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AN EMBEDDING THEOREM FOR UNBOUNDED CONVEX 
SETS IN A BANACH SPACE 

A b s t r a c t . Let V be a closed convex cone and Cv be a space of nonempty closed 
convex subsets of a Banach space such tha t their Hausdorff distance form the cone V 
is finite. In this paper we embed the space CV isometrically and isomorphically into a 
Banach space. 

1. Introduction 
The aim of this paper is to obtain an embedding theorem for a certain 

class of closed convex subsets of a Banach space. Since that class does not 
have a linear space structure, embedding theorem is a method of defining 
differentiation and integration of multivalued functions with both bounded 
and unbounded images. 

In 1952 Radstrom [2] showed embedding theorem for a class of closed 
convex bounded subsets of a normed space. Before we recall this theorem 
let us quote the following definition. 

D E F I N I T I O N 1. Commutative semigroup S with zero is called an abstract 
cone if there is a bilinear mapping 

m : R + x S 3 (A, s) A • s G S, 

such that 1 • s = s Vs e S. 

T H E O R E M 1. [2] Let S be an abstract convex cone with cancellation law. 
Let d be a metric on S such that: 

1. Vx,y,z € S : d(x + z,y + z) = d(x,y); 
2. Vx, y £ S, O 0 d(sx,sy) = sd(x,y); 
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3. balls {x : d(x, 0) < e} are absorbing. 

Then S can be embedded isometrically and isomorphically as a convex cone 
into a normed space. 

Obviously a class of closed convex bounded subsets of a normed space is 
an abstract convex cone. 

Drewnowski [1] generalized this theorem for locally convex spaces and 
Urbanski [5] for topological-linear spaces. 

However the class of nonempty closed convex subsets of a Banach space 
cannot be embeded into a Banach space. Indeed assume there is an injective 
embedding / . A nonempty closed convex cone K ^ {0} is an element of 
this class and K + K = K. Hence f ( K ) = f ( K ) + f ( K ) ± 0. Then there 
must be an inverse element I of f(K). It follows f(K) = f ( K ) + f ( K ) +1 ~ 
f ( K ) + I = 0, a contradiction. 

Although a class of closed convex subsets of a normed space is not a 
linear space nor can it be embedded into a linear space, there are subclasses 
for which the embedding theorems occur. In 1973 Robinson [3, Theorem 3] 
showed that the class of closed unbounded convex subsets of Mn sharing the 
same recession cone and endowed with the Hausdorff distance d can be em-
bedded isometrically into a real vector space. An embedding into a normed 
linear space was not possible, because of the lack of continuity of nonnegative 
scalar multiplication [3, Theorem 2], To eliminate this disadvantage Robin-
son introduced a subclass Cy consisting of all nonempty closed unbounded 
convex subsets of R n such that their Hausdorff distance form the cone V is 
finite. Prom [3, Theorem 3] it follows: 

THEOREM. The class Cy, metrized by d, can be embedded isometrically as 
a convex cone in a normed linear space. 

S. Robinson proved this theorem using finite dimensional methods. In 
this paper we generalize his result to infinite dimensional Banach spaces 
using linear functionals. The main tools are lemmas 2 and 3. 

This article is organized as follows. First we introduce a space Cy as 
a class of nonempty closed convex subset of a Banach space, having finite 
distance from a certain convex cone. This space endowed with Hausdorff 
distance is a complete metric space. Next we define operations, addition of 
two element of Cy and multiplication of an element of Cy by a nonnegative 
scalar. Subsequently we prove that the cancellation law, metric's positive 
homogeneity and invariance under translation holds. As a consequence, we 
are finally able to embed Cy isometrically and isomorphically as a cone into 
a Banach space. 
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2. Properties of the space Cy 
Let X be a Banach space with the norm || • ||, V a closed convex cone 

in X (where by a cone we understand a subset of X such that ax G X for 
x G V, a G M+). By d we understand a metric on X generated by the norm 
|| • ||. Let A, B be nonempty closed convex subsets of X. By Ar we denote 
{x e X : d(x, A) ^ r}. We define 

p(A,B) := inf{r : A c Br}. 
Now we can recall the definition of a Hausdorff distance [3] 

dH(A, B) := max{p(A, B),p(B, A)}. 
By Cy we understand the class of all nonempty closed convex subsets 

of X such that their Hausdorff distance form V is finite. The space Cy 
endowed with the Hausdorff distance is a complete metric space. 

The following operations in Cy are well-known: 
V Wi, W2 G Cy : Wi + W2 := cl{wi + w2 : W\ G Wi, w2 G W2}, 

V a > 0, W G Cy : a • W := {aw : w G W}. 
If a = 0 then we additionally define 

a-W :=V. 
We see that (Cy , +), with cone V as an zero element, is an abstract con-

vex cone. One can easily verify that the scalar multiplication is continuous, 
see for example [3, Theorem 2], 

We denote by V' the family of all £ G X' = {£ : X M : C linear and 
continuous } such that sup{£(t;) : v G V} < oo. 

For £ G V' and W G Cy we define 
: = s u p { £ H : w G W}. 

Observe that = 0. 
L E M M A 1 . Let W, Wlt W2 eCv, £ G V', a ^ 0. Then 

t(w1+w2)=ti(wl)+aw2) 
and 

Z{a-W) = a-£(W). 
Proof. 1. First we prove that + W2) = + £(W2)-

+ W2) = sup{£(x) : x — w\ + w2, G W\,w2 G W2) 
= sup{£(u;i + w2) : w\ G W\, w2 G W2} 
=- sup{£(u;i) + £{w2) : Wi G W\, w2 G W2} 

: w\ G W\} + sup{^(ii;2) : w2 G W2} 
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The fact that £ is continuous implies 

sup{£(:r) :xeW1 + W2} = sup{£(x) : x G W\ + W2). 

We have proven that 

+ W2) = ZiWi + W2) = + £(W2). 

2. Now we will show that £(a • W) = a • If a > 0 then: 

£(a • W) = sup{£(ax) : x G W} = sup{a • £(x) : x € W} = a • £(W). 

If a = 0 then: 
£(a • W) = £(V) = 0 = a • -

Now we want to show that the cancellation law holds for addition of 
elements of Cy • We need the following lemma. 

L E M M A 2 . Let W\, W2 G Cy. Then W1 c W2 iff 

iiWiXOT for all ^eV'. 

As a consequence W\ = W2 iff 

£(WI) = £(W2) for all £ € V'. 

Proof. (=>) Obviously 

sup{£( : r ) : x G W{\ s u p { £ ( x ) : x G W2} for al l £ 6 V'. 

(-4=) Suppose that W\ ^ W2. Then there is a point xq G W\ such that 
xo ^ W2. We know that W2 is convex and closed whereas {xo} is convex 
and compact. Then, by the geometric version of Hahn-Banach Theorem [4, 
Theorem 3.4] there exists ( e l ' such that 

sup{C(y) : y G W2} < C(x0). 
The above ineqality implies that sup{£(y) : y G V} < oo so £ G V'. There-
fore 

C(w2) = sup{C(y) : y G W2] < C(x 0 ) < sup{C(y) : V G Wx} = C(Wi). 

We have a contradiction. • 

As a consequence we obtain. 

PROPOSITION 1. Lei Wi, W2, Vi, V2 G Cy, V2 c Fi. / /Wi + Vi c W2+F2 
then 

W i C W 2 . 

Proof. Let £ e V'. Then 

+ = + ^i) ^ aw2 + v2) = e (w 2 )+£(F 2 ) . 
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Since £( V2) ^ £(Vi), we have that 

- £(w2) < Ç(V2) - £(Vi) < 0. 

Thus W1CW2. m 

The cancellation law is a particular case of the last result. 

P R O P O S I T I O N 2 (Cancellation law). IfWi + W = W2 + W, then 

Wi = W2. 

The next proposition states that Hausdorff metric is invariant under 
translation. First we have to prove the following lemma. 

L E M M A 3 . Let W\,W2eCv. Then 

dH{Wu W2) = sup {| - £(W2)| :ÇeV', ||£|| = !}• 

Proof. We first show that 

(1) dff(Wi, W2) > sup - : t e V ' , IICII = 1}. 

Let dn(Wi,W2) — r. By the definition of Hausdorff metric we have that 

Wi C (W2)r W2 C (Wi)r. 

Then, for £ G X', such that ||£|| = 1, we can estimate the value of £((W2)r), 
by the following 

e((W2)r) = sup {£(«; + rv):we W2, ||v|| ^ 1} 
sC s u p { £ H : w G W2} + r • sup{£(t;) : ||v|| < 1} = £(W2) + r. 

Thus 
- i{W2) < Ç({W2)r) ~ < r . 

Similarly we can prove that 

£(W2) - < r. 

As a consequence we get 

\aWi) - £(W2)| < r for all £ G V', ||£|| = 1, 

which yields (1). 
To prove the opposite inequality let e > 0 be arbitrary. Let w G W2 be 

such that 
d(w,W!) > dH(WuW2) - e. 

We denote s := d(w, W\). Then by the geometric version of Hahn-Banach 
Theorem [4, Theorem 3.4] we have that there exists a nontrivial functional 
£ G X', such that 

sup{£(x) : x G W\} ^ inf{£(?/) : y e K(w,s)}. 
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The above ineqality implies that sup{£(y) : y G V} < oo so £ G V'. We 
denote 

C(x) := f o r a11 x e X -

Then functional £ G F ' is of norm 1 and 

sup{((x) : x G Wi} ^ inf{C(y) : y G K(w, s ) } = ((w) - s. 

Thus 

dH(Wx, C H - sup{C(x) : x G W i } 

< sup{C(y) : y G W2} — sup{C(x) : 2 G W\} 

= C(w1)-c(w2). 

By letting e converge to 0 we obtain that 

dH{WuW2) < C(Wi) - C(^2). 

Similarly we can prove that 

df f (Wi,W2 ) <C (W2 ) -C (W i ) . 

Therefore 

Finally 
dH(WlfW2) < sup mW!) - £(W2)| :£eV', ||£|| = 1}. -

As a simple consequence of the previous lemma we obtain Hausdorff 
metric's invariance. 

PROPOSITION 3. Let W, Vi, V2 eCv. Then 

dH(V1 + W, V2 + W) = dH(Vy,V2). 

Additionally, by the previous lemma, we have these propositions 

PROPOSITION 4. Let W\, W2 G Cy, a > 0. Then 

dH{a •W1,a-W2) = a- dH(Wi, W2). 

PROPOSITION 5. Let Wi, W2, Vi, V2 eCv. Then 

dH(Wi + Vi, W2 + V2) ^ dH(Wi, W2) + dH(VUV2). 

Proof. We have 

dH(Wu W2) + d{\i, V2) = dH(W1 + VUW2 + Vi) + dH{V1 + W2, V2 + W2) 

>dH{Wi + VuW2 + V2). • 



Unbounded convex sets in a Banach space 709 

To summarize: 

R E M A R K 1. Cy is a complete metric space; Cy is a commutative semigroup 
with cancellation law, V is a zero element; Hausdorff metric du is positively 
homogeneous and invariant under translation. 

By the formerly mentioned result, we obtain the following 

T H E O R E M 2 . Let X be a Banach space, V a closed convex cone in X, dn 
a Hausdorff distance. Let 

Cy = {A C X : A nonempty closed and convex, dn(A, V) < oo}. 

Then Cy can be embedded isometrically and isomorphically as a closed 
convex cone into a Banach space. 
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