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UNIVALENT HARMONIC MAPPINGS
WITH TWO PREASSIGNED VALUES

Abstract. In this paper we consider a class H*(a) of normalized harmonic functions
which map the unit disk onto starlike domains. We give necessary and sufficient condition
for f € H*(a), distortion bounds and extreme points. We partially solve the problem of
the Koebe set for H*(a). We also consider the Schild’s Conjecture for the class TH* of
harmonic mappings.

In 1984 J. Clunie and T. Sheil-Small (|2]) initiated a systematic study of
univalent sense-preserving and harmonic mappings of the unit disk D = {z :
|z] < 1}. Such mappings can be written in the form

f(2) = h(z) + 9(2)

where h, g are analytic in D and

o0 e ¢]
h(z) = Zanz", 9(z) = Z bp2".
n=1 n=1

If in addition A'(0) = 1, ¢’(0) = 0 then such functions form a compact
family usually denoted by SH?. Various extremal questions within the class
SH? have been considered and solved. Moreover, some interesting problems
remain open. The theory being developed along the line similar to that of
the geometric function theory.

There exists a relatively rich literature concerning functions F' holomor-
phic and univalent in I} that satisfy the so called Montel normalization, i.e.
F(0) = 0, F(a) = a for a given a, 0 < |a| < 1, while harmonic mappings
subject to the Montel type normalization have not been considered.

Let H(a) denote the class of functions F' harmonic, sense-preserving and
univalent in the unit disk D = {z : |z| < 1} that have the form
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0o oo
F(z) = Z anz™ + Z bp 2™
n=1 n=2

and satisfy the condition F(a) = a for a fixed a, 0 < |a| < 1. It is easy to
see that

F(z) = ai(F) - G(2),
where G(z) € SHO. It follows that a; = % and in view of the known

bounds on |G(a)| (see [3], p. 81) we conclude that the class H(a) is compact.
Suppose that a function f is of the form

[0 @] [0 @]
(1) f(2) :a1z+2anzn+25nfn, zeD
n=2 n=2
and the condition
x
(2) Zn(|an| + [bn|) < la
n=2

is satisfied. Then ([1]) f is univalent sense-preserving harmonic mapping of
D onto a domain starlike with respect to the origin. If in addition —a, > 0,
—bp, > 0, for n > 2 then (2) is also necessary for univalence and starlikness
of f.

In this note we shall be concerned with a class H*(a) that consists of those
harmonic functions that for a given a, 0 < |a] < 1 satisfy the conditions

oo
(3) fla)=a, > n(an+by)<as, an>0,b,>0
n=2
we shall discuss covering properties and extend a result due to Z. Lewando-

wski ([5]).
Using (3) we see that

flz)y= <1 + i(an + bn)a”_l)z - i anz" — Z by Z"
n=2 n=2 n=2

oo o0
=z— Z an(z" —a" " 12) — an(E" —a"12).
n=2 n=2
Hence H*(a) is the class of functions of the form
o0 [e o}
f(z)=2- Zan(z" —a"l2) - Z bp(Z" — a™12)
n=2 n=2

that are harmonic univalent and sense preserving in the unit disc I and
satisfy (3).
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We give a condition that characterizes the class H*(a). It is established
by our next theorem.

THEOREM 1. For

o0 o0
zy=2z-— Z an(2" — a™12) - Z b (Z" — a"12),
n=2 n=2

f € H*(a) if and only z}

Z(an +b)(m—a™ ) <1,

n=2

o0 o0
Proof. Let f(z) = a1z — ) apz™ — > by2z" satisfies f(a) = a. Hence we
o0

[o o)
have 1 = a; — Y (an + b, )a™ L. Combining this and 0 < a3 — 3" n(a, +b,)
n=2 n=2
together we obtain

oo o0
-1<a; — Z(an +by)n—ag + Z(an + by )a™ !

n=2 n=2
and finally

o0

D (an+b)(n—a™t) < L.

n=2

This completes the proof. =

Let us show that the class H*(a) is convex. To see that, let us suppose
that a € [0,1] is fixed and f1(2), fa(z) belong to H*(a) where

fi(z)=z— i an(2" —a™12) — ibn(?’ —a"12),
n=2

fa(2) = z—Za;(zn Zb’ (z" —a™12).
n=2

Then the function
fa(2) —afl(z)+(1— @) fa(2)
—Z—Z Aan+ (1= Nal) (2" —a™12) — Z/\b + (1= 2 (E" 12)

n=2

satlsﬁes fa(a) = g and

Z(n —a" M (Aap + (1 = Nal, + Ao + (1 = A)b) < 1.



714 M. Gregorczyk

Recall that a function is an extremal point of a family H*(a) if and only
if it can’t be written as a proper convex combination of different functions
which belong to H*(a).

We now determine extreme points for H*(a).

THEOREM 2. The extreme points of H*(a) are h1(z) = z and functions of

the form hn(z) = —S=r2 — n—#rz or gn(z) = —m=12 — 7= a" tz" for

n=23,....

Proof. Let hi(z) = 2, hn(2) = ;—s=r2 — n_aln_rz" and g,(2) = P
1

ran-_—ffn for n > 2. We show that every convex combination of functions

o0
of the form A1h1(z) + Y (Anhn(2) + Yngn(2)) where Ap, 7, > 0, n > 2 and

n=2
[o.°]
A1 =1—= Y (An+ ) > 0is a function from the family H*(a). Let
n=2

£(2) = Mba(2 +Z(Ah ) + Yngn(2))
zz—zZ)\n—zZ'yn
1 1,
+Z[ ( _gn1” n_an—lzn>+7"(n_zn—1z_n_an—1z )]

> 1

:Z“ZM#—Z*REE—T”
+ZZ’YR _ Z'Ynn ar— 1

1
— -1 n _ n—1
=z— E An e ——— (2" —a""z) - E fyn—-——n_an_l(z" a"" " z).

Hence we have

i(an +bp)(n —a™Y) = i (n _A;’n_l - _7;’”_1> (n—a" Y

n=2 n=2

and f(z) € H*(a). Conversely if f € H*(a) then a, < ——— and by,

# Let Ay = an(n —a™), Yp = bu(n —a™ 1), n > 2 and A =

IA
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o]
1= 3 (An +7n). Then

n=2
o0 oo
2)=2z— ap(z" —a’ "z)— nlZ —a z
f(2) Y an(zt = a"2) = ) ba(3t —a2)
n=2 n=2
o A [o o]

n -1
:z—nzz————n_an_l(z"—a z) X_:n—a" - (Z" —a""2)
_Z/\1+ZZ)‘ an—1 T2 Z,y" _

= 7
't} n —
_Zn_an—1zn_zn_an—1zn
n=2 n=2

o0
7 1
:z)\l—i-Z)\n(n_an_lz—n_an_lzn>
> T =t
T2 —1z m_an-1°

n=2

=2\ + Z (/\nhn(z) + ’Yngn(z)) -
n=2

In the sequel we shall need the following

LEMMA. For 0 <a <z <1 there holds

.7}"_1 _ an—l n— an—l

r—a - 2-a
Proof. The inequality can be written in the form
N2 —a)+ 2™ -n)-2a""+na <0
for © > a. Denote the left-hand side of this inequality by
o(z) =" 12— a) + (@™ ! — n) — 20" + na.

We find that
¢'(2)=(2—-a)(n—1)(n—2)z"> >0

which shows that ¢(z) is convex for z > a. Since
pla)=a""12—a)+a(@" 1 —n)—2a"" 1+ na=0
it is sufficient to show that ¢(1) < 0. To do this we bring the inequality
e(l)=2—a+a" 1 —n—2a""14+na<0
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to the form
n>—aa=1+(1+a+a2+...+an_2).

It is obvious that the maximal value of the right-hand side is at most n which
ends the proof. m

The class H*(a) does not posses rational symmetry, that is if f(2) €
H*(a) then e'*f(e™**z) ¢ H*(a). It would be interesting to determinate the

so called Koebe set for H*(a) i.e. the set () f(ID). Unfortunately we
feH*(a)
are able to get a partial result only.

THEOREM 3. The Koebe set of H*(a) is a connected set and there holds
the following inclusion

fosul < 7= bo{wiw-al< (12'_‘22} c N f@)

feH*(a)
Proof. If w; € [ f(D) then in view of starlikeness of f the segment [0, w]
is contained in f(ID) for each f € H*(a). It follows, that [0,w] € [ f(D).
Hence, the set [ f(D) is connected and starshaped with respect to the origin.
Observe that

o0 o0 o0 oo
lf(z)| = ’z — Z anz"™ + Z ana™ tz — Z bpz" + Z bnan_lz’
‘n=2 n=2 n=2 n=2

[oe] [o0] (e e] [o ]
> |z] (1 + Zanan_1 + Z bpa™ ! — Zan|z|"_1 - anlzln_l)
n=2 n=2 n=2 n=2
oo [e ]
— || (1 +3 (an +ba)a™ ! = S (an + bn)|z|"'1).
n=2 n=2
Taking z = €* for 0 < 6 < 20 and applying the lemma with z = 1 we get
oo
£ 2 1= (an+b)(1—a")
n=2
1-a\ & l-a 1
>1— —a" ) >1- = .
>1 (2_a)2(an+bn)(n a" ) > 5 2" 5_g

n=2

Next

F2) =l = |(z = &) = > an(z" — 0" 12)

n=2

[o o] oo o0 0
+ Z bra™ lz — Z bpa”™ + Z bpa”™ — Z bz"
n=2 n=2 n=2 n=2
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o0

4wm_§%wﬂww+§mmuwkgwfwa
>Iz—a](1—zZan — +ana )
—lz— a{('l - z;an(z"—2 4. +av?) +n2=:2bnan-1|)
ILCEERETS

> llel = lall (14 Y bua™ " =213 an(lz"2 4. +a"7?)
n=2 n=2
- ibnﬂzin_l +...+ a"_l)).
n=2

Setting |z| = 1 we get

zZ" —a”

z—a

If(2) —a| > (1—a)(1+2bnan_l Sl tat... +a¥?
n=2

n=2
xR
—an(1+a+...+an‘1))
n=2
oo o0
= (1 —a)(1+ana"—l — Zan(l +a+...+a"_2)
n=2 n=2
o0 o0
S bt +at .. +a"?) —ana"—l) =
n=2 n=2
o0

(1— a)(l ~ S (an +ba)(A +a+ ...+a"—2))

n=2
S0 e )
00 n—1

>(1-a) (1 > (an+ bn)%)

> (1) (1= 52— S (an + b)n—a* ) > & —a)”
n=2

and the result follows. m

N
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Our next theorem gives the distortion bounds for f € H*(a).
THEOREM 4. If f(z) € H*(a), then
@ 2 lzl,  for |2 <a,

1
P, for |24,

[f(2)l =

2—alzl_2

2 1
PO < —lel+ g, for |2l <1.

Proof. By the proof of the previous theorem we know that

G 2121 (1+ 3 (@n + br)a™ 1 = (an + b))

n=2 n=2

Since —|z| > —a, hence

)] 2 12l (14 D (0n + br)a™ = D (an + br)a 1) = .
n=2

n=2

For |z| > a using the inequality from the lemma we obtain

)2 21 (1 = Y (an + ba) (12" = am )

n=2

> 2| (1 - ‘2—‘_‘—2( +ba)(n — a"-l))

|z| — a 2 1 9
> ~ - — |22
= ‘Z‘(l 20 ) T3 ol 7o

Equality holds for functions f(z) = z, fa(z) = 2;:22 and go(z) = 2;:5
and positive values of z.

2

To obtain the last inequality we use the triangle inequality and few easy
facts. This completes the proof. m

Now we determine the maximal value of the modulus on the unit circle.

THEOREM 5. If f(z) € H*(a), then

max | f(2)| = —

2—eit 2—a
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Proof. Setting z = e¥ for f(z) € H*(a) we obtain

o0
FE <1+ anl
n=2

mnf _ an—lew, (n B an—l)

n—an1!

0 —inf n—~1_i0
e —a"le -
+E bn‘ T |(n—a" )
n=2

<1+

Zan(l +a" YHY(n-a")
=2

n

—a
1 O
g bl ) —a

14 a l1+a 3
< - —a" <1 = )
_1+2—a (an+bn)(n . )_ +2—a 2—a

n=2
2z—22 _ 2z—32

Equality holds for functions f(z) = %=2- and g2(2) = 5==. =

In 1956 Z. Lewandowski ([5]) considered the class A consisting of all
polynomials of the form

N
fz)=2z— Zanzn, an >0
n=2

that satisfy the condition

N
Z na, = 1.
n=2

He proved the following

THEOREM 6. Let dy and d* denote radii of largest disks centered at the
origin covered by images of circles |z| < ro, where rg is the radius of convezity
of function f(z) € A, and |z| < 1, respectively, then for each f(z) € A there
holds

do _ 3

=~ > =

dat — 4
and the constant is best possible.

In this way he settled a conjecture of A. Schild ([6]). A few years later
Gray and Schild ([4]) gave a new and much shorter proof of this conjecture.
H. Silverman ([7]) remarked that the above statement is valid for the whole
class of functions having the above form and satisfying the condition

[ 0]
z na, < 1.
n=2

Here we extend this for a class of harmonic mappings.
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Let TH* denote the class of harmonic mappings of the form

f(z)=2z— ianz" - ibn?‘
n=2 n=2

that satisfy the conditions a,, b, > 0, by = 0. Suppose that f(z) satisfies

o0

(4) > n(an+by) < 1.

n=2

They are univalent in D, not univalent in any larger disk centered at z = 0
and they map the unit disk onto domains starlike with respect to the origin.
For such functions we have

[o o] [0 @]
1f(2)| = ‘z -3 an =Y bz
n=2 n=2

and

> |2 = Y anlz” = D bal2™ = f(]2])
n=2 n=2

do = f(r) — f(0) = f(r),
d* = f(1) - £(0) = f(1),
where r satisfy the equality

% (arg (%f (rew)>>

o) i o0 .
— 3 apr™n(n — 1)e*"V8 — 3 porn(n 4 1)et 18
=Re | 14+ "= = = 0.
r— 5 aprinein-10 4 3 p, prpe—i(n+1)0

n=2 n=2

For 8 = 0 we have

o0 oo
- Zz apr™n(n —1) — Zz bpr"n(n + 1)
1+ —= 5 — = 0.
rT— Y apr*n+ Y. byrn

This is equivalent to

[o o] o0 o0 oo
r— Z anT"n + Z bpr"n — Z an™(n? —n) — Z bar™(n® 4+ n) = 0.
n=2 n=2 n=2 n=2

Hence
o0

(5) Z(an + bp)n?rml =1

n=2
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We prove the Schild’s Conjecture for the family of harmonic mappings.
Therefore for f € TH*,

do_ J(r) _ 7= alon tba)r" 3

M) 1oy antby) 4
Since expressions in the nominator and the denominator are positive, the
inequality %9 > % is equivalent to

(6) ®({an}, {ba},m) =47 =4 (an +ba)r™ =3 +3 (an +bn) 2 0.

n=2 n=2

In view of (4) and (5), if the function ¢ is nonnegative, then %2 > 3. Because

¢ is increasing with respect to the variable r and the radius of convexity for

the family TH* equals 3, it is sufficient to justify (6) for r € [3,1). Forr = &

we have
1 2 n\" >
o0
=3Z (an + bn) 4Z(an+b < ) - L
n=2
Due to
00 n—1
Z(an + by )n? <§) =1,
n=2
we have

()—3Z(an+bn)—42(an+b () Z(an+b <)n_1
S (2 ()
Bl Q) )

Since an + bp, > 0 and 3 — (3)" (4 +2n%) > 0 for n > 2 ([4]) we conclude
that ¢ ( ) > 0 which ends the proof.
The extremal functions of the class TH* is the family of functions

1 1
f*(2) =z — ag2? — (5 —a2) 22, 0<ay< 7

Notice that for a; = 0 we get f*(z) =2z— %72 and for ay = % we have

fz)=2— —22 It is obvious that —Q = 3 for f*(2).
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