypothesis 2.3 is satisfied and $G_0 L_0 < 1$. Let $y(\cdot) \in W$ be such that there exists $q(\cdot) \in L^1(I, \mathbb{R}_+)$ with*

$$d(y'''(t) + k^2 y'(t), F(t, y(t))) \leq q(t) \quad a.e. (I).$$

Then for every $\varepsilon > 0$ there exists $x(\cdot)$ a solution of problem (1.1) satisfying for all $t \in I$

$$|x(t) - y(t)| \leq \frac{G_0}{1 - G_0 L_0} \int_{-1}^1 q(t) dt + \varepsilon.$$

Proof. For $u(\cdot) \in L^1(I, \mathbb{R})$ define the following set valued maps

$$M_u(t) = F(t, \int_{-1}^1 G(t, s) u(s) ds), \quad t \in I,$$

$$T(u) = \{\phi(\cdot) \in L^1(I, \mathbb{R}); \quad \phi(t) \in M_u(t) \quad a.e. (I)\}.$$

It follows from Lemma 2.2 that $x(\cdot)$ is a solution of problem (1.1) if and only if $x'''(\cdot) + k^2 x'(\cdot)$ is a fixed point of $T(\cdot)$.

We shall prove first that $T(u)$ is nonempty and closed for every $u \in L^1(I, \mathbb{R})$. The fact that the set valued map $M_u(\cdot)$ is measurable is well known. For example the map $t \rightarrow \int_{-1}^1 G(t, s) u(s) ds$ can be approximated by step functions and we can apply Theorem III. 40 in [3]. Since the values of

F are closed with the measurable selection theorem (Theorem III.6 in [3]) we infer that $M_u(\cdot)$ admits a measurable selection ϕ . One has

$$\begin{aligned} |\phi(t)| &\leq d(0, F(t, 0)) + d_H(F(t, 0), F(t, \int_{-1}^1 G(t, s)u(s)ds)) \\ &\leq L(t)(1 + G_0 \int_{-1}^1 |u(s)|ds), \end{aligned}$$

which shows that $\phi \in L^1(I, \mathbb{R})$ and $T(u)$ is nonempty.

On the other hand, the set $T(u)$ is also closed. Indeed, if $\phi_n \in T(u)$ and $\|\phi_n - \phi\|_1 \rightarrow 0$ then we can pass to a subsequence ϕ_{n_k} such that $\phi_{n_k}(t) \rightarrow \phi(t)$ for a.e. $t \in I$, and we find that $\phi \in T(u)$.

We show next that $T(\cdot)$ is a contraction on $L^1(I, \mathbb{R})$.

Let $u, v \in L^1(I, \mathbb{R})$ be given and $\phi \in T(u)$. Consider the following set-valued map:

$$H(t) = M_v(t) \cap \{x \in \mathbb{R}; |\phi(t) - x| \leq L(t) \int_{-1}^1 G(t, s)(u(s) - v(s))ds\}.$$

From Proposition III.4 in [3], $H(\cdot)$ is measurable and from Hypothesis 2.3 ii) $H(\cdot)$ has nonempty closed values. Therefore, there exists $\psi(\cdot)$ a measurable selection of $H(\cdot)$. It follows that $\psi \in T(v)$ and according with the definition of the norm we have

$$\begin{aligned} \|\phi - \psi\|_1 &= \int_{-1}^1 |\phi(t) - \psi(t)|dt \leq \int_{-1}^1 L(t) \left(\int_{-1}^1 |G(t, s)| |u(s) - v(s)|ds \right) dt \\ &= \int_{-1}^1 \left(\int_{-1}^1 L(t) |G(t, s)| dt \right) |u(s) - v(s)| ds \leq G_0 L_0 \|u - v\|_1. \end{aligned}$$

We deduce that

$$d(\phi, T(v)) \leq G_0 L_0 \|u - v\|_1.$$

Replacing u by v we obtain

$$d_H(T(u), T(v)) \leq G_0 L_0 \|u - v\|_1,$$

thus $T(\cdot)$ is a contraction on $L^1(I, \mathbb{R})$.

We consider next the following set-valued maps

$$F_1(t, x) = F(t, x) + q(t)[-1, 1], \quad (t, x) \in I \times \mathbb{R},$$

$$M_u^1(t) = F_1(t, \int_{-1}^1 G(t, s)u(s)ds),$$

$$T_1(u) = \{\psi(\cdot) \in L^1(I, \mathbb{R}); \psi(t) \in M_u^1(t) \text{ a.e. } (I)\}, \quad u(\cdot) \in L^1(I, \mathbb{R}).$$

Obviously, $F_1(.,.)$ satisfies Hypothesis 2.3.

Repeating the previous step of the proof we obtain that T_1 is also a G_0L_0 -contraction on $L^1(I, \mathbb{R})$ with closed nonempty values.

We prove next the following estimate

$$(3.1) \quad d_H(T(u), T_1(u)) \leq \int_{-1}^1 q(t) dt.$$

Let $\phi \in T(u)$ and define

$$H_1(t) = M_u^1(t) \cap \{z \in \mathbb{R}; |\phi(t) - z| \leq q(t)\}.$$

With the same arguments used for the set valued map $H(.)$, we deduce that $H_1(.)$ is measurable with nonempty closed values. Hence let $\psi(.)$ be a measurable selection of $H_1(.)$. It follows that $\psi \in T_1(u)$ and one has

$$\|\phi - \psi\|_1 = \int_{-1}^1 |\phi(t) - \psi(t)| dt \leq \int_{-1}^1 q(t) dt.$$

As above we obtain (3.1).

We apply Proposition 2.1 and we infer that

$$d_H(Fix(T), Fix(T_1)) \leq \frac{1}{1 - G_0L_0} \int_{-1}^1 q(t) dt.$$

Since $v(.) = y'''(.) + k^2y'(.) \in Fix(T_1)$ it follows that for any $\varepsilon > 0$ there exists $u(.) \in Fix(T)$ such that

$$\|v - u\|_1 \leq \frac{1}{1 - G_0L_0} \int_{-1}^1 q(t) dt + \frac{\varepsilon}{G_0}.$$

We define $x(t) = \int_{-1}^1 G(t, s)u(s)ds$, $t \in I$ and we have

$$|x(t) - y(t)| \leq \int_{-1}^1 |G(t, s)| \cdot |u(s) - v(s)| ds \leq \frac{G_0}{1 - G_0L_0} \int_{-1}^1 q(t) dt + \varepsilon$$

which completes the proof.

REMARK 3.3. The assumption in Theorem 3.2 is satisfied, in particular, for $y(.) = 0$ and therefore, via Hypothesis 2.3, with $q(.) = L(.)$. In this case, Theorem 3.1 provides an existence result for problem (1.1) together with a priori bounds for the solution.

References

[1] G. Bartuzel, A. Frysztkowski, *Filippov Lemma for certain differential inclusion of third order*, Demonstratio Math. 41 (2008), 337–352.

- [2] A. Bressan, A. Cellina, A. Fryszkowski, *A class of absolute retracts in spaces of integrable functions*, Proc. Amer. Math. Soc. 112 (1991), 413–418.
- [3] C. Castaing, M. Valadier, *Convex Analysis and Measurable Multifunctions*, Springer, Berlin, 1977.
- [4] A. Cernea, *Existence for nonconvex integral inclusions via fixed points*, Arch. Math. (Brno) 39 (2003), 293–298.
- [5] A. Cernea, *An existence theorem for some nonconvex hyperbolic differential inclusions*, Mathematica (Cluj) 45 (68) (2003), 121–126.
- [6] A. Cernea, *An existence result for nonlinear integrodifferential inclusions*, Comm. Appl. Nonlinear Anal. 14 (2007), 17–24.
- [7] A. Cernea, *On the existence of solutions for a higher order differential inclusion without convexity*, Electron. J. Qual. Theory Differential Equations 8 (2007), 1–8.
- [8] A. Cernea, *On the existence of mild solutions of a nonconvex evolution inclusion*, Math. Commun. 13 (2008), 107–114.
- [9] A. Cernea, *An existence result for a Fredholm-type integral inclusion*, Fixed Point Theory 9 (2008), 441–447.
- [10] H. Covitz, S. B. Nadler jr., *Multivalued contraction mapping in generalized metric spaces*, Israel J. Math. 8 (1970), 5–11.
- [11] Z. Kannai, P. Tallos, *Stability of solution sets of differential inclusions*, Acta Sci. Math. (Szeged) 61 (1995), 197–207.
- [12] T. C. Lim, *On fixed point stability for set valued contractive mappings with applications to generalized differential equations*, J. Math. Anal. Appl. 110 (1985), 436–441.
- [13] P. Tallos, *A Filippov-Gronwall type inequality in infinite dimensional space*, Pure Math. Appl. 5 (1994), 355–362.

FACULTY OF MATHEMATICS AND INFORMATICS
 UNIVERSITY OF BUCHAREST
 Academiei 14
 010014 BUCHAREST, ROMANIA
 E-mail: acernea@fmi.unibuc.ro

Received October 1, 2008; revised version March 25, 2009.