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TOPOLOGIES AND SMOOTH MAPS ON INITIAL 
AND FINAL OBJECTS IN THE CATEGORY 

OF FROLICHER SPACES 

Abstract. In this paper, we show that when the Frolicher smooth structure is induced 
on a subset or a quotient set, there are three natural topologies underlying the resulting 
object. We study these topologies and compare them in each case. It is known that the 
topology generated by strucure functions is the weakest one in which all functions and 
curves on the space are continuous. We show that on a subspace, it is rather the trace 
topology which has this property, while the three topologies are coincident on the quotient 
space. We construct a base for the Frolicher topology and using either a base or a subbase 
in the sense of A. Frolicher [9], we characterise the morphisms of this category. 

1. Introduction 
The topology of a Frolicher space (M, Cm, Tm) was defined in [9] 

as the initial topology generated by structure functions / G R M , with 
{ / - 1 (0 , l)}f£j?M as a subbase. It was studied by A. Cap [4] for the pur-
pose of /^-theory, and investigated by B. Dugmore [7] and P. Cherenack 
[6] as well. In [9], Frolicher and Kriegl proved that the category of smooth 
spaces (now called Frolicher spaces) is complete and co-complete, so that 
it has both initial and final objects. Later on, Cherenack showed that this 
category is topological over SSTS. In a further work, Dugmore constructed 
a base for the topology of these spaces and focused his study on homo-
topy theory. He used the function <f> : (0, +oo) —> (0,1) defined by <f>(t) — 
e~t and <f> : (—oo,0] —• {0}, which is not a bijection onto the whole R. 
In this work we rather speak of topologies on a Frolicher space, as they 
are many indeed and we will have to compare them. Using the C°° diffeo-
morphism </> : (0,+oo) = (0,1) U [l,+oo) R given by <f>(t) = - t + 
the inverse of which maps each structure function onto a positive one, we 
shall obtain the same base { / - 1 (0 , +oo)}¡<^tm for the initial topology from 
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which open (-closed) sets, open (-closed) maps, and smooth maps between 
Frolicher spaces can be easily characterised. From the topologies underlying 
a Frolicher space, it will be clear that most usual properties in the category 
Top hold true in the category TIZC. As a main result of this work, we shall 
use our base in order to compare the topologies underlying a Frolicher sub-
space as initial object in the one hand, and quotient space as a final object 
on the other hand. Then, we show that both the canonical inclusion and 
projection are open maps. 

Throughout this text, an jF72.£-object or simply an object M will mean 
a Frolicher space { M , C M I ^ M ) I and an .F7?£-morphism or a morphism will 
mean a smooth map in the sense of Frolicher. We shall verify that morphisms 
(structure functions and curves as well) are continuous in both topologies 
of curves and functions, and will denote by C°°(M,N) := {(p : M —• 
N | ip is F-smooth} the set of all morphisms between objects M and N. 

Recall that an jF7?X-morphism between two M and N is that map <p 
such that °<P Q FM or, equivalently, tpoCM QCN- It follows that 0o<p £ 
C°°(M, P) whenever tp e C°°(M,N) and 6 e C°°(N,P). Consequently, a 
map (p : M —• N between .FftX-objetcs is a morphism if, and only if 6 o tp 
is an .FT^X-morphism, where 9 : N P is an .F7?X-morphism. 

2. Topologies on a Frolicher space 
D E F I N I T I O N 2 . 1 . The topology induced by all the structure functions of 
an object M is the collection tTm = {WC M\U = UfeFM where V 
lies in the standard topology of R. The topology induced by all the structure 
curves is TCm = {U C M\c~l(U) 6 Tfe}, where c € CM-

L E M M A 2 . 1 . T?M C T C M . 

Proof. Let U <E . That is, U = U / e ^ M where V is open in M. For 
an arbitrary c € CM, c~\U) = c ^ d l / e i « = I ) f e r j f ° o)~l(V) 

But V G 7TR and foe is C°°. Hence c~l(U) is an open set in R as arbitrary 
union of elements of TJR. Thus U € tcm • • 

An T1Z.C,-object M where TJm = tcm is called a balanced space in [4], 
where a compact Hausdorff balanced F-space is called a base space. Note 
that M is Hausdorff if t?m and tqm are both Hausdorff. 

From the lemma above, the topology of a Frolicher space M shall be 
its weakest topology induced by structure functions, unless otherwise 
specified. 
L E M M A 2 . 2 . Let M be an F-space and R endowed with the canonical F-
structure. Then (f> : (0, +oo) —• R, t i—> <j>(t) = — t + j and its inverse <$T1 
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are bijective and smooth functions in the usual sense. For any g G TM there 
exists a unique f : M —> (0, +00) such that f G Tm and g = <f> o f and 
f = rlog. 

Proof. 1. Considering the partition below for both the domain and codo-
main of the function 4>\ (0, +00) = (0,1)U[1, +00) and R = (0, +oo)U(-oo, 0] 
it is easy to see that <f> is C°°, monotonic decreasing and a bijection and also 
its inverse is C°°. So, 0 is a diffeomorphism. 

2. Let g G Tm and <f> as defined above. Then there is a unique / : 
M —> (0, +00) such that / = </>-1 o g and g = <j>o / . Hence / G TM- Fur-
thermore, 0(0,1) = (0, +00) and </>_1(0,+oo) = (0,1). Hence, p_ 1(0,+oc) 
= ^ ( ¿ ( O . l ) } = / - ^ " ^ ( ( U ) ) ) = / _ 1 (0 ,1 ) , which yields the re-
quired bijection Tu in such a way that g h-*• / = 4>~x o g and 
{ « / " H O . + o o ) } ^ -> {f~H0,l)}/e^ , with (/"Ho,+00) = / "H0,1) . The 
obtained collection is a base for the initial topology TJTm . • 

2.1. Examples 

E X A M P L E 2 . 1 . 1 . Let (Rn,C, T) be the canonical F-space. That is, C = 
C°°(R,RTl) and T = C°°(Rn ,R). The topology rCRn coincides with the 
Euclidean topology. Also Rn is a differentiate manifold. So, = rcM(p 
(see [6]). Thus, (Rn,C, T) is a base space. 

E X A M P L E 2 . 1 . 2 . Consider the Frolicher space ( Q J C Q J F Q ) , with the canon-
ical structure generated by its inclusion in R which is an F-smooth map. It 
is easy to see that CQ = {c : R —> Q | c is constant } and Tq = R®. In effect, 
as observed by P. Iglesias (see [10]), we have what follows. 

= = idR |q} = {¿}, 
TF0 = { c : R - > Q | / o c G C°°(R) for all / € F a } 

= { c : R — > Q | t o c = idq o c = c G C°°(R)} 
= {c : R Q | c g C°°(R) and c(R) C Q} 
= Q R nC°°(R,M). 

Thus c G Cq means that c G C°°(R, R) i.e. c is continuous in the usual 
sense. Suppose r, r' G R with r < r' and c(r) ^ c(r'). Assume c(r) < c(r'), 
thus it follows, from the Intermediate Values Theorem that, for each s G 
[c(r),c(r')] C R, there exists t G [r, r'\ such that s = c(t). That is, c takes 
all real values (rational and irrational) between c(r) and c(r'). This yields 
a contradiction since the range of c consists with only rational numbers. 
Therefore, c(r) = c(r'), for all r, r' G R with r ^ r'. Thus, c is a constant 
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function. Furthermore, 

= -

= { / : Q ^ R | / O C G C°°(R), for all c G CQ} 

= { / : Q ^ R | / o c f e € C 0 ° ( R ) , s.t. ck(t) = k,t G R , k G Q} 

= {/ : Q - R | fk G C°°(R), s.t. fk(t) = f(k), teR,keQ}. 
We say that FQ C R q such that / o ck G C°°(R) is the set of all real-valued 
functions with source Q. For, let / € MQ and A; G Q. Then f(k) determines 
a constant function 

jk : R - R, fk(t) = (/ o Cfc)(t) = f(ck(t)) = f(k). 
From the required condition / o ck G C°°(R), it follows that f € J1q iff 
^Q = RQ . 

Now, let c G CQ. Then c _ 1 (Q ) = R, c"1 (0) = 0 and for any S G P (Q ) , 
such that 0 C S C Q, 

_ ] , - . f0 for all i G R,c(t ) = a, a £ S 

° [ R for all t G R, c(t) = a, a G S. 

Since 
c ( c - 1 ( 5 ) ) = S n c ( ) = 5 n { a } , where c(R) = { a } . 

It follows that 

• c (c _ 1 (5 ) ) = 0 whenever a = c(£) £ 5 i.e. c(i) = a G Q - 5 
• c (c _ 1 (S ) ) = { a } whenever a = c(i) G S1. 

Hence, c _ 1 ( a ) = c " 1 ^ ) = R, a G 5 or c - 1 ( a ) = c - 1 ( Q - 5 ) = R, where 
a G Q-S. Therefore, R = c _ 1 (Q ) - c _ 1 ( 5 ) = R - c " 1 ^ ) . Thus, c " 1 ^ ) = 0. 
We conclude that TCq = V(Q) , that is the discrete topology. Now recall the 
inclusion rjrQ C TQq = V(Q), where J-Q = R®. It follows that for each x 

in Q, there exists a unique structure curve cx such that 

cx{t) = x and (/ o cx)(t) = f(cx(t)) = f{x) 

for all t G R and / G TQ. Thus / o cx is also constant. For any 5 where 
0 C 5 C Q ) there exists / G FQ such that / is constant on S and taking its 
value in (0, oo), but / applies Q — S in (—oo, 0]. Thus 

So, each subset of Q is open for , since 0 and Q are open for any Frolicher 
canonically generated topology on Q. Hence ryrQ = 'P(Q) = rcQ i.e. Q is a 
balanced space. 

E X A M P L E 2 . 1 . 3 . Let (R ,CR,^IR) be the Frolicher space where the gen-
erating set is the set of constant curves. By a similar reasoning as in the 
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example above, .T-R = R® and structure curves are constant. The topologies 
TJTm = TCm are discrete. We have a balanced space. 

Now, it is easy to show the following. 

LEMMA 2.3. Let <p : M —• N be a SETS-map between TIZC-objects. The 
following are equivalent: 

1. tp is a morphism. 
2. The inverse image by ip of each closed set in N is closed in M. 
3. If g~1{0, oo) is a basic open in N for T?n then <p-1(<7-1(0, oo)) is a basic 

open in M for TpM. 
4. For each p € M and each open neighborhood of ip(p) in N, there 

exists an open neighborhood Vv of p in M such that <p{Vp) C 
5. The inverse image by <p of each open set in N is open set in M relative 

to topologies T?n and . 

COROLLARY 2.1. Let <p : M —> N be a morphism. Then 

1. The family {y~l{g~l{0,oo)) | g G FN} is a base for the topology Tj^NOtp 

2. If (p is an TTZC-diffeomorphism, then (p induces an isomorphism of rings 
such that gh-+gcup =:ip*(g). It turns out that oo)) | 

g G T n } and {f~\0, oo) | / € T M ) are equipollent. Thus TJTn olfi = . 

COROLLARY 2.2. If ip is an TIZC-morphism then tp is a Top-morphism 
for both TCm and TTm . 

P r o o f . Let U G TQm i.e. for every c G CM, c~L(U) is open in R. <p smooth 
means that <£-1(<7-1(0,1)) is a subbasis open for iff for every c G Cm, 
ipo c = d where d G CAT. 

Assume U C N such that U £ T C n . It follows that d"l{U) = c~l{(p~l{U)) 
is open in R where 

tCn = {U | open in R, d G CN, U C N}. 

Thus </?_1(ZV) is open in M for 

tCm = {VI c _ 1 (V) open in R, c G CM, V C M}. 

Hence <p is continuous for TCM-
Also, assume U C N such that U G . It follows that 

n 
u = U [ fl *)], where € 

j=1 1 
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Now we can show that is open in M for T?m. 

<p-\u)=v-1 ( u n ^ ( o , i ) ) = u n v-'gjHo, i) 
ieij=i ieij=i 

^ u n i v ^ D - u n / ^ D , 
ieij=i ieij=i 

which is open in M for TJTm. Here ¡p is continuous, but for T?m. • 
LEMMA 2 . 4 . Let ip : M —> N be a map between underlying sets of J-'TIC-
objects. If (Ui)i£i is a rcM-open covering of M such that for any i, the 
restriction of ip to Hi is morphism then ip is a morphism. 
Proof. See [4]. • 

R E M A R K 2 . 1 . The last assertion was proved in [4] using functions of com-
pact support. There is no need of the compact support assumption in the 
present setting. Moreover, let ip be a Top-morphism, that is (p~l{U) is open 
in M if U is open in N. For all g E TN, U = Û EJFJV °°)> thus 

p-\U)= ( J ^ V 1 ( 0 , o o ) = ( J (goip)-\0,oo) 

is open in M. But we are not sure whether / E TM- SO, as in real analysis, 
if a map y? between Frolicher spaces is continuous, then ip is not necessarily 
smooth. 

Open and closed _7-"7?X-morphisms have same behaviour as in the usual 
setting. Note that if / E TM for an TliC-oh]eci M, then / - 1 ( 0 ) is closed 
in TTM if and only if f~H{t\ t / 0}) is TTM-open. 

EXAMPLE 2 . 1 . 4 . Let ip : R —> R be a polynomial. The graph of ip is 
smooth. Thus ip is smooth. Moreover, </?[a, b] is equal to ^ ( G ^ ) ) , where 7T2 
is the second canonical projection. Hence ip[a, 6] is closed in R. Therefore, 
tp is a closed map. 

EXAMPLE 2 . 1 . 5 . Le t 

S = {(x,y)\xy = 1} = {(x,y)\y= - and x ^ 0}. 
x 

It is clear that 
7Tl(S) = R - { 0 } , 

which is open in R in the one hand, and the map y ! : K x l - > l such that 
<p(x, y) = xy is F-smooth on the other hand. For, let / E and c E CRXR-
We have c = (cx, C2); ct € CK and 

f oipoc = /o<£>(ci,c2) = / o (ci -c2). 
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But / o (ci • c2) = / o ci • / o c2 is C°°(R, R) since each factor is C°°(R, R). 
That is, / is F-smooth and c\- c2 € C®. It follows that for c E CR2, </> is 
F-smooth with respect to the canonical structures on M2 and R since 

{<p o c)(t) = <p{ci(t), c2(t)) = Cl(t) • C2{t) = (ci • c2)(i), 

thus (pocE C ° ° ( R , R ) . The inverse image of this closed set by ip is a closed 
set. In particular {1} is closed in R, then 

<p~l{l} = {(x, y) e R 2 1 <p(x, y) = 1} = {{x, y) e R 2 1 xy = 1 } = 5 

is closed. Finally, the image of a closed set S by -K\ is an open set R — {0}, 
that is 7Ti is not a closed map. 

3. Topologies on an F-subspace 
Let M be an .F'RX-object and S a subset in its underlying set. Since the 

category TH.L is topological over SETS, complete and co-complete, S can 
be made into a subobject (see [9]) so as to carry two F-topologies. That is 
TjFs and TQs induced respectively by structure functions and structure curves 
on S, in which all smooth functions and smooth curves are continuous. The 
collection {g~l (0, oo) | g E Ts} is a base for TJFs . Moreover, S has the relative 
topology as a Top-subobject, that is TpM(S) = {SnU | U E t?m }. We shall 
now discuss the three topologies on an F-subspace. 

L E M M A 3 . 1 . Let M be an J-TZC-object, S a subset of its underlying set and 
f E TM- Then 

1. S fl / - 1 ( 0 , +oo) is rpM(S)-basic open in S. 
2 . ¿ 5 is continuous in TJ:m{S). 

Proof. 1. In the topology TJTm, a set V is open if V = U/e^-M[/_1(0i 
Thus 

s n v = s n ( | J [ r ^ o o ) ] ^ ( J [ S n r \ 0 , o o ) } . 

It remains to show that the family {S fl / _ 1 (0 , oo) | / E Fm} is closed un-
der finite intersection. Let {/¿(0, oo) | 1 < i < n} be a finite collection of 
TJm-basic open sets. Since {/~1(0, oo) | / E TM\ is closed under finite in-
tersection, H"=1 f f l ( 0 , oo) = oo) w i t h 9 € Tm- Since S D oo) 

n 
lies in the collection {S fl / - 1 ( 0 , oo) | / E TM}, then fl ff1(0, oo)) = 

¿=i n 

S fl ( P | fr1(o, oo)) = S n 0-1(O, oo) also lies in {S n / _ 1 (0 , oo)|/ E TM}-
i=1 

In the sequel {S1 H / _ 1 (0 , oo) | / E TM} is closed under finite intersection. 
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Hence it is a base for TjrM(S). That is, 5 f l / _ 1 ( 0 , oo) is a t ? m (S)-basic open 
set in S. 

2. For W e r f M , we have = SnU. So ^(U) 6 tTm(S). Thus, is 

is continuous. Moreover, ¿^ 1 ( / _ 1 (0 , oo)) = 5 f l / _ 1 ( 0 , oo) is a 7>M (S)-basic 
open set. • 

The following lemma states the transitivity principle known from general 
topology. 

L E M M A 3 . 2 . Let P and N be TlZC-subobjects of an PUC-object M such 
that P C N C M holds on the underlying sets. If P and N are endowed with 
the trace topologies t?n (P) and t?m (N) respectively, then P is also endowed 
with the trace topology 7jfm (P). 

Proof. Let W € rrN(P). Then W = P n V, where V € r^M(iV), that 
is V = N n U with U € Therefore W = P nV = P n {N r\U) = 
(PDN)nU = Pnu. Hence W € r^ M (P) . -

Now we can characterise open and closed sets in a subspace of a Frolicher 
space. 

L E M M A 3 . 3 . Let M be an FJZC-object and t^m{S) be the trace topology on 
its subobject S. Let U C S be a r^M(S)-open set. Then S is a T?M-open set 
i f , and only if U is a T?M-open set. 

Proof. 
Let U be a tfm(S)-open and assume that S is a tjtm-open. Hence 

(1) U = U ( S n fr\0, oo)) = 5 n ( U ( / f 0 , oo))) 
iei iei 

and 

(2) 

where f i , g j £ J~m- From equations 1 and 2, we have 

[ U ^ 7 l ( 0 , ° o ) ) ] n [ U i / r H o . o o ) ) ] 
jeJ iei 

= U [(ff71(0,oo))n(/r1(0,oo))] = | J ^ ( O . o o ) 
(j,i)eJxi keK 

with K = J x / , and 
( ^ ( O , oo)) = (gj\o, oo)) n ( f r \ 0 , oo)) 

since { / _ 1 (0 , oo) | / G Tm\ is stable under taking of finite intersections. 
Hence U € t?m . That is, U is a open set in M. 
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Conversely, let U be both a TJFm (S)-open set and a t?m-open set. We 
need to show that S is open in tjtm . Prom assumption, 

U=\J(gJ1(0,oo))cS. 

j€J 

Then, there is gj G Tm such that 5~1(0, oo) C S. That is, S contains a 
t?m-basic open set. So S is a rj-M-open set in M. * 

One can state Lemma 3.3 above for closed sets and prove it in a similar 
way. 

COROLLARY 3.1. If U is open (closed) for tjtm (S) and S is open (closed) 

for t?m then U is open (closed) for t?m . 

LEMMA 3.4. Let M be an TTiL-object, S a subobject of M and t?m the 

F-topology on M making the inclusion map is S • M continuous. Then 

is is an open (closed) map if, and only if S is an open (closed) set in M 

irrespective to the given topology t?m . 

Proof. 1. The open case. 

Let is be an open map. We have 

isHrH0,oo)) = ( /O t s ) - 1 ( 0 ,oo ) = ( / i s r ^ o o ) . 

But is is smooth (so continuous), so (/|S)_1(0, oo) is a basic open set 
since f\S is a generator of the smooth structure on S, for / € Tm- Thus 
Ls{f\S)~l{0, oo)) is an open set in by assumption. It follows that 

iei iei 

and also 

(4) is\M) = SOM = S. 

It follows from equations 3 and 4 above that S = (J2e/(/i|S')^1(0, oo). Hence 
S £ TTm C TCM. 

Let S be open set in M for ryrM. From Lemma 3.3, any r^-M(>5)-open IA 

is also open. That is, 

U = U [S n ( U °°))] with S = U V^0' hi e T m for a11 j-
ter iei jeJ 
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Therefore, 

u = U [ ( U V 1 ^ n ( U / « ' ( O , - ° o ) ) 
teT jeJ iei 

= U [ U (V1(0,cx3)n(J/^(0,oo))" 
teT (j,i,t)eJxixT iei 

= U [ U 9£(0,ooj\= (J ^(0,00), 
teT (j,i,t)eJxixT keK 

for (fa 6 TM- It follows that U = LS{U) is open in TJFm for every rjrM (5)-
open U. Therefore, ¿5 is an open map. 

2. Obviously, the closed case can be proved in a similar way. • 

PROPOSITION 3.1. Let S be a subspace of an FKC-object M. Then t?m
C Tfs C tcs . That is, the trace topology (S) is the smallest topology on 
S for which the inclusion map is is continuous. 
Proof. 1. Let U € TFm{S). That is, 

u = S n V = ( J ( S n f-\0, oo)), with V = \J f r \ 0,00). 
iei i 

It follows that 

U = U(^1(/r1(0,oo))) = U((/ iois)-1(0,oo)) = {J(g-\0,™)) e 
iei iei iei 

where gl = fi\S. So the required inclusions hold. 
2. Let V € TpM(S) and r is any topology on 5, where ¿5 is continuous. 

Then V = SOU, with U € t?m and il^iU) E r since ¿5 is continuous for r. 
So, Lsl{U) = S nU = V. Hence V £ r and t?m (S) C r is the smallest 
topology on S for which ¿5 is continuous. • 

PROPOSITION 3.2. Let M be an FllC-object and S a subset of its under-
lying set. The following hold: if S £ 7yM, then T?s = TJ^m{S). If S £ rc
then TCS = TCm{S). 

Proof. 1. Assume U £ TJ?S, that is U = Uie/ °°))> where fi € 
Tm and fi\S is a generator of the structure (Cs, Ts)- It follows that 

U = CS\S{U) = t s 1 [ U isifilSrHo, 00))] = is1
 [ U fr\0,00)" 

iei iei 

= \J[tf(fr\0, <*>))] = \J[Snfr\0,oo)] e rrM(S), 
iei iei 

using the fact that S is open and ¿5 is an open map. That is, TJPS C 
The reverse inclusion t?m (S) C t?s was proved in Proposition 3.1 above. 
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2. Assume U € TCs, that is € rcR, with d G Cs• But S G TQM, 
hence for some c G CM, c_ 1(5') G tjr = tjr. (We used the fact that rcR = 7m). 
Let d G C5. It follows that 

dr\u) = d-\rs\iS{u)) = ( t s o d ) - 1 ^ ) ) = c-\u), 

where c G Cm- Since ¿5 is smooth, d_1(ZV) = c~l(U) G tjr. N o w U G t c m , 
that i s W c S c i l i . It follows that 

U = is 1 { i s {U)) = 5 f l i S ( W ) = 5 n ^ G r c M ( 5 ) 
since ZV G rcM. Therefore rcM(S) D t C s . Hence, TCS = TCm(S). m 

4. F-quotient space and associated topologies 
In this section, an F-quotient space is regarded as a final object whose 

structure is obtained by the process of lifting from the category S£TS to 
the category TTZJC. That the quotient structure exists in the category TTIL 
was proved in [9]. 

In what follows, we are given an equivalence relation ~ on the under-
lying set of an !FlZC-oh}cct M such that the quotient M := Mf ~ in SETS 
is given the final Frolicher structure generated by the canonical map n^ : 
M —> M. Recall the universality condition as follows. For an arbitrary 
object N G SETS and a map / : M —> N, one obtains an equivalence 
relation in the underlying set M by defining (x,y) G~/ if and only if 
f(x) = f(y), for x,y G M, the equivalence classes of which are the fibers 
of /. They are f~1(s), where s G im(f). 

Taking / = it is clear that every equivalence relation ~ arises in 
this way. The map / is said to be consistent with ~ if x ~ y implies 
f(x) = f(y), i.e. / is constant on each equivalence class modulo ~ and 
there exists a unique one-to-one map g : M —> N such that gon^ = f . That 
is, f(x) = g(n^(x)) = g([x]). This associated map g is one-to-one due to 
the fact that is the kernel equivalence of /, that is, the consistency of 
~ with the smooth map / G TM- In this case, [x] [y] implies f(x) / 
f(y) and thus g([x]) ^ g([y}) or alternatively g([x\) = <j([y]) reads f(x) 
= f(y). Thus f-\f(x)) = rHHv)) Yields 

{s G M | f(s) = f(x)} = {te M\ f(t) = /(</)}, 

that is, [x] = \y\. Without the consistency of ~ with / G J~M, the inclusions 
7r o CM C and o 7r C J~M have to be strict, [x] G M if and only if 
7 r _ 1 ( N ) = {V e M\ f(y) = f{x)} if and only if / ( ^ ( M ) ) = f(x) = 
if and only if / o -k 1 = g. 

Let Hom^(M,N) denote the subalgebra of Hom(M,N) consisting of 
functions which are constant on equivalence classes of Hence there is 
an algebra isomorphism among Hom(M, N) and Hom(M, N), in particular 
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among Hom^(M, R) and Hom(M, R) for TV = R in our case. And from this 
property of g, the algebra Hom(M, R) separates points of M, which are the 
equivalence classes of ~ . This is the reason why we choose to work with 
the kernel equivalence. More general equivalence relations can be considered, 
but the conclusions of these investigations are beyond this work. 

Now we need to describe the Frolicher structure on the quotient. Let C0M 
be a set of curves generating an F-structure on M. Then C0 = {7r O C \ c G 
C0M} will generate an F-structure on M as follows. 

= Mo 

= {g : M R | g o (TT O C) € C°°(R), for all TT O C € CQ} 
= {g:M^R\go(iroc)e C°°(R), for all c G CoM} 

= {g : M -> R I ( j o T r ) o c e C°°(R), for all c G CoM} 
= { g : M ^ R , g o i r £ f M } . 

The structure curves are given by 

CM = r *c 0 = r 
= M \ goce C ° ° ( R ) , for all g G J7^}-

Since 5 o TT G TM, we have g o 7r O C G C°°(R) for all c G CM- That is, 
Cj^ = {-7T o c, c G CM}- Also COM Q CM and Co C C (see [9], [3]), then from 
Lemma 2.3, C = TT O C shows that the canonical map is an J^7?,£-morphism. 
Its smoothness reads J7^ o IT C TM if, and only if 7r O CM C C^. 

DEFINITION 4.1. The F-space (M, C^, T ^ ) is called an F-quotient space of 
the F-space M by the equivalence relation The pair (C^, T^) is the final 
F-quotient structure (quotient structure for short) making 7r into a smooth 
map. 

DEFINITION 4 . 2 . Let M be an TUC-object and a kernel equivalence 
on M. The topology generated on the quotient space M = M/ by struc-
ture functions is R ^ = {U C M\f~l{V) = U, V G TFr, / G with sub-
base S = { / - 1 (0 ,1 ) I / e Fm) a n d b a s e s i v e n by B = { / _ 1 ( 0 >+°° ) I / e 

The topology generated by structure curves on the quotient space 
is given by tca = {O C M | c _ 1 ( 0 ) G tjtr}, where c is a structure curve 
on M. Both Tjr as well as tq^ are called F-topologies on M or F-quotient 
topologies. 

Recall that the quotient topology (or standard quotient topology or iden-
tification topology) on M is the one which is generated by the canonical map 
tt : M M = M/ It is defined by = {V C M : 7 r _ 1 ( F ) G t?m} and 
known to be the strongest one in which 7r is continuous. In this section we 
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need to compare three topologies on M, two of which arise from the Frolicher 
quotient structure. Recall that: 

1. G c M i s a TV,-closed set in M if, and only if ir~l(G) = F is a TJFm -closed 
set in M. ForTT-^G) = nx~l{M-V) = n'1 (M) - n'1 (V) = M -U = 

F, where V G and U G t?m. 
2. The identification topology is Hausdorff. For, let g G and let [z] ^ [y]. 

Hence p([x]) ^ g([y]) since g is injective. Thus g separates points in M. 

3. The identification topology is the largest (finest) topology in M for which 
7r is continuous. So r ^ C r^. For, let r be another topology making 
7r a continuous map on M. Let V G r. It follows from the continuity 
of 7r, that n~l{V) G t?m that is V G r^. Hence r C r^. In particular, 

C T ~ 
4. Let 7r : M —» M be the canonical projection. Then 7r is open (closed) 

map with respect to tj?m and r^. In effect, let W be a r^M-open set in 
M, i.e. ZV = U j e j f i H ^ + o o ) . Then 

Tr(W) = 7r ( lJ ( (/7 1 (0 ,+oo) ) ) ) = ( J o (0, +oo)). 
jeJ jeJ 

We need to show that n(U) is open in M. That is, n~l{ir(U) must lie in 
Tm- But 

t r \ n ( U ) ) = 7T"1 ( [jn(f-l(0,00))) = | J ^ W ^ O , oo) ) 
i j 

contains (J ./_1 (0, oo). It follows that 7r_1(7r(W)) is open in 7JFm. Then 
so is ir(U). Thus, 7r is an open map. The proof is similar using a closed 
set. 

LEMMA 4.1. Let n : M M be the canonical projection. Let g G T^ 

such that g o n = /, / G J~m- Then g is open (closed) map with respect to 

t^ and tr if, and only if f (Li) is open (closed) set for each open (closed) set 

U = 7r_17rU. Let us say that U is ir-satured. 

Proof. "=>•" Assume that g is an open map with respect to R̂  and TJR. 
That is g(V) G 7Tr for any V G r^. Hence k~1(V) = U is a TjrM-open 
set in M by definition of r^. Applying n to both sides yields naturally 
V = tt(U) by surjectivity of it. Thus U = ir~l(V) = 7r-17tU. It follows 
that g(V) = gn(U) = f{U) is an open set in 7JFr such that U — and 
/ G Fm-

Assume f{U) be a r^-open set with U = ir~ljrU. That is, 

(5) f{U) = /(TT-VZY) = (fn-^nli) = g(nU). 
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Let V € By the definition of and the surjectivity of n, it follows that 

(6) =U, V € rjFMif, and only if V = ir(W). 

Therefore, from equations 5 and 6, f(U) = g(V) is a riR-open set, with V 
any r^-open set in M. Hence g is an open map. 

It is no difficult to prove the closeness of 7r. • 

C O R O L L A R Y 4 . 1 . Let R a n d t?m be given on M. Then B = {irU \ 

U G rjrM} is a base for and B = {7r( / - 1 (0 ,+oo) ) | / 6 Tm} is a base 

forr 

Proof. Let V € r^ . That is, V = irU with U 6 t?m by definition of 
and Lemma 4.1. Thus B = r^ is the trivial base. From the universality 
condition, 7r(/-1(0,+OO)) - p_ 1(0, +oo). Thus B is the standard base of 
the F-space M. m 

P R O P O S I T I O N 4 . 1 . Given the three topologies defined on M. Then t?^ = 
TCm = 

Proof. In the above section, we proved that r ^ C tq^ C We need 
to show that one can reverse these inclusions. Let V € Prom as-
sumption, 7r_1(F) lies in the weakest topology on M in which ir is 
continuous. Hence, 7r - 1(F) = U/ej~M / _ 1 (0 i But it is surjective, so 
7r(7r-1(V)) = V = U/e^ M

 7r/~1(0) Prom the universality condition on 
F-quotient, there exists a unique map g £ J7^ such that f = g o n. So, 

f~\0, oo) = (57r) _ 1 (0 , oo) = ir-'g-1(0, oo) 

and 
7Tf- 1^, OO) = TTiTT-Hr^O, °o))) = ¿T^O, (X)) 

again since it is surjective. This ends the proof. • 

R E M A R K 4 . 1 . Note that because the three topologies coincide, they can 
indiscriminately be denoted by one of the three symbols r ~ or TJF - or TC . . 
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