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FREE EXPONENTIAL FAMILIES AS KERNEL FAMILIES 

Abstrac t . Free exponential families have been previously introduced as a special case 
of the ^-exponential family. We show that free exponential families arise also from the 
approach analogous to the definition of exponential families by using the Cauchy-Stieltjes 
kernel 1/(1 — Ox) instead of the exponential kernel exp(0x). We use this approach to 
re-derive some known results and to study further similarities with exponential families 
and reproductive exponential models. 

1. Introduction 
Since the seminal work of Voiculescu [23], there has been a flurry of 

activity on how properties of free convolution f i S u of probability measures 
are similar to and how they differ from properties of classical convolution 
H*u. In particular, free probability analogues of the Central Limit Theorem, 
of the Poisson limit theorem, and the Levy-Khinchin representation of EB-
infinitely divisible laws are now known, see [13]. New additional analogies 
between free and classical probability are developed in [4, 5]. In this paper 
we study a free probability analogue of the concept of exponential family. 

Free exponential families were introduced in [10, Definition 4.1] as part 
of a study of the relations between approximation operators, classical expo-
nential families and their q-deformations. An alternative approach to free 
exponential families which we adopt in this paper emphasizes similarities to 
classical exponential families, and is based on an idea of kernel family intro-
duced in [25]. We show that the two approaches are closely related, and that 
every non-degenerate compactly supported probability measure generates a 
free exponential family, see Theorem 3.1. We then relate variance functions 
of free exponential families to free cumulants. This relation is simpler than 
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the corresponding relation for classical exponential families and is expressed 
by a concise formula. We apply the formula to compute free cumulants 
of the "free gamma" law which were stated without proof in [9], to derive 
simple necessary conditions for a smooth function to be the variance func-
tion of a free exponential family, and to investigate similarities with classical 
dispersion models [15]. 

2. Cauchy-Stieltjes kernel families 
According to Wesolowski [25], the kernel family generated by a kernel 

k(x, 9) consists of the probability measures 

[k(x,9)/L{9)v{dx) : 9 & 0}, 

where L(9) — \k(x,9)v(dx) is the normalizing constant, and v is the gener-
ating measure. 

The theory of exponential families is based on the kernel k(x,9) = edx. 
See, e.g., [15], [16], or [12, Section 2.3]. In this paper, we consider the 
Cauchy-Stieltjes kernel 

= r h i -
DEFINITION 2 . 1 . Suppose v is a compactly supported non-degenerate (i.e. 
not a point mass) probability measure. Let 

The Cauchy-Stieltjes family generated by v is the family of probability mea-
sures 

(2.i) = = 

where O 3 0 is an open set on which M{9) is well defined, strictly positive 
and 9 supp(^) C (—oo, 1). (We shall only consider © = (—e,e) with e > 0 
small enough.) 

Our first goal is to show that the Cauchy-Stieltjes family is essentially 
the same concept as the concept of free exponential family introduced in 
[10]. We begin with a suitable reparametrization of /C(zv; 0). 

2.1. Parameterizations by the mean. Prom (2.1) we compute the mean 
m(9) = \ xPg{dx). Since Po — vwe get m(0) = \ xv{dx) = mo and for 9 ^ 0, 
a calculation gives 

/ s ^ M ( e ) ~ 1 

<2-2> m « - -TSW-
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Since M(0) = 1 and M{6) is analytic at 6 = 0, we see that m{6) is analytic 
for |0| small enough. We have 

1 j ~ 62(M(0))2 

Since v is non-degenerate, 

(2 .3 ) M(6) + 0M'(O) - (.M{0)f 

for all \6\ > 0 small enough. Thus the function 0 m{6) is increasing on an 
open interval containing 0. Denoting by tp the inverse function, we are thus 
lead to parametrization of a subset of K{v, 0 ) by the mean, 

(2 .4 ) £ ( i / ; R) = {Qm(dx) = P^m)(dx) : m e R} , 

where R = m(©o), and ©o C © is an appropriate interval with 0 € ©o-
Notice that we refrain from claiming that (2.1) and (2.4) are equivalent: 
we only claim that for any pair of open sets 0 9 0 and R 3 mo, there 
are open sets ©o 3 0 and RQ 3 MO such that C{V] RQ) C K,(V, 0 ) , and 
£(I/;©0) CC{V,R). 

The variance function of the Cauchy-Stieltjes family (2.4) is 

(2 .5 ) V(m) = j ( x - rn)2Qm{dx). 

3. Relation to free exponential families 
The following generalizes slightly [10, Section 4]; note that this definition 

is not constructive: for a given V, the corresponding free exponential family 
may fail to exist, see Example 3.2. 

D E F I N I T I O N 3 . 1 . The free exponential family with variance function V 
generated by a compactly supported measure v with mean mo € (A, B) is a 
family of probability measures 

(3.1) Tmo(V) = { w Mdx) : m e ( A , B ) | . 
[V(m) + (m, — mo)(m — x) J 

The next result shows that Cauchy-Stieltjes kernel families under para-
metrization by the mean are essentially the same as free exponential fam-
ilies, thus providing existence argument for free exponential families. Fur-
thermore, the generating measure u is determined uniquely by mo and the 
variance function F(m); the latter is an analog of the classical uniqueness 
theorem for exponential families, see [15, Theorem 2.11] or [17, Proposi-
tion 2.2], 
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Recall that the Cauchy-Stieltjes transform of a probability measure u is 

(3.2) G„(z) = \ ~^—v(dx). 
J z — X 

If v is compactly supported then Gu is analytic in the neighborhood of 
oo in the complex plane; in particular, compactly supported measures are 
determined uniquely by Gv(z) for large enough real z. 

THEOREM 3.1. Let {PQ : 0 € 0 } be a Cauchy-Stieltjes family (2.1) gener-
ated by a non-degenerate compactly supported measure V with J xv(dx) = TUQ. 
Then there is a neighborhood (A, B) of THQ in which the variance function V 
in (2.5) is analytic, strictly positive, and 

(3.3) P^{m)(dx) = V{m) Mdx), m G (A, B). 
' V(m) + (TO — m o ) ( m — x) 

Conversely, ifV is analytic and strictly positive in a neighborhood of mo, 
and there is a probability measure v with mean mo such that the (positive) 
measures 

(3.4) Qm(dx) = V{m) -v{dx) 
V{m) + (m — m o ) ( m — x) 

are probability measures for all m in a neighborhood of mo, then u is com-
pactly supported, non-degenerate, and is determined uniquely by (3.2) with 

( 3 , ) = 

with z = l/xj){m) = m + V(m)/(m — mo)- In particular, in a perhaps smaller 
neighborhood R of mo, probability measures (3.4) for m € R are included in 
the Cauchy-Stieltjes family (2.4) generated by v. 

Proof. We first calculate the variance v(6) = \ x2Pg{dx) — m?(6) = \x(x — 
mo)Pe(dx) — m(0)(m(Q) — mo). Since 

( {(x-mo)(0x-l) + x-mo , . m{6) - m0 \x(x - mo)P0(dx) =\ e M m _ e x ) = Q . 

we see that for 0 ^ 0 the variance is 

(3.6) v(0) = (m(9) - m0) Q - m(6) 

Since m(9) is analytic at 9 = 0 and m(0) = mo, this shows that that v{9) 
is analytic at 9 = 0. Let V(m) = v(ip(mj) denote the variance function in 
parametrization of (a subset of) /C by the mean; clearly V is an analytic 
function in a neighborhood of m = mo. 
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Now (3.6) implies (m(9) - m0)/v(9) = 0/(1 - 9m(0)) and (2.2) implies 
1 - 9m(9) = l/M(0), so (3.4) is equivalent to 

Q ^ i d x ) = l + {m{e)-x){m{0)-mQ)/v{e)V{dx) 

1 - 9m(9) 1 ~ 6m{0) 
— u(dx) = — •^-Lv[dx) 

6m{0) + (m(d) - x)0 v 7 1 -Ox 

-v(dx) = P$(dx). 
M{9){ 1 - 9x) 

To prove the converse implication, note that for m such that V(m) > 0 
we can re-write \ Qm(dx) = 1 as 

r 1 , , , = m-mo 
*V(m)/(m-mQ) + m-xV^ X ' ~ V(m) 

Thus with 

(3.7) z = m + - i ^ L , 
m — m o 

we get (3.5). Since limm_>m± V(m)/(m — mo) = ±oo, this shows that 
Cauchy-Stieltjes transform Gu(z) is defined for all real z with \z\ large 
enough. This implies that v has compact support, with moments that 
are uniquely determined from the corresponding moment generating func-
tion M(z) = l / z G ( l / z ) for z small enough. (Compactness of support is 
also proved more directly in the proof of Theorem 3.3.) Finally, v is non-
degenerate as its variance is V(mo) > 0. • 

R E M A R K 3 . 1 . Solving equation (3.6) for 9 we see that 
m - m 0 

V}\Til) — . 
m(m — mo) + V(m) 

Thus a necessary condition for V to be a variance function is that m H-• 
m + V(m)/(m — mo) is decreasing in a neighborhood of mo, see (2.3). 

3.1. Free exponential families wi th quadratic variance function. In 
this section we recall [10, Theorem 4.2 ]; since manuscript [10] is available in 
preprint form only and we have already set up all identities needed for the 
proof, we include the argument which is taken from [10]. The corresponding 
result for classical exponential families is [14, Theorem 3.3] and [18, Sec-
tion 4]; the result for ^-exponential families is [10, Theorem 3.2 ]. 

T H E O R E M 3 . 2 . ([10, Theorem 4.2]) Suppose b > - 1 , m 0 = 0. The free 
exponential family with the variance function 

V(m) = 1 + am + bm2 
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consists of probability measures (3.4) with generating measure 

J 4(1 + b) - (x - a)2 

(3.8) u(dx) = 2 7 r ( b x2 + aX + l) ha-2^T+b,a+2VWb)dx+P^ +P2^xa, 

where the discrete part of u is absent except for the following cases: 

(i) i f b = 0,a2> I, then pi = 1 - 1 /a2, x\ = -1 /a, p2 = 0. 

(ii) i f b > 0 and a2 > 4b, then pi = m a x | o , 1 - ^ k ^ a ^ p j , ^ _ Q̂  a m } 

x\ = ± with the sign opposite to the sign of a. 
(iii) if — 1 < b < 0 then there are two atoms at 

—a ± Va2 — 4b \] a2 — 46 +a 
^ = 2 6 — ' = 1 + 2 6 ^ - 4 6 • 

Proof . With mo = 0 a n d V(m) = 1 + am + bm2, equation (3.7) can be 
solved for m, giving 

z 
m = — 

- a - y / ( a - z ) 2 - 4 ( l + b) 

2(1 + 6) 
so (3.5) gives 

a + z + 2bz- J (a - zf - 4 (1 + b) 

<M> G » w = 2 d L • 
This Cauchy-Stieltjes transform corresponds to the free-Meixner law (3.8), 
see [1, 21]. • 

Theorem 3.2 results covers a number of important laws that appeared in 
the literature. Up to a dilation and convolution with a degenerate law ôa 
(i.e. up to "the type") the generating measure u is: 

(i) the Wigner's semicircle (free Gaussian) law if a = b = 0; see [24, Section 
2.5]; 

(ii) the Marchenko-Pastur (free Poisson) type law if b = 0 and a ^ 0; see 
[24, Section 2.7]; 

(iii) the free Pascal (free negative binomial) type law if b > 0 and a2 > 4b: 
see [21, Example 3.6]; 

(iv) the free Gamma type law if b > 0 and a2 = 46; see [9, Proposition 3.6]; 
(v) the free analog of hyperbolic type law if 6 > 0 and a2 < 46; see [1, 

Theorem 4]; 
(vi) the free binomial type law if —1 < 6 < 0; see [21, Example 3.4] and [9, 

Proposition 2.1]. 
The laws in (i)-(v) are infinitely divisible with respect to free additive con-
volution (we recall the definition near (3.17)). In [1, Theorem 4] they appear 
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in connection to martingale polynomials with respect to free Lévy processes; 
free infinite divisibility is analyzed also in [21]; [2] studies further free prob-
ability aspects of this family; in [9, Theorem 3.2] the same laws appear 
as a solution to a quadratic regression problem in free probability; in [11, 
Theorem 4.3] these laws occur in a "classical regression" problem. 

3.2. Free cumulants and variance functions. Recall that if u is a com-
pactly supported measure with the Cauchy-Stieltjes transform Gv, then the 
inverse function Kv{z) = G~l(z) exists for small enough z ^ 0, see [24], The 
/¿-transform is defined as 

The coefficients cn = cn{y) are called free cumulants of measure u, see [22]. 
The following result extends [10, Remark 4.4] and plays a role analogous 

to J0rgensen's theorem [17, Theorem 3.2]. (For the formula connecting clas-
sical cumulants with the variance functions of natural exponential families, 
see [18, (2.10)] or [15, Exercise 2.14].) 

T H E O R E M 3 . 3 . Suppose V is analytic in a neighborhood of mo, V(mo) > 0, 
and v is a probability measure with finite all moments, such that $ xv(dx) = 
mo • Then the following conditions are equivalent. 

(i) v is non-degenerate, compactly supported, and there exists an interval 
(A,B) 3 mo such that (3.1) defines a family of probability measures 
parameterized by the mean with the variance function V. 

(ii) The free cumulants (3.11) of u are c\ = mo, and for n > 1 

x=mo 

Proof. Suppose that V determines the free exponential family generated by 
a compactly supported measure v. For m ^ O close enough to 0, from (3.5) 
and (3.7) we get 

Rv{z) = Ku{z) - l/z 

oo 
(3.11) 

n= 1 

Thus, (3.10) says that the i?-transform of v satisfies 

(3.13) 
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From this we derive (3.12) by using the Lagrange expansion theorem, which 
says that if cj)(z) is analytic in a neighborhood of z = mo, </>(mo) ^ 0 and 
£ := (m — mo)/4>(m) then 

(3.14) = + 
1 n ! n=1 

1 [4>{x)\r 

dx n—1 x=mo 
(See, e.g., [20, (L), page 145].) 

Suppose now that a probability measure v satisfies (3.12) and \ xv{dx) = 
mo- Then the variance C2(v) — V(mo) > 0, so v it is non-degenerate. We 
first verify that v has compact support. Since V is analytic, (3.12) implies 
that 

(3.15) ^ = $ r ( z ) 7 ( z - m o ) n _ 1 , 
¡z-mol=S 

so there exist M > 0 such that \cn\ < Mn for all n > 1. The compactness of 
support follows now from [6, Corollary 1.6]; for completeness we include the 
proof. Denoting by AfC[n] the set of non-crossing partitions of {1,2, . . . , n}, 
from [13, (2.5.8)] we have 

VeNC[2n] BeV v J 

for the last equality, see [13, (2.5.11)]. Since the m-th Catalan number is 
less than 4m, 

/ r 9 \ 1 / ( 2 n ) limsup H \x\ v{dx) J < 4M < oo, 
n—>oo ^ ' 

and v has compact support. 
Prom supp(^) C [—4M, 4M] we deduce that the Cauchy-Stieltjes trans-

form Gv(z) is analytic for \z\ > AM, and the /^-series is analytic for all \z\ 
small enough. 

Since V(m) > 0 for m close enough to mo, taking the derivative we 
see that z i—> (z — mo)/V(z) is increasing in a neighborhood of z = mo-
Denoting by h the inverse, we have 

( z-mo\ 
hK-wr)=z-

Prom ci(v) = mo we see that i?(0) = mo = h(0). By (3.14), we see that 
all derivatives of h at z = 0 match the derivatives of R. Thus h(z) = R(z) 
and (3.13) holds for all m in a neighborhood of 0. For analytic G„, the 
latter is equivalent to (3.4) holding for all m close enough to 0. Thus V(m) 
is the variance function of a free exponential family generated by v with 
m € (—5, S) for some 8 > 0. • 
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We now use (3.12) to relate certain free cumulants to Catalan numbers. 

C O R O L L A R Y 3 . 4 . ([9, Remark 5.7]) If u is the standardized free gamma 
Meixner law, i. e. it generates the free exponential family with mo = 0 and 
variance function V(m) = (1 + am)2, then its free cumulants are 

This fact was stated without proof in [9, Remark 5.7]; the approach 
indicated there lead to a relatively long proof. 

Proof . From (3.12), 

k_x2k(2k- 1) . . . (jfe + 2) 

* o = ° X=U 
ak~l (2fc)! 
k + 1 (k!)2' 

Recall that the free additive convolution of compactly supported prob-
ability measures is a unique compactly supported measure denoted by 
//ffli/ with the .R-transform 

(3.16) R ^ z ) = Rfi{z) + ^ ( z ) . 

(See [23].) Equivalently, free cumulants linearize free convolution, 

(3.17) Cn(fJ,S v) = Cn(fl) + Cn(u), U > 1 
just like classical cumulants linearize the classical convolution. Recall that 
H is EB-infinitely divisible if for every n = 1 ,2 , . . . , there is a measure v such 
that fi = i / f f l i / f f l - - f f ly (the ra-fold free convolution). 

C O R O L L A R Y 3 . 5 . V(m) = 1/(1 — m) is a variance function of a free 
exponential family generated by the centered EB-infinitely divisible measure v 
with free cumulants 

, . 1 (2k - 2\ , 

Proof . From (3.12), 

1 dk'1 _ k(k + 1 ) . . . (2k - 2) _ 1 (2k — 2)! 
^o " k\ " k((k-l)\)i • k\ dxk 

It is well known that Catalan numbers are even moments of the semicircle 
law, 
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Therefore, R{z) = = j ^ ^ ^ d x = j ^ ^ ^ d x cor-
responds to ffl-infinitely divisible law, see [13, Theorem 3.3.6]. Thus Catalan 
numbers c^+i with c\ = 0 are indeed free cumulants of some ffl-infinitely 
divisible measure v. • 

It is known that not every function V is a variance function of a natural 
exponential family. It is therefore not surprising that not every analytic 
functions V can serve as the variance functions for a free exponential family. 

C O R O L L A R Y 3 . 6 . Suppose V is analytic at 0 and V ( 0 ) = 1 , V " ( 0 ) < 

—2. Then V cannot be a variance function of a free exponential family with 
mo = 0. 

Proof. Suppose V generates a free exponential family with generating mea-
sure u. Let m,j = \ x3u{dx) with mi = 0, m^ = 1. Then the 3 x 3 Hankel 
determinant is 

1 mi m2 1 0 1 
det mi m2 m 3 = det 0 1 "73 = 7 7 7 4 — 7773 — 1 > 0 

m2 m 3 7 7 7 4 1 7 7 7 3 7 7 7 4 

Using (3.12), the fourth moment is 

m 4 = c4(zv) + 2cl(v) = c4(u) + 2 = F'(0)2 + + 2 

and m3 = cs{y) = V'(0), see [13, (2.5.8)]. Thus 777,4 — fn\ — 1 > 0 translates 
into V"(0) > - 2 . -

E X A M P L E 3 . 1 . If b < — 1 , then V(m) = 1 + am, + bm•? is not a variance 
function of a free exponential family with mo = 0. Compare Theorem 3.2. 
(This can also be seen from Remark 3.1.) 

EXAMPLE 3.2. V(m) = (1 — m)/{ 1 + m) is not a variance function of a 
free exponential family with mo = 0. (This can also be seen from Remark 
3.1.) 

Combining (3.12) with the ffl-Levy-Khinchin formula [13, Theorem 3.3.6], 
compare [3, Lemma 3.4], we get also the following. 

C O R O L L A R Y 3 . 7 . Suppose V{m) is analytic at 0 , V ( 0 ) = 1 . Then the 
following conditions are equivalent. 

(i) There exists a centered ffl-infinitely divisible probability measure u such 
that V is the variance function of a free exponential family generated 
by v. 
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(ii) There exists a compactly supported probability measure ui such that 

The Cauchy-Schwarz inequality applied to the right hand side of the Levy-
Khinchin formula (3.18) implies (F 3 )" /6 > ({V2)')2 /4. This gives a simple 
necessary condition. 

C O R O L L A R Y 3 . 8 . IfV is analytic at 0 , F ( 0 ) = 1, V " ( 0 ) < 0 then V cannot 
be the variance function of a free exponential family generated by a centered 
EB-infinitely divisible measure. 

We remark that the bound is sharp: from Theorem 3.2 we see that 
V(m) = 1 is a variance function of the free exponential family generated by 
the semicircle law; all of its members are infinitely divisible, see Example 4.1. 

E X A M P L E 3 . 3 . (Compare [21, Theorem 3.2]) If b < 0 then V(m) = 1+am+ 
bm? cannot be the variance function of a free exponential family generated 
by a centered EB-infinitely divisible measure. 

3.3. Reproductive property. Natural exponential families have two "re-
productive" properties. The first one is usually not named, and says that 
if a compactly supported measure v generates natural exponential family T 
and /i E T(Y) then T(JI) = T. This is usually interpreted as a statement 
that the natural exponential family T is determined solely by the variance 
function V and can have many generating measures. 

The analog of this property fails for free exponential families due to the 
fact that the generating measure is determined uniquely by the variance 
function and parameter mo- For example, a free exponential family T gen-
erated by the centered semicircle law consists of the affine transformations 
of the Marchenko-Pastur laws, and for mo 0 the free exponential family 
generated by fi E T with mean mo contains no other measures in common 
with J- except for ¡1. 

The second property which in [15, (3.16)] is indeed called the reproductive 
property of an exponential family states that if n E J~(V), then for all n E N 
the law of the sample mean, D1/n(n*n), is in F{V/n). Here DT(n)(U) 
fi(U/r) denotes the dilation of measure fi by a number r / 0; in probabilistic 
language, if C(X) = // then C(rX) = Dr(fx). 

Our goal is to prove an analogue of this result for the Cauchy-Stieltjes 
families. 

Let /i®" denote the r-fold free additive convolution of fi with itself. In 
contrast to classical convolution, this operation is well defined for all real 
r > 1, see [19]. 

(3.18) 
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PROPOSITION 3.9. ([10, Proposition 4.3]) If a function V analytic at m0 

is a variance function of a free exponential family generated by a compactly 
supported probability measure v with mo = \xv(dx), then for each A > 1 
there exists a neighborhood of mo such that V/X is the variance function of 
the free exponential family generated by measure 

Moreover, if for each A > 0, there is a neighborhood of mg such that V/X 
is a variance function of some free exponential family, then u is S-infinitely 
divisible. 

We note that in contrast to classical natural exponential families, the 
neighborhood of mo where m i—> V(m)/X is a variance function may vary 
with A, see Example 4.1. 

Proof. Combining (3.12) with Rax+b{z) = b + aRx(az), we see that the 
free cumulants of u\ are c\(u\) = ci(u) = mo and for n > 1 

1 n I d * 1 " 1 (V{x) 

A" + v ' n\dx"-1 I A . „ „ \ / x=mo 

Theorem 3.3 implies that V/X is the variance function of the free exponential 
family generated by v\. 

If V\jn exists for all n 6 N, then the first part of the proposition together 
with uniqueness theorem (Theorem 3.1) implies that v = (D]/n{v\/ij)®", 
proving El-infinite divisibility. • 

4. Marchenko-Pastur approximation 
Let 

y/4a2 - (x - a)2 

VaAdx) = l\x-a\<2odx 

denote the semicircle law of mean a and variance a2. Up to affine trans-
formations, this is the free Meixner law which appears in Theorem 3.2 as 
the law which generates the free exponential family J^aiV) with the variance 
function V = a2. 

Following the analogy with natural exponential families, family jF0(fT2) 
can be thought as a free exponential analog of the normal family. Somewhat 
surprisingly, this family does not contain all semicircle laws, but instead it 
contains affine transformations of the (absolutely continuous) Marchenko-
Pastur laws. 

EXAMPLE 4.1. (Semi-circle free exponential family) For A > 0, let 

\/A\/4 - Ax2 
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Function V(m) = 1/A is the variance function of the free exponential family 

(4.1) JF0(1/A) = {irm,x(dx) : |m| < 1/V\} 

with the generating measure v{dx) = uQ 

To verify that the expression integrates to 1 for m / 0, we use the 
explicit form of the density [13, (3.3.2)] to note that 7rmi> = £(m + l/(Am) — 
m l ) is the law of the affine transformation of a free Poisson (Marchenko-
Pastur) random variable X with parameter 1/(Am2). Prom the properties 
of Marchenko-Pastur law we see that \irm,\{dx) = 1 iff m2 < 1/A, so for 
large A the interval {A,B) C (—l/y/X,l/VX) in (3.1) cannot be chosen 
independently of A. 

We remark that Biane [7] analyzes / i—> g(m) := J f (x)irmt\(dx) as a 
mapping of the appropriate Hilbert spaces for complex m. 

We have the following analogue of [15, Theorem 3.4]. 

T H E O R E M 4 . 1 . (Marchenko-Pastur approximation) Suppose the variance 
function V of a free exponential family .Fmo(V) is analytic and strictly pos-
itive in a neighborhood of mo- Then there is S > 0 such that if C(Y\) 6 

•^mo(^A) has mean E(Y\) = mo+m/y/X with |m| < <5, then \/\(Y\—mo) 
nm,i/v(mo) a s A —> o o . 

To prove Theorem 4.1 we will use the following analogue of Mora's The-
orem, see [15, Theorem 2.12], or [17, Theorem 2.6]. 

P R O P O S I T I O N 4 . 2 . Suppose Vn is a family of analytic functions which 
are variance functions of a sequence of free exponential families {^rmo(V^l) : 
n > 1}. If Vn —> V uniformly in a (complex) neighborhood of mo 6 R, 
and V(mo) > 0, then there is 6 > 0 such that V is a variance func-
tion of a free exponential family Tm0(V) parameterized by the mean m € 
(mo - 5, mo + S). Moreover, if a sequence of measures fin G ̂ mo(Ki) such 

T) 
that mi = J x[j,n(dx) 6 (mo — 6, mo + 6) does not depend on n, then /j,n —> /x 
where fi G /^(F) has the same mean \ x[i(dx) = m\. 
Proof. Let vn be the generating measure for T^{Vn). Since Vn(z) V(z) 
uniformly in a neighborhood of mo, from (3.15) we see that the cumulants 
Cfc+i(̂ n) converge as n —> oo and supn |cfc+i(i/„)| < Mk for some M < oo. 
Therefore the Z?-transforms of i/n converge to the i?-transform of a compactly 

T> 
supported measure v. Thus vn —> v, and the supports of un are uniformly 
bounded in n, i.e., supp(//n) c [—A, A] for some 0 < A < oo. By decreasing 
the value of 6 we can also ensure that the densities in (3.4) are bounded as 
functions of x € [~A, A] uniformly in n. So the integrals converge, and v 
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indeed generates a free exponential family with variance V in a neighborhood 
of mo-

Suppose now fin G f m o ( F n ) and ¡jl G Tm0(V) have the same mean m for 
some |m — mo| < S small enough. Since the densities in (3.4) are bounded 
by some constant C for all x G [—A, A], n G N, for a bounded continuous 
function g we have 

\g(x)»n(dx) = i 9(x)Vn{m) + ^ l o ) { m _ x ) u n ( d x ) 

f / \ Vim) . , . 
= \9{x) f , w r M ^ ) + £n J V(m) + (m, — mo)(m — x) 

—>• ^0(^)777—: V(m) -i/(dx) = \g(x)u(dx) 

a s n - ^ oo, where 
K ( m ) 

£n = Vn(m) + (m — mo)(m - ar) 
V(m) 

V(m) + (m — mo)(m — x) 
)i>n(dx) 

< C m — mo sup g ( x ) ( m - x ) • 0. • 
xe[-A,A] Vn(m)V(m) 

Proof of Theorem 4.1. Without loss of generality, we assume mo = 0. 
Suppose // G ^"(y). A change of variable shows that Di/a(n)(dx) G 
!F(y(arn)/a2), with generating measure va = D1/a(^). Since 

this shows that 

We now use Proposition 4.2 to the sequence of variance functions V\{m) = 
V —> ^(0) = a2 as A —» oo. From Proposition 4.2 we deduce that there 

is 0 < 8 < o2 such that if |m| < <5 and E(VXYx) = m, then ^ 
Tro,l/<r» e Pole2), see (4.1). • 

By Example 4.1, if 0 < |m| < a, then up to affine transformation 
7rm>1 ja2 is a Marchenko-Pastur law. Thus in this case Theorem 4.1 gives 
a Marchenko-Pastur approximation to C{Y\). 

Of course, every compactly supported mean-zero measure v is an element 
of the Cauchy-Stieltjes family that it generates. Since 7^1/^2 = cjq.ct is 
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the semicircle law, combining Proposition 3.9 with Theorem 4.1 we get the 
following Free Central Limit Theorem; see [8, 23]. 
COROLLARY 4.3. If a probability measure v is compactly supported and 
centered, then with a2 = J x2u{dx) we have 

Acknowledgements. The author thanks J. Wesolowski for the copy of 
[25] and for several helpful discussions. He also thanks the referee for an 
insightful report which helped to clarify the statement of Theorem 3.1 and 
led to significant improvement of the paper. 

References 

M. Anshelevich, Free martingale polynomials, J. Funct. Anal. 201 (2003), 228-261. 
arXiv:math.CO/0112194. 
M. Anshelevich, Orthogonal polynomials with a resolvent-type generating function, 
Trans. Amer. Math. Soc. 360(8) (2008), 4125-4143. arXiv:math.CO/0410482. 
O. E. Barndorff-Nielsen, S. Thorbj0rnsen, Self-decomposability and Lévy processes in 
free probability, Bernoulli 8(3) (2002), 323-366. 
G. Ben Arous, V. Kargin, Free point processes and free extreme values, Probability 
Theory and Related Fields, to appear, arXiv:0903.2672, 2009. 
G. Ben Arous, D. V. Voiculescu, Free extreme values, Ann. Probab. 34(5) (2006), 
2037-2059. 
F. Benaych-Georges, Taylor expansions of R-transforms, application to supports and 
moments, Indiana Univ. Math. J. 55 (2006), 465-482. 
P. Biane, Segal-Bargmann transform, functional calculus on matrix spaces and the 
theory of semi-circular and circular systems, J. Funct. Anal. 144(1) (1997), 232-286. 
M. Bozejko, On A(p) sets with minimal constant in discrete noncommutative groups, 
Proc. Amer. Math. Soc. 51 (1975), 407-412. 
M. Bozejko, W. Bryc, On a class of free Levy laws related to a regression problem, J. 
Funct. Anal. 236 (2006), 59-77. arxiv.org/abs/math.OA/0410601. 
W. Bryc, M. Ismail, Approximation operators, exponential, and q-exponential fami-
lies, Preprint. arxiv.org/abs/math.ST/0512224, 2005. 
W. Bryc, J. Wesolowski, Conditional moments of q-Meixner processes, Probab. The-
ory Related Fields 131 (2005), 415-441. arxiv.org/abs/math.PR/0403016. 
P. Diaconis, K. Khare, L. Saloff-Coste, Gibbs sampling, exponential families and 
orthogonal polynomials, Statistical Science 23 (2008), 151-178. 
F. Hiai, D. Petz, The semicircle law, free random variables and entropy, Mathematical 
Surveys and Monographs, 77, Amer. Math. Soc., Providence, RI, 2000. 
M. E. H. Ismail, C. P. May, On a family of approximation operators, J. Math. Anal. 
Appl. 63(2) (1978), 446-462. 
B. J0rgensen, The Theory of Dispersion Models, volume 76 of Monographs on Statis-
tics and Applied Probability, Chapman & Hall, London, 1997. 
G. Letac, Lectures on Natural Exponential Families and their Variance Functions, 
Monografías de Matemática [Mathematical Monographs] 50, Instituto de Matemática 
Pura e Aplicada (IMPA), Rio de Janeiro, 1992. 



672 W. Bryc 

[17] G. Letac, M. Mora. Natural real exponential families with cubic variance functions, 
Ann. Statist. 18(1) (1990), 1-37. 

[18] C. N. Morris, Natural exponential families with quadratic variance functions, Ann. 
Statist. 10(1) (1982), 65-80. 

[19] A. Nica, R. Speicher, On the multiplication of free N-tuples of noncommutative ran-
dom variables, Amer. J. Math. 118(4) (1996), 799-837. 

[20] G. Pölya, G. Szegö, Problems and Theorems in Analysis. I, m Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 193, 
Springer-Verlag, Berlin, 1978. 

[21] N. Saitoh, H. Yoshida, The infinite divisibility and orthogonal polynomials with a 
constant recursion formula in free probability theory, Probab. Math. Statist. 21(1) 
(2001), 159-170. 

[22] R. Speicher, Free probability theory and non-crossing partitions, Sem. Lothar. Com-
bin., 39, Art. B39c, 38 pp. (electronic), 1997. 

[23] D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 
66(3) (1986), 323-346. 

[24] D. Voiculescu, Lectures on free probability theory, in: Lectures on probability the-
ory and statistics (Saint-Flour, 1998), Lecture Notes in Math. 1738, pages 279-349. 
Springer, Berlin, 2000. 

[25] J. Wesolowski, Kernel families, Unpublished manuscript, 1999. 

DEPARTMENT OF MATHEMATICAL SCIENCES, 
UNIVERSITY OF CINCINNATI, 
PO BOX 210025, 
CINCINNATI, OH 45221-0025, U.S.A 
E-mail: Wlodzimierz.Bryc@UC.edu 

Received December 14, 2008; revised version April 25, 2009. 


