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Wlodzimierz Bryc

FREE EXPONENTIAL FAMILIES AS KERNEL FAMILIES

Abstract. Free exponential families have been previously introduced as a special case
of the g-exponential family. We show that free exponential families arise also from the
approach analogous to the definition of exponential families by using the Cauchy-Stieltjes
kernel 1/(1 — 6z) instead of the exponential kernel exp(fz). We use this approach to
re-derive some known results and to study further similarities with exponential families
and reproductive exponential models.

1. Introduction

Since the seminal work of Voiculescu [23], there has been a flurry of
activity on how properties of free convolution x 8 v of probability measures
are similar to and how they differ from properties of classical convolution
pxv. In particular, free probability analogues of the Central Limit Theorem,
of the Poisson limit theorem, and the Lévy-Khinchin representation of H-
infinitely divisible laws are now known, see [13]. New additional analogies
between free and classical probability are developed in [4, 5]. In this paper
we study a free probability analogue of the concept of exponential family.

Free exponential families were introduced in [10, Definition 4.1} as part
of a study of the relations between approximation operators, classical expo-
nential families and their g-deformations. An alternative approach to free
exponential families which we adopt in this paper emphasizes similarities to
classical exponential families, and is based on an idea of kernel family intro-
duced in [25]. We show that the two approaches are closely related, and that
every non-degenerate compactly supported probability measure generates a
free exponential family, see Theorem 3.1. We then relate variance functions
of free exponential families to free cumulants. This relation is simpler than
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the corresponding relation for classical exponential families and is expressed
by a concise formula. We apply the formula to compute free cumulants
of the “free gamma” law which were stated without proof in [9], to derive
simple necessary conditions for a smooth function to be the variance func-
tion of a free exponential family, and to investigate similarities with classical
dispersion models [15].

2. Cauchy-Stieltjes kernel families

According to Wesolowski [25], the kernel family generated by a kernel
k(x,8) consists of the probability measures

{k(z,0)/L(6)v(dz): 6 € O},

where L(0) = {k(x,0)v(dx) is the normalizing constant, and v is the gener-
ating measure.

The theory of exponential families is based on the kernel k(z,8) = €
See, e.g., [15], [16], or [12, Section 2.3]. In this paper, we consider the
Cauchy-Stieltjes kernel

0x

1
1-6z
DEFINITION 2.1. Suppose v is a compactly supported non-degenerate (i.e.
not a point mass) probability measure. Let

1
1—6x
The Cauchy-Stieltjes family generated by v is the family of probability mea-
sures

k(x,0) =

M) = v(dz).

@1  Kwe)= {Pe(da:) _ my(daz) 0e (—)} ,

where © > 0 is an open set on which M(0) is well defined, strictly positive
and 60 supp(v) C (—o0,1). (We shall only consider © = (—¢,¢) with £ > 0
small enough.)

Our first goal is to show that the Cauchy-Stieltjes family is essentially
the same concept as the concept of free exponential family introduced in
[10]. We begin with a suitable reparametrization of K(v; ©).

2.1. Parameterizations by the mean. From (2.1) we compute the mean
m(0) = {zPy(dz). Since Py = v we get m(0) = {zv(dz) = mg and for 6 # 0,
a calculation gives

M@ -1
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Since M(0) = 1 and M(6) is analytic at § = 0, we see that m(6) is analytic
for |0| small enough. We have
! (6) = M(6) +6M'(9) — (M(6))”
62(M(6))?

Since v is non-degenerate,

(2.3) M(0) +60M'(6) — (M(6))?

2
S i 10 )2V(dz:) - (S 1 jexv(dx))

for all |§] > 0 small enough. Thus the function 6 — m(#) is increasing on an
open interval containing 0. Denoting by 1 the inverse function, we are thus
lead to parametrization of a subset of (v, ©) by the mean,

(2.4) L(v; R) = {Qm(dz) = Py(m)(dz) :m € R},

where R = m(6yg), and ©p C © is an appropriate interval with 0 € 6.
Notice that we refrain from claiming that (2.1) and (2.4) are equivalent:
we only claim that for any pair of open sets © 3 0 and R 5 myg, there
are open sets ©9 > 0 and Ry 2 mg such that L(v; Ry) C K(v;0), and
K(v;©00) C L(v; R).

The variance function of the Cauchy-Stieltjes family (2.4) is

(2.5) V(m) = S(:II —m)2Qm(dx).

3. Relation to free exponential families

The following generalizes slightly [10, Section 4]; note that this definition
is not constructive: for a given V', the corresponding free exponential family
may fail to exist, see Example 3.2.

DEFINITION 3.1. The free exponential family with variance function V
generated by a compactly supported measure v with mean mgy € (4, B) is a
family of probability measures

(31)  Fmg(V) = { v(dz): m e (A,B)}.

The next result shows that Cauchy-Stieltjes kernel families under para-
metrization by the mean are essentially the same as free exponential fam-
ilies, thus providing existence argument for free exponential families. Fur-
thermore, the generating measure v is determined uniquely by mg and the
variance function V(m); the latter is an analog of the classical uniqueness
theorem for exponential families, see [15, Theorem 2.11] or [17, Proposi-
tion 2.2].

V(m)
V(m) + (m — mg)(m — x)
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Recall that the Cauchy-Stieltjes transform of a probability measure v is
1

Z—T

(3.2 Gy(z) =

v(dz).

If v is compactly supported then G, is analytic in the neighborhood of
oo in the complex plane; in particular, compactly supported measures are
determined uniquely by G,(z) for large enough real z.

THEOREM 3.1. Let {Py: 0 € ©} be a Cauchy-Stieltjes family (2.1) gener-
ated by a non-degenerate compactly supported measure v with § xv(dz) = my.
Then there is a neighborhood (A, B) of mg in which the variance function V
in (2.5) is analytic, strictly positive, and

V(m)
V(m) + (m — mg)(m — z)

(3.3) Py(m)(dz) = v(dx), m € (A, B).
Conversely, if V is analytic and strictly positive in a neighborhood of my,

and there is a probability measure v with mean mgy such that the (positive)

measures

V(m)

A4 dx) =

(3:4) Qm(dz) V(m) + (m —mg)(m — )

v(dz)

are probability measures for all m in a neighborhood of mg, then v is com-
pactly supported, non-degenerate, and is determined uniquely by (3.2) with

(3.5) G, (2) = sz"’L’)LO,

with z = 1/y(m) = m+V(m)/(m—my). In particular, in a perhaps smaller
neighborhood R of mg, probability measures (3.4) for m € R are included in
the Cauchy-Stieltjes family (2.4) generated by v.

Proof. We first calculate the variance v(8) = {22 Ps(dz) — m?(0) = {z(z —

mo) Pp(dz) — m(6)(m(0) — my). Since

z—mo)(fx—1)+z—-myg
OM(0)(1 — 6x)

we see that for 8 # 0 the variance is

(36) ww=omm—nm(§—mw0.

Since m(#) is analytic at 6 = 0 and m(0) = my, this shows that that v(6)
is analytic at § = 0. Let V(m) = v(y(m)) denote the variance function in
parametrization of (a subset of) K by the mean; clearly V is an analytic
function in a neighborhood of m = my.

&x(a: —mg)Py(dz) = S (
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Now (3.6) implies (m(6) — mg)/v(0) = 6/(1 — §m(8)) and (2.2) implies
1 —6m(#) = 1/M(8), so (3.4) is equivalent to

1
Qmo)(dz) = T+ (m(@) = 2)(m (@) = mg)/v(G)V(dx)
_ 1—6m(6) _1-60m(6) e
= T 0m@) 1 (m(e) — 28"\ = T-gr 4
1
= ml/(dm) = Py(dz).

To prove the converse implication, note that for m such that V(m) > 0
we can re-write {Qn(dx) =1 as

1 _m—my
| V(m)/(m — mo) + m — ZV(42) = V(m)
Thus with
(3.7) z=m+ mvimnio’

we get (3.5). Since limm_)mg V(m)/(m — mg) = oo, this shows that
Cauchy-Stieltjes transform G,(z) is defined for all real z with |z| large
enough. This implies that v has compact support, with moments that
are uniquely determined from the corresponding moment generating func-
tion M(z) = 1/2G(1/z) for z small enough. (Compactness of support is
also proved more directly in the proof of Theorem 3.3.) Finally, v is non-
degenerate as its variance is V(mg) > 0. »

REMARK 3.1. Solving equation (3.6) for 8 we see that
m—my

m) = .
V) = o) + V()
Thus a necessary condition for V' to be a variance function is that m —
m + V(m)/(m — myg) is decreasing in a neighborhood of my, see (2.3).

3.1. Free exponential families with quadratic variance function. In
this section we recall [10, Theorem 4.2 |; since manuscript [10] is available in
preprint form only and we have already set up all identities needed for the
proof, we include the argument which is taken from [10]. The corresponding
result for classical exponential families is [14, Theorem 3.3] and [18, Sec-
tion 4]; the result for g-exponential families is [10, Theorem 3.2 |.

THEOREM 3.2. (10, Theorem 4.2]) Suppose b > —1, mg = 0. The free
exponential family with the variance function

V(im)=1 -i-cbtm+bm2
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consists of probability measures (3.4) with generating measure

VAT -G
(38) vlde) = o rar 1 1) (e-2/THhasaV T 0 P +Pab,

where the discrete part of v is absent except for the following cases:
(i) fb=0,a®>>1, thenpr =1 —1/a?, 71 = —1/a, p2 = 0.
iy —vaZ—4b
(ii) if b > 0 and a? > 4b, then p; = max{O,l - (125\/(?(21—_41; }, ps =0, and
7 = lel=vai=db '2‘;_417 with the sign opposite to the sign of a.
(iii) #f —1 < b < 0 then there are two atoms at

—a++Va?—4b _1+\/a2—4bq:a
2% » P12 Va2 — 4b

Proof. With mg = 0 and V(m) = 1 + am + bm?, equation (3.7) can be
solved for m, giving

T2 =

z—a—\/(a—z)2—4(1+b)
m= 2 (1+0) ’

so (3.5) gives

a+z+2bz—\/(a—z)2—4 (1+b)

2(14+az +b22)
This Cauchy-Stieltjes transform corresponds to the free-Meixner law (3.8),
see [1,21]. m

Theorem 3.2 results covers a number of important laws that appeared in
the literature. Up to a dilation and convolution with a degenerate law &,
(i.e. up to “the type”) the generating measure v is:

(3.9) Gy (2) =

(i) the Wigner’s semicircle (free Gaussian) law if a = b = 0; see [24, Section
2.5];

(ii) the Marchenko-Pastur (free Poisson) type law if b = 0 and a # 0; see
[24, Section 2.7];

(iii) the free Pascal (free negative binomial) type law if b > 0 and a2 > 4b;
see [21, Example 3.6];

(iv) the free Gamma type law if b > 0 and a? = 4b; see [9, Proposition 3.6];

(v) the free analog of hyperbolic type law if b > 0 and a? < 4b; see [1,
Theorem 4];

(vi) the free binomial type law if —1 < b < 0; see [21, Example 3.4] and [9,
Proposition 2.1].

The laws in (i)-(v) are infinitely divisible with respect to free additive con-
volution (we recall the definition near (3.17)). In [1, Theorem 4] they appear
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in connection to martingale polynomials with respect to free Lévy processes;
free infinite divisibility is analyzed also in [21]; [2] studies further free prob-
ability aspects of this family; in [9, Theorem 3.2] the same laws appear
as a solution to a quadratic regression problem in free probability; in [11,
Theorem 4.3] these laws occur in a “classical regression” problem.

3.2. Free cumulants and variance functions. Recall that if v is a com-
pactly supported measure with the Cauchy-Stieltjes transform G,,, then the
inverse function K, (z) = G;(z) exists for small enough z # 0, see [24]. The
R-transform is defined as

(3.10) R,(z)=K,(z) - 1/z

and is analytic at z =0,
o0

(3.11) R.(2) = ch(u)z"—l.
n=1

The coeflicients ¢, = c,(v) are called free cumulants of measure v, see [22].

The following result extends [10, Remark 4.4] and plays a role analogous
to Jgrgensen’s theorem [17, Theorem 3.2]. (For the formula connecting clas-
sical cumulants with the variance functions of natural exponential families,
see [18, (2.10)] or [15, Exercise 2.14].)

THEOREM 3.3. Suppose V is analytic in a neighborhood of my, V(mg) > 0,
and v is a probability measure with finite all moments, such that {zv(dz) =
myg. Then the following conditions are equivalent.

(i) v is non-degenerate, compactly supported, and there exists an interval
(A,B) > mq such that (3.1) defines a family of probability measures
parameterized by the mean with the variance function V.

(i) The free cumulants (3.11) of v are ¢; = my, and forn > 1

mn—1
L ()

(312) Cn41 = HW

T=mg

Proof. Suppose that V determines the free exponential family generated by
a compactly supported measure v. For m # 0 close enough to 0, from (3.5)

and (3.7) we get
Vim) m—mp
e = ()

Thus, (3.10) says that the R-transform of v satisfies

(3.13) R, (";/;—n’l’)“’) =m
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From this we derive (3.12) by using the Lagrange expansion theorem, which
says that if ¢(z) is analytic in a neighborhood of z = my, ¢(mg) # 0 and

€ := (m —mgp)/¢p(m) then
n m—1
(3.14) = myg +Z§ {%} I

(See, e.g., [20, (L), page 145].)

Suppose now that a probability measure v satisfies (3.12) and {zv(dz) =
mp. Then the variance cp(v) = V(mg) > 0, so v it is non-degenerate. We
first verify that v has compact support. Since V is analytic, (3.12) implies
that

(315) Cn+1 =

§ V)r/(z—mo)
|z—mo|=8
so there exist M > 0 such that |c,| < M™ for all n > 1. The compactness of
support follows now from [6, Corollary 1.6]; for completeness we include the
proof. Denoting by N'C[n] the set of non-crossing partitions of {1,2,...,n},
from [13, (2.5.8)] we have

Sm2 v(dz) = Z H ap < M #NC[2n] = M? m(22),

VENC[2n] BEV

2mni

for the last equality, see [13, (2.5.11)]. Since the m-th Catalan number is
less than 4™,

1/(2n)
lim sup (S |x|2”1/(d1:)) <4M < oo,
n—oo

and v has compact support.

From supp(v) C [-4M,4M] we deduce that the Cauchy-Stieltjes trans-
form G,(z) is analytic for |z| > 4M, and the R-series is analytic for all |z
small enough.

Since V(m) > 0 for m close enough to mg, taking the derivative we
see that z +— (z —mg)/V(2) is increasing in a neighborhood of z = my.
Denoting by h the inverse, we have

zZ — My _

() -
From c¢1(v) = mg we see that R(0) = mg = h(0). By (3.14), we see that
all derivatives of h at z = 0 match the derivatives of R. Thus h(z) = R(z)
and (3.13) holds for all m in a neighborhood of 0. For analytic G, the
latter is equivalent to (3.4) holding for all m close enough to 0. Thus V(m)

is the variance function of a free exponential family generated by v with
m € (—4,0) for some § > 0.
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We now use (3.12) to relate certain free cumulants to Catalan numbers.

COROLLARY 3.4. (|9, Remark 5.7]) If v is the standardized free gamma
Meizner law, i.e. it generates the free exponential family with mg = 0 and
variance function V(m) = (14 am)?, then its free cumulants are

1 2k\ ,_
ckt1(v) = k_ﬁ(k>ak Lk>1

This fact was stated without proof in [9, Remark 5.7]; the approach
indicated there lead to a relatively long proof.

Proof. From (3.12),

1 d*! 12k(2k—1)...(k+2
crt1(v) = oy (1 +az)?*|  =d*! ( ])g, (k+2)
! 0 !
_ a1 (2k)!
" k+1(k)z "

Recall that the free additive convolution of compactly supported prob-
ability measures p, v is a unique compactly supported measure denoted by
1 B v with the R-transform

(3.16) Rum(2) = Ru(2) + R.(2).
(See [23].) Equivalently, free cumulants linearize free convolution,

(3.17) cn(nBv) =cnlp) +en(v), n>1

just like classical cumulants linearize the classical convolution. Recall that
1 is E-infinitely divisible if for every n = 1,2,..., there is a measure v such
that p =vHBvH---Bv (the n-fold free convolution).

COROLLARY 3.5. V(m) = 1/(1 —m) is a variance function of a free
exponential family generated by the centered B-infinitely divisible measure v

with free cumulants
1/2k—2
ck+1(V) = _k;(k—l)’ k>1.

Proof. From (3.12),

1 g1 —k

st = — e (1 - 2) k(k+1)...2c-2) 1 (2k-2)!
k! dzk—

- k! T k((k-1)1H2"
It is well known that Catalan numbers are even moments of the semicircle
law,
2 4
</ 4 — 2 / —_
xzk—zda; = Szk4—/2x——1d:r.
s

Chy1 =
+1 _52 o !

=0
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Therefore, R(z) = 352, epz®1 = {5 22 ”4/z Ldz —801 zm@dx cor-

responds to HB-infinitely divisible law, see [13 Theorem 3.3.6]. Thus Catalan
numbers cg4+1 with ¢; = 0 are indeed free cumulants of some H-infinitely
divisible measure v. =

It is known that not every function V is a variance function of a natural
exponential family. It is therefore not surprising that not every analytic
functions V' can serve as the variance functions for a free exponential family.

COROLLARY 3.6. Suppose V is analytic at 0 and V(0) = 1, V"(0) <
—2. Then V cannot be a variance function of a free exponential family with
my = 0.

Proof. Suppose V generates a free exponential family with generating mea-
sure v. Let m; = {27v(dz) with m; = 0, ma = 1. Then the 3 x 3 Hankel
determinant is

1 mi mo 101
det | my mg ms | =det [0 1 mg|=mg—m3—1>0.
mo M3y 1My 1 mg3 my

Using (3.12), the fourth moment is
1
my = ca(v) + 2 (V) = ca(v) + 2 =V"(0)% + §V”(0) +2

and m3 = c3(v) = V'(0), see [13, (2.5.8)]. Thus m4 — m2 — 1 > 0 translates
into V'(0) > 2. m

EXAMPLE 3.1. If b < —1, then V(m) = 1 + am + bm? is not a variance
function of a free exponential family with mo = 0. Compare Theorem 3.2.
(This can also be seen from Remark 3.1.)

ExAMPLE 3.2. V(m) = (1 —m)/(1 + m) is not a variance function of a
free exponential family with mg = 0. (This can also be seen from Remark
3.1)

Combining (3.12) with the H-Lévy-Khinchin formula [13, Theorem 3.3.6],
compare |3, Lemma 3.4], we get also the following.

COROLLARY 3.7. Suppose V(m) is analytic at 0, V(0) = 1. Then the
following conditions are equivalent.

(i) There exists a centered HB-infinitely divisible probability measure v such
that V is the variance function of a free exponential family generated
by v.



Free exponential families as kernel families 667

(ii) There exists a compactly supported probability measure w such that

1 4! n el

=0
The Cauchy-Schwarz inequality applied to the right hand side of the Lévy-
Khinchin formula (3.18) implies (V3)"/6 > ((V?)' )2 /4. This gives a simple
necessary condition.

COROLLARY 3.8. IfV is analytic at 0, V(0) = 1, V"(0) < 0 then V cannot
be the variance function of a free exponential family generated by a centered
B-infinitely divisible measure.

We remark that the bound is sharp: from Theorem 3.2 we see that
V(m) =1 is a variance function of the free exponential family generated by
the semicircle law; all of its members are infinitely divisible, see Example 4.1.

EXAMPLE 3.3. (Compare [21, Theorem 3.2]) If b < 0 then V(m) = 1+am+
bm? cannot be the variance function of a free exponential family generated
by a centered H-infinitely divisible measure.

3.3. Reproductive property. Natural exponential families have two “re-
productive” properties. The first one is usually not named, and says that
if a compactly supported measure v generates natural exponential family F
and g € F(v) then F(u) = F. This is usually interpreted as a statement
that the natural exponential family F is determined solely by the variance
function V' and can have many generating measures.

The analog of this property fails for free exponential families due to the
fact that the generating measure is determined uniquely by the variance
function and parameter mg. For example, a free exponential family F gen-
erated by the centered semicircle law consists of the affine transformations
of the Marchenko-Pastur laws, and for mg # 0 the free exponential family
generated by u € F with mean mg contains no other measures in common
with F except for p.

The second property which in [15, (3.16)] is indeed called the reproductive
property of an exponential family states that if u € F(V'), then foralln € N
the law of the sample mean, D, ,(u*"), is in F(V/n). Here D, (u)(U) :=
p(U/r) denotes the dilation of measure x4 by a number r # 0; in probabilistic
language, if £L(X) = p then L(rX) = D,(u).

Our goal is to prove an analogue of this result for the Cauchy-Stieltjes
families.

Let p® denote the 7-fold free additive convolution of p with itself. In
contrast to classical convolution, this operation is well defined for all real
r > 1, see [19].
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PROPOSITION 3.9. ([10, Proposition 4.3]) If a function V analytic at mq
is a variance function of a free exponential family generated by a compactly
supported probability measure v with mo = {zv(dx), then for each A > 1
there exists a neighborhood of mg such that V/X is the variance function of
the free exponential family generated by measure

Uy = Dl/,\(VEE’\).
Moreover, if for each A > 0, there is a neighborhood of mg such that V/A
is a variance function of some free exponential family, then v is B-infinitely
divisible.
We note that in contrast to classical natural exponential families, the
neighborhood of mg where m — V(m)/X is a variance function may vary
with A, see Example 4.1.

Proof. Combining (3.12) with R,x4s(2) = b+ aRx(az), we see that the
free cumulants of vy are ¢1(vy) = ¢1(v) = mp and for n > 1
1 1 a1t (V()\"
eri1(2) = grennn(v) = Sy ( v)
Theorem 3.3 implies that V/\ is the variance function of the free exponential
family generated by v).
If vy, exists for all n € N, then the first part of the proposition together

z=myg

with uniqueness theorem (Theorem 3.1) implies that v = (D, (v /n))Ba",
proving H-infinite divisibility. m

4. Marchenko-Pastur approximation
Let
402 — (z — a)?

2mo?

Wa,o (d.’L‘) = 1|z—a|<2adx

denote the semicircle law of mean a and variance 2. Up to affine trans-

formations, this is the free Meixner law which appears in Theorem 3.2 as
the law which generates the free exponential family F,(V) with the variance
function V = o2.

Following the analogy with natural exponential families, family Fo(0?)
can be thought as a free exponential analog of the normal family. Somewhat
surprisingly, this family does not contain all semicircle laws, but instead it
contains affine transformations of the (absolutely continuous) Marchenko-

Pastur laws.
EXAMPLE 4.1. (Semi-circle free exponential family) For A > 0, let

VIVAE = \z?
14+ Am(m — z))

Tma(dz) = o lp2<4/xdx.
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Function V(m) = 1/ is the variance function of the free exponential family
(4.1) Fo(1/3) = {mm(dz) : Im| < 1/V/X}

with the generating measure v(dz) = wy / vildz).

To verify that the expression integrates to 1 for m # 0, we use the
explicit form of the density [13, (3.3.2)] to note that mp, x = L(m+1/(Am)—
mX) is the law of the affine transformation of a free Poisson (Marchenko-
Pastur) random variable X with parameter 1/(Am?). From the properties
of Marchenko-Pastur law we see that §m, x(dz) = 1 iff m? < 1/), so for
large A the interval (4,B) C (=1/v/A,1/¥/A) in (3.1) cannot be chosen
independently of A.

We remark that Biane [7] analyzes f — g(m) := § f(z)7m(dz) as a
mapping of the appropriate Hilbert spaces for complex m.

We have the following analogue of [15, Theorem 3.4].

THEOREM 4.1. (Marchenko-Pastur approximation) Suppose the variance
function V' of a free ezponential family Fp (V) is analytic and strictly pos-
itive in a neighborhood of mo. Then there is § > 0 such that if L(Y)) €

Fmo(V/A) has mean E(Yy) = mo+m/v/X with [m| < &, then v A(YA—my) 2,
Wm,l/V(mo) as A — oo.

To prove Theorem 4.1 we will use the following analogue of Mora’s The-
orem, see [15, Theorem 2.12], or [17, Theorem 2.6].

PROPOSITION 4.2. Suppose V,, is a family of analytic functions which
are variance functions of a sequence of free exponential families { Fpny (V) :
n > 1}, If V, — V wuniformly in a (complex) neighborhood of my € R,
and V(mg) > 0, then there is § > 0 such that V is a variance func-
tion of a free exponential family Fpy(V) parameterized by the mean m €
(mo — 8, mg +9). Moreover, if a sequence of measures pin, € Fro(Vy) is such

that my = {zun(dz) € (mg — 6, mg + 6) does not depend on n, then py, 2, u
where p € Fro(V) has the same mean §xu(dz) = m;.

Proof. Let v, be the generating measure for Fp,,(V). Since V,(z) — V()
uniformly in a neighborhood of myg, from (3.15) we see that the cumulants
cr+1(vn) converge as n — 0o and sup,, |ck41{Vn)| < MF* for some M < oo.
Therefore the R-transforms of v, converge to the R-transform of a compactly

supported measure v. Thus v, 2, v, and the supports of v, are uniformly
bounded in n, i.e., supp(v,) C [—A, A] for some 0 < A < 0o. By decreasing
the value of § we can also ensure that the densities in (3.4) are bounded as
functions of z € [—A, A] uniformly in n. So the integrals converge, and v
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indeed generates a free exponential family with variance V' in a neighborhood
of my.

Suppose now iy, € Fry (V) and g € Fpo (V) have the same mean m for
some |m — mg| < § small enough. Since the densities in (3.4) are bounded
by some constant C for all z € [-A, A}, n € N, for a bounded continuous
function g we have

Vim
:Sﬂwvmn+un£%@mpﬁw%““+f”
V(m)

— {g(x)

as n — 00, where

leal = | J9(2)(

V(m) + (m —mg)(m — )
Va(m)
Va(m) + (m — mo)(m — z)

- V(m) + (m = mo)(m ~ 2)
[Va(m) = V(m)]
< C%lm — my| ,,;BE,A] lg(z)(m — )] Va(m)V (m)

—0. =

Proof of Theorem 4.1. Without loss of generality, we assume mg = 0.
Suppose p € F(V). A change of variable shows that Ds/,(u)(dz) €

F(V(am)/a?), with generating measure v, = Dy ,(v). Since

L(Y)\) e F <V—(/\m—)> ,

L(VAY,) € F (V (%)) .

We now use Proposition 4.2 to the sequence of variance functions Vy(m) =

|4 (T/@X) — V(0) = 0% as A — o0o. From Proposition 4.2 we deduce that there

is 0 < 8 < 02 such that if |m| < 6 and E(VAY)) = m, then L(VY)) 2,
Tm,1/0? € Fo(o?), see (4.1). =

this shows that

By Example 4.1, if 0 < }m| < o, then up to affine transformation
Tm,1/02 i6 & Marchenko-Pastur law. Thus in this case Theorem 4.1 gives
a Marchenko-Pastur approximation to £(Y}).

Of course, every compactly supported mean-zero measure v is an element
of the Cauchy-Stieltjes family that it generates. Since 752 = woe is
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the semicircle law, combining Proposition 3.9 with Theorem 4.1 we get the
following Free Central Limit Theorem; see 8, 23].

COROLLARY 4.3. If a probability measure v is compactly supported and
centered, then with o2 = {z2v(dx) we have

I/EEn) 2* wo,a .

Dy, sl
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