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AN EMBEDDING THEOREM FOR UNBOUNDED CONVEX
SETS IN A BANACH SPACE

Abstract. Let V be a closed convex cone and Cy be a space of nonempty closed
convex subsets of a Banach space such that their Hausdorff distance form the cone V
is finite. In this paper we embed the space Cy isometrically and isomorphically into a
Banach space.

1. Introduction

The aim of this paper is to obtain an embedding theorem for a certain
class of closed convex subsets of a Banach space. Since that class does not
have a linear space structure, embedding theorem is a method of defining
differentiation and integration of multivalued functions with both bounded
and unbounded images.

In 1952 Radstrém [2] showed embedding theorem for a class of closed
convex bounded subsets of a normed space. Before we recall this theorem
let us quote the following definition.

DEFINITION 1. Commutative semigroup S with zero is called an abstract
cone if there is a bilinear mapping

m:Ry xS (\s)—>A-s€S8,
such that 1-s=s5Vs e S.

THEOREM 1. [2] Let S be an abstract convexr cone with cancellation law.
Let d be a metric on S such that:

1. Vz,y,2 € S : d(z + z,y + 2) = d(x,y);
2.Vz,ye S, s 20 : d(sz,sy) = sd(z,y);
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3. balls {z : d(z,0) < €} are absorbing.

Then S can be embedded isometrically and isomorphically as a convexr cone
into a normed space.

Obviously a class of closed convex bounded subsets of a normed space is
an abstract convex cone.

Drewnowski [1] generalized this theorem for locally convex spaces and
Urbarski (5] for topological-linear spaces.

However the class of nonempty closed convex subsets of a Banach space
cannot be embeded into a Banach space. Indeed assume there is an injective
embedding f. A nonempty closed convex cone K # {0} is an element of
this class and K + K = K. Hence f(K) = f(K) + f(K) # 0. Then there
must be an inverse element ! of f(K). It follows f(K) = f(K)+ f(K)+1 =
f(K)+1=0, a contradiction.

Although a class of closed convex subsets of a normed space is not a
linear space nor can it be embedded into a linear space, there are subclasses
for which the embedding theorems occur. In 1973 Robinson [3, Theorem 3]
showed that the class of closed unbounded convex subsets of R™ sharing the
same recession cone and endowed with the Hausdorff distance d can be em-
bedded isometrically into a real vector space. An embedding into a normed
linear space was not possible, because of the lack of continuity of nonnegative
scalar multiplication [3, Theorem 2]. To eliminate this disadvantage Robin-
son introduced a subclass Cy consisting of all nonempty closed unbounded
convex subsets of R™ such that their Hausdorff distance form the cone V is
finite. From [3, Theorem 3] it follows:

THEOREM. The class Cy, metrized by d, can be embedded isometrically as
a convex cone in a normed linear space.

S. Robinson proved this theorem using finite dimensional methods. In
this paper we generalize his result to infinite dimensional Banach spaces
using linear functionals. The main tools are lemmas 2 and 3.

This article is organized as follows. First we introduce a space Cy as
a class of nonempty closed convex subset of a Banach space, having finite
distance from a certain convex cone. This space endowed with Hausdorff
distance is a complete metric space. Next we define operations, addition of
two element of Cy and multiplication of an element of Cy by a nonnegative
scalar. Subsequently we prove that the cancellation law, metric’s positive
homogeneity and invariance under translation holds. As a consequence, we
are finally able to embed Cy isometrically and isomorphically as a cone into
a Banach space.
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2. Properties of the space Cy

Let X be a Banach space with the norm || - ||, V a closed convex cone
in X (where by a cone we understand a subset of X such that az € X for
z €V, a€Ry). By d we understand a metric on X generated by the norm
|l - || Let A, B be nonempty closed convex subsets of X. By A, we denote
{z € X : d(z, A) < r}. We define

p(A,B) :=inf{r: A C B,}.
Now we can recall the definition of a Hausdorff distance [3]
du (A, B) := max{p(A, B), p(B, A)}.

By Cv we understand the class of all nonempty closed convex subsets
of X such that their Hausdorff distance form V is finite. The space Cy
endowed with the Hausdorff distance is a complete metric space.

The following operations in Cy are well-known:

VW, WoeCy: W, + Wo = cl{w1 +we:wy € Wh,wy € Wz},
Va>0, Wely:a-W:={ow: we W}
If @ = 0 then we additionally define
a-W:=V.

We see that (Cy, +), with cone V as an zero element, is an abstract con-
vex cone. One can easily verify that the scalar multiplication is continuous,
see for example [3, Theorem 2].

We denote by V' the family of all £ € X’ = {¢ : X — R : ( linear and

continuous } such that sup{¢(v) :v € V} < oo.
For £ € V/ and W € Cy we define

E(W) :=sup{&(w) : w e W}.
Observe that £(V) = 0.
LEMMA 1. Let W, Wy, Wo € Cy, £ € V', a > 0. Then
(W1 + Wa) = E(Wh) + ¢(Wa)
and
fla- W) =a-{W).
Proof. 1. First we prove that {(W; + W2) = £(W)) + £(Wa).
E(Wl + W2) = Sup{f(.’L‘) X =wy + we,wy € Wi, wy € W2}
= sup{&(w1 + w2) : w1 € Wy, wp € W}
= sup{&(w1) + &£(we) : w1 € Wy, we € Wa}
= sup{{(w1) : w1 € Wh} + sup{{(ws) : wp € Wy}
= {(W1) +&(Wa).
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The fact that £ is continuous implies
sup{{(z) : ¢ € W1 + Wa} = sup{&(z) : z € W1 + Wa}.
We have proven that
E(Wh + W2) = E(W1 + W2) = £(Wh) + E(Wa).

2. Now we will show that {(a- W) = a - &(W). If a > 0 then:

€(a- W) =sup{{(az):z € W} =sup{a-&(z) :z € W} =a-  &W).
If o = 0 then:

fla-W)=¢V)=0=a-{(W). =

Now we want to show that the cancellation law holds for addition of
elements of Cy. We need the following lemma.

LEMMA 2. Let Wy, Wy € Cy. Then W1 C Wy iff
E(W1) < E(Wa) for all€ € V'
As a consequence W1 = Wa iff
EWh) =EWs) forallé e V',
Proof. (=) Obviously
sup{é(z) : x € W1} < sup{é(z) : x € Wa} for all £ € V.

(<) Suppose that Wi ¢ Wa. Then there is a point zo € Wi such that
zo ¢ Wa. We know that Wy is convex and closed whereas {z¢} is convex
and compact. Then, by the geometric version of Hahn—-Banach Theorem 4,
Theorem 3.4| there exists ¢ € X’ such that

sup{((y) : y € Wa} < {(z0)-

The above ineqality implies that sup{{(y) : y € V} < o0 so ¢ € V'. There-
fore

((W2) = sup{¢(y) : y € Wa} < {(z0) < sup{((y) : y € W1} = ((W).
We have a contradiction. m
As a consequence we obtain.

PROPOSITION 1. Let Wy, Wy, Vi, Vo € Cy, Vo C V1. If W1+ V1 C Wa+ V1,
then
Wy, Cc Ws.

Proof. Let £ € V'. Then
(W) +&(V1) = (W1 + V1) < E(Wa + Vo) = §(W2) + £(Va).
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Since £(V2) < £(V1), we have that
§(W1) — £(W2) < &(Va) — €(V1) 0.
Thus W7 C Ws. u
The cancellation law is a particular case of the last result.
PROPOSITION 2 (Cancellation law). If W, + W = Wy + W, then
Wy = Ws.

The next proposition states that Hausdorff metric is invariant under
translation. First we have to prove the following lemma.

LEMMA 3. Let Wi, Wy € Cy. Then

dig (W1, Wa) = sup {|{(Wh) —E(Wa)|: £ € V7, |l¢]l = 1}
Proof. We first show that
(1) dgr(Wh, Wa) > sup {|E(W1) — E(Wa)| : £ e V7, ||¢]| = 1}.
Let dg (W1, Ws) = r. By the definition of Hausdorff metric we have that

Wi C (Wg)r Wy C (Wl)r-
Then, for £ € X', such that ||¢]| = 1, we can estimate the value of £((W?2),),
by the following
E((W2)r) = sup{{(w +rv) : w € Wy, [lv|| < 1}
< sup{§(w) : w € Wa} +r-sup{€(v) : |jv]| < 1} = §(Wa) + 1.
Thus
E(Wh) — E(W2) < §((Wa)r) — E(Wa) <.

Similarly we can prove that
§(Wa) — (W) <.
As a consequence we get
[E(W1) — E(Wa)| < rforall§ € V', €]l =1,

which yields (1).
To prove the opposite inequality let € > 0 be arbitrary. Let w € W5 be
such that
d(w, W1) = dg (W1, Ws) —«.

We denote s := d(w, W;). Then by the geometric version of Hahn—Banach
Theorem [4, Theorem 3.4] we have that there exists a nontrivial functional
& € X', such that

sup{é(z) : z € W1} < inf{é(y) : y € K(w, s)}.
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The above ineqality implies that sup{{(y) : y € V} < 00 s0 £ € V'. We
denote

1
((z) = G

Then functional ¢ € V' is of norm 1 and

sup{¢(z) : z € W1} < inf{{(y) : y € K(w,s)} = ((w) — s.

&(z) forallz e X.

Thus
da (Wi, Wp) — e < s < {(w) — sup{¢(z) : ¢ € W1}
<

sup{¢(y) : y € Wa} —sup{({(z) : z € W1}
= ((W1) — ((Wa).
By letting e converge to 0 we obtain that
du (W1, Wa) < ((Wh) — ((W2).
Similarly we can prove that
du (W1, W2) < (W) — ((Wh).

Therefore
dp(Wh, Wa) < [((W1) — (W)

Finally
dr (W1, Wa) <sup {[§(W1) —§(W)|: €€ V', i€l =1} =

As a simple consequence of the previous lemma we obtain Hausdorff
metric’s invariance.

ProroOSITION 3. Let W, Vi, Vo € Cy. Then
de(Vi + W, Vo + W) = du(W, Va).
Additionally, by the previous lemma, we have these propositions
PRoOPOSITION 4. Let Wi, Wo € Cy, a > 0. Then
da(a-Wi,a- W) = a - dg(Wy, Wa).
PROPOSITION 5. Let Wi, W, Vi, Vo € Cy. Then
dg (W1 + Vi, Wa + Va) < dg(W1, Wa) + dg (V1, Va).

Proof. We have
dg (Wi, W) +d(V1, Va) = dg (W1 + Vi, Wa + V1) + da (Vi + Wa, Vo + W)

2dg(Wh +V,Wa+V3). =
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To summarize:

REMARK 1. Cy is a complete metric space; Cy is a commutative semigroup
with cancellation law, V is a zero element; Hausdorff metric dy is positively
homogeneous and invariant under translation.

By the formerly mentioned result, we obtain the following

THEOREM 2. Let X be a Banach space, V a closed convex cone in X, dy
a Hausdorff distance. Let

Cv ={A C X : A nonempty closed and convez, dp(A,V) < oo}.

Then Cy can be embedded 'isometrically and isomorphically as a closed
conver cone into a Banach space.
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