DEMONSTRATIO MATHEMATICA
Vol. XLII No 3 2009

A. Batubenge, H. Tshilombo

TOPOLOGIES AND SMOOTH MAPS ON INITIAL
AND FINAL OBJECTS IN THE CATEGORY
OF FROLICHER SPACES

Abstract. In this paper, we show that when the Frélicher smooth structure is induced
on a subset or a quotient set, there are three natural topologies underlying the resulting
object. We study these topologies and compare them in each case. It is known that the
topology generated by strucure functions is the weakest one in which all functions and
curves on the space are continuous. We show that on a subspace, it is rather the trace
topology which has this property, while the three topologies are coincident on the quotient
space. We construct a base for the Frolicher topology and using either a base or a subbase
in the sense of A. Frélicher [9], we characterise the morphisms of this category.

1. Introduction

The topology of a Frolicher space (M,Cps, Fum) was defined in [9]
as the initial topology generated by structure functions f € RM, with
{f~1(0,1)}sex,, as a subbase. It was studied by A. Cap [4] for the pur-
pose of K-theory, and investigated by B. Dugmore [7] and P. Cherenack
[6] as well. In [9], Frolicher and Kriegl proved that the category of smooth
spaces (now called Frolicher spaces) is complete and co-complete, so that
it has both initial and final objects. Later on, Cherenack showed that this
category is topological over SETS. In a further work, Dugmore constructed
a base for the topology of these spaces and focused his study on homo-
topy theory. He used the function ¢ : (0,+00) — (0,1) defined by ¢(¢t) =
et and ¢ : (—00,0] — {0}, which is not a bijection onto the whole R.
In this work we rather speak of topologies on a Frélicher space, as they
are many indeed and we will have to compare them. Using the C* diffeo-
morphism ¢ : (0,+00) = (0,1) U [1,+00) — R given by ¢(t) = —t + 1,
the inverse of which maps each structure function onto a positive one, we
shall obtain the same base {f~1(0,+00)}sex,, for the initial topology from
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which open (-closed) sets, open (-closed) maps, and smooth maps between
Frolicher spaces can be easily characterised. From the topologies underlying
a Frolicher space, it will be clear that most usual properties in the category
Top hold true in the category FRL. As a main result of this work, we shall
use our base in order to compare the topologies underlying a Frolicher sub-
space as initial object in the one hand, and quotient space as a final object
on the other hand. Then, we show that both the canonical inclusion and
projection are open maps.

Throughout this text, an FRL-object or simply an object M will mean
a Frolicher space (M, Cpr, Far), and an FRL-morphism or a morphism will
mean a smooth map in the sense of Frolicher. We shall verify that morphisms
(structure functions and curves as well) are continuous in both topologies
of curves and functions, and will denote by C*®°(M,N) = {9 : M —
N | ¢ is F-smooth} the set of all morphisms between objects M and N.

Recall that an FRL-morphism between two M and N is that map ¢
such that Fy o C Fyr or, equivalently, poCpr C Cy. It follows that fop €
C>®(M, P) whenever ¢ € C*°(M,N) and § € C*(N, P). Consequently, a
map ¢ : M — N between FRL-objetcs is a morphism if, and only if f o ¢
is an FRL-morphism, where # : N — P is an FR.L-morphism.

2. Topologies on a Frolicher space

DEFINITION 2.1. The topology induced by all the structure functions of
an object M is the collection 7, = {U C MU = Usc5,, f~Y(V)}, where V
lies in the standard topology of R. The topology induced by all the structure
curves is 7¢,, = {U C M|c" (U) € T}, where ¢ € Cp.
LEMMA 2.1. 75, C 7¢,,-
Proof. LetU € 7z,,. Thatis, U = Usc £, f~Y(V) where V is open in R. For
an arbitrary ¢ € Cyr, ¢ HU) = c“l(Ufe}-M i) = User, (fo c)"HV)
€ TCp-

But V € 7g and focis C*™. Hence ¢~} (i) is an open set in R as arbitrary
union of elements of 7. Thus U € ¢,,. =

An FRL-object M where 75,, = 7¢,, is called a balanced space in [4],
where a compact Hausdorff balanced F-space is called a base space. Note
that M is Hausdorff if 7#,, and 7¢,, are both Hausdorff.

From the lemma above, the topology of a Frolicher space M shall be
its weakest topology 7r,, induced by structure functions, unless otherwise
specified.

LEMMA 2.2. Let M be an F-space and R endowed with the canonical F-
structure. Then ¢ : (0,400) = R, t— ¢(t) = -t + % and its inverse ¢!
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are bijective and smooth functions in the usual sense. For any g € Far there
erists a unique f : M — (0,+00) such that f € Fyr and g = ¢po f and

f=¢"tog.

Proof. 1. Considering the partition below for both the domain and codo-
main of the function ¢: (0,+o00) = (0,1)U[1, +00) and R = (0, +00)U(—00, 0]
it is easy to see that ¢ is C'°°, monotonic decreasing and a bijection and also
its inverse is C*°. So, ¢ is a diffeomorphism.

2. Let g € Fpr and ¢ as defined above. Then there is a unique f :
M — (0,+00) such that f = ¢"1ogand g = ¢ o f. Hence f € Fps. Fur-
thermore, ¢(0,1) = (0,+o00) and ¢~1(0,400) = (0,1). Hence, g~1(0, +00)
= g 4¢(0,1)) = f o Y¢(0,1))) = f71(0,1), which yields the re-
quired bijection Fpy — Fu in such a way that ¢ — f = ¢! o g and
{g71(0, 400) }gerp — {710, 1)} rery » With g71(0,400) = f71(0,1). The
obtained collection is a base for the initial topology 7z,,. =

2.1. Examples

ExAMPLE 2.1.1. Let (R",C,F) be the canonical F-space. That is, C =
C>®(R,R") and F = C*(R™ R). The topology 7¢,. coincides with the
Euclidean topology. Also R" is a differentiable manifold. So, 7£,, = 7¢,,¢
(see [6]). Thus, (R™,C,F) is a base space.

EXAMPLE 2.1.2. Consider the Frolicher space (Q,Cq, Fg), with the canon-
ical structure generated by its inclusion in R which is an F-smooth map. It
is easy to see that Cg = {c : R — Q| c is constant } and Fg = RQ. In effect,
as observed by P. Iglesias (see [10]), we have what follows.

foz{L:QL»]RM:ide}:{L},
TF,={c:R—Q|foce C®R) for all f € F,}
={c:R—->Q|toc=1idgoc=ce C®R)}
={c:R—- Q|ce C>®R) and c(R) C Q}
— QR N C>(R, R).

Thus ¢ € Cg means that ¢ € C*(R,R) ie. ¢ is continuous in the usual
sense. Suppose 7,7" € R with r < v/ and ¢(r) # ¢(r'). Assume c(r) < ¢(r'),
thus it follows, from the Intermediate Values Theorem that, for each s €
[e(r), c(r")] C R, there exists t € [r,r'] such that s = c(t). That is, c takes
all real values (rational and irrational) between c¢(r) and c¢(r’). This yields
a contradiction since the range of ¢ consists with only rational numbers.
Therefore, c(r) = ¢(r'), for all ;7 € R with r # /. Thus, c is a constant
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function. Furthermore,
JFq = ®T'F, = ®Cg
={f:Q—=R|foce C®R), for all ¢ € Cg}
={f: Q- R|focy € C°(R), s.t. cx(t) =k,t €eR, k € Q}
— {f: Q- R|f € CX(R), st. fu(t) = f(k),t € R,k € Q}.
We say that Fg C R such that foc; € C®(R) is the set of all real-valued

functions with source Q. For, let f € R and k € Q. Then f(k) determines
a constant function

Jo :Ro R, filt) = (f o) (t) = f(ek(t) = f(k).
From the required condition f o ¢, € C(R), it follows that f € Fg iff
JFo = RC.
Now, let ¢ € Cg. Then ¢~ }(Q) =R, ¢ (@) = 0 and for any S € P(Q),
such that 0 G S G Q,

(S = § forallteR,c(t)=a, ag¢ S
" |R forallteR,c(t) =a, a€S.

Since
c(cH(S)) = Sne() = SN {a}, where ¢(R) = {a}.

It follows that

e c(c71(S)) =0 whenever a =c(t) ¢ Sie. c(t) =ac Q-8

e c(c7!(S)) = {a} whenever a = c(t) € S.
Hence, c}(a) =c1(S) =R, a€ S or c!(a)=c1(Q—-S) =R, where
a € Q—S. Therefore, R = ¢7}(Q) —c71(S) = R—c"(5). Thus, ¢~ 1(S) = 0.
We conclude that 7¢, = P(Q), that is the discrete topology. Now recall the

inclusion 75, C 7¢, = P(Q), where Fg = RQ. It follows that for each z
in Q, there exists a unique structure curve c; such that

co(t) = = and (f o cz)(t) = f(ea(t)) = f(2)
for all t € R and f € Fg. Thus f oc; is also constant. For any S where
0GS g Q, there exists f € Fg such that f is constant on S and taking its
value in (0, 00), but f applies Q — S in (—o0,0]. Thus
S = f710,400) € Tx,.
So, each subset of Q is open for 7, since @ and Q are open for any Frolicher

canonically generated topology on Q. Hence 75, = P(Q) = 7¢, ie. Qis a
balanced space.

ExAMPLE 2.1.3. Let (R,Cr, Fgr) be the Frolicher space where the gen-
erating set is the set of constant curves. By a similar reasoning as in the
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example above, Fg = RR and structure curves are constant. The topologies
TF, = Tc,, are discrete. We have a balanced space.

Now, it is easy to show the following.

LEMMA 2.3. Let o : M — N be a SETS-map between FRL-objects. The
following are equivalent:

1. ¢ is a morphism.

2. The inverse image by ¢ of each closed set in N is closed in M.

3. If g71(0,00) is a basic open in N for T, then o~ 1(g~1(0,00)) is a basic
open in M for 1r,,.

4. For each p € M and each open neighborhood W,y of ¢(p) in N, there
exists an open neighborhood Vy, of p in M such that o(Vp) C Wp-

5. The inverse image by @ of each open set in N is open set in M relative
to topologies T7r, and 7r,,.

COROLLARY 2.1. Let ¢ : M — N be a morphism. Then

1. The family {¢ = (g71(0,00)) | g € Fn} is a base for the topology Tryoyp
CTFpy-

2. If ¢ is an FRL-diffeomorphism, then ¢ induces an isomorphism of rings
Fn — Fu such that g— gop=¢*(g). It turns out that {o " (g7*(0,00)) |
g € Fn} and {f71(0,00) | f € Fum} are equipollent. Thus Tryop = Try, -

COROLLARY 2.2. If ¢ is an FRL-morphism then ¢ is a Top-morphism
for both 7¢,, and 7£,,.

Proof. Let U € 7¢,, i.e. for every ¢ € Cpy, ¢~ }(U) is open in R. ¢ smooth
means that ¢~1(g71(0,1)) is a subbasis open for 7f,,, iff for every c € Cyy,
poc=d whered € Cy. ,
Assume U C N such that U € ¢,,. It follows that d~1(U) = c~ (o~} (UU))

is open in R where

ey = {U|d"*(U) open in R,d € Cy,U C N}.
Thus ¢~} (U) is open in M for

ey = {V ] H(V) open in R,c € Cp,V € M},

Hence ¢ is continuous for 7¢,,.
Also, assume U C N such that U € 7x,. It follows that

U= U [ﬁ gj_l(O, 1)] where g; € Fn.

el j=1 '
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Now we can show that ¢~1(i/) is open in M for 7x,,.

= (UN g o) =UNe g 00

i€l j=1 el j=1
n n
=UN@ew 0,1 =JN f0,1),
i€l j=1 iel j=1

which is open in M for 7x,,. Here ¢ is continuous, but for 77,,. =

LEMMA 2.4. Let ¢ : M — N be a map between underlying sets of FRL-
objects. If (Us)ier s a ¢, -open covering of M such that for any i, the
restriction of ¢ to U; is morphism then  is a morphism.

Proof. See [4]. »

REMARK 2.1. The last assertion was proved in [4] using functions of com-
pact support. There is no need of the compact support assumption in the
present setting. Moreover, let ¢ be a Top-morphism, that is ¢~1(lf) is open
in M ifd isopenin N. For all g € Fny, U = UgefN 9710, 0), thus

e )= | ¢g710,00)= | (go9)7(0,00)
geEFN gEFN
is open in M. But we are not sure whether f € Fjs. So, as in real analysis,
if a map ¢ between Frolicher spaces is continuous, then ¢ is not necessarily
smooth.
Open and closed FRL-morphisms have same behaviour as in the usual
setting. Note that if f € Fps for an FRL-object M, then f~1(0) is closed
in 77,, if and only if f~1({t| t # 0}) is 7,,-open.

EXAMPLE 2.1.4. Let ¢ : R — R be a polynomial. The graph of ¢ is
smooth. Thus ¢ is smooth. Moreover, ¢[a, b] is equal to m2(G(y)), where 2
is the second canonical projection. Hence ¢[a, b] is closed in R. Therefore,
@ is a closed map.

ExAmMPLE 2.1.5. Let
1
S={(z,9)|zy =1} ={(z,y) |y = - and z # 0}.

It is clear that
71(S) = R — {0},

which is open in R in the one hand, and the map ¢ : R x R — R such that
¢(z,y) = zy is F-smooth on the other hand. For, let f € Fg and ¢ € Crxr.
We have ¢ = (c1, ¢2); ¢; € Cg and

fopoc=foplc,c) = folen-ca)
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But fo(cy-c2) = foer- focgis C°(R,R) since each factor is C°(R, R).
That is, f is F-smooth and ¢; - ¢ € Cg. It follows that for ¢ € Cgz, ¢ is
F-smooth with respect to the canonical structures on R? and R since

(poc)(t) = plci(t), c2(t)) = ca(t) - ca(t) = (e1 - e2)(8),
thus ¢ o ¢ € C°(R,R). The inverse image of this closed set by ¢ is a closed
set. In particular {1} is closed in R, then

¢ 1} = {(z,9) eR?|p(z,y) =1} = {(z,y) e R’ |2y =1} = S
is closed. Finally, the image of a closed set S by 7 is an open set R — {0},
that is 7 is not a closed map.

3. Topologies on an F-subspace

Let M be an FRL-object and S a subset in its underlying set. Since the
category FRL is topological over SETS, complete and co-complete, S can
be made into a subobject (see [9]) so as to carry two F-topologies. That is
Trs and 7¢, induced respectively by structure functions and structure curves
on S, in which all smooth functions and smooth curves are continuous. The
collection {g~1(0,00) | g € Fs} is a base for 7. Moreover, S has the relative
topology as a Top-subobject, that is 7£,,(S) = {SNU | U € 7£,,}. We shall
now discuss the three topologies on an F-subspace.

LEMMA 3.1. Let M be an FRL-object, S a subset of its underlying set and
f € Frm. Then

1. SN f71(0,+00) is 75, (S)-basic open in S.

2. 1g is continuous in Tx,(S).

Proof. 1. In the topology 7x,,, a set V is open if V = e, [f~1(0, 00)].
Thus

SﬂV:Sﬂ( U [f-l(o,oo)])= U 1SN £71(0,00))-
fEFM feFm

It remains to show that the family {S N f~1(0,00) | f € Fa} is closed un-

der finite intersection. Let {fi(0,00) | 1 < 7 < n} be a finite collection of

75,,-basic open sets. Since {f71(0,00) | f € Fas} is closed under finite in-

tersection, (Yo, £, 1(0,00) = g~1(0, 00) with g € Fps. Since SN £71(0,00)
n

lies in the collection {S N f~1(0,00) | f € Far}, then ﬂ(Sﬁ £710,00)) =

i=1
SN (m £710,00)) = SN g71(0,00) also lies in {S N f~1(0,00)|f € Fu}.
i=1

In the sequel {SN f71(0,00) | f € Far} is closed under finite intersection.
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Hence it is a base for 7£,,(S). That is, SN f71(0, 00) is a 7£,,(S)-basic open
set in S.

2. ForU € 7x,,, we have 15" (U) = SNU. So 15 (U) € 7£,,(S). Thus, 15
is continuous. Moreover, ¢5'(f(0,00)) = SN f~1(0,00) is a 7x,, (S)-basic
open set. =

The following lemma states the transitivity principle known from general
topology.

LEMMA 3.2. Let P and N be FRL-subobjects of an FRL-object M such
that P C N C M holds on the underlying sets. If P and N are endowed with
the trace topologies T, (P) and 75,,(N) respectively, then P is also endowed
with the trace topology 7r,,(P).

Proof. Let W € 7, (P). Then W = PNV, where V € 75, (N), that
isV=NNU withh € 75,,. Therefore W = PNV = PN(NNU) =
(PONN)NU=PNU. Hence W € 7£,,(P). »

Now we can characterise open and closed sets in a subspace of a Frolicher
space.

LEMMA 3.3. Let M be an FRL-object and 7x,,(S) be the trace topology on
its subobject S. Let U C S be a Tx,,(S)-open set. Then S is a Tx,,-open set
if, and only of U 1is a Tx,,-open set.

Proof.
Let U be a 7£,,(S9)-open and assume that S is a 7r,,-open. Hence
(1) U= J(SN 71(0,00) = SN (U(f[l(o, oo)))
i€l el
and
(2) S = [J(g;(0,00)
jedJ

where f;, g; € Fu. From equations 1 and 2, we have
u=[ U000 n [0 0,00))]
jeJ i€l
= U [g710.00) N (£;71(0,000)] = | h5(0,00)

(3:)eIxI keK
with K = J x I, and
(hi'(0,00)) = (g7 1(0,0)) N (f7(0,00))

since {f71(0,00) | f € Fu} is stable under taking of finite intersections.
Hence U € 7r,,. That is, U is a 7F,,-open set in M.



Topologies of Frélicher spaces 649

Conversely, let U be both a 7£,,(S)-open set and a 7r,,-open set. We
need to show that S is open in 7x,,. From assumption,

U =J(67(0,00)) C 5.
jeJ

Then, there is g; € Fp such that g; ~1(0,00) C S. That is, S contains a
T7,,-basic open set. So S is a 7f,,-open set in M. =

One can state Lemma 3.3 above for closed sets and prove it in a similar
way.

COROLLARY 3.1. IfU is open (closed) for 7£,,(S) and S is open (closed)
for Tx,, then U 1is open (closed) for 7r,,.

LEMMA 3.4. Let M be an FRL-object, S a subobject of M and 7r,, the
F-topology on M making the inclusion map tg : S — M continuous. Then
ts 1s an open (closed) map if, and only if S is an open (closed) set in M
irrespective to the given topology 7F,,.

Proof. 1. The open case.
Let ¢s be an open map. We have

g (f71(0,00)) = (f 0 15)71(0,00) = (£|5)71(0, 00).

But s is smooth (so continuous), so (f|S)~1(0,00) is a basic open set
since f|S is a generator of the smooth structure on S, for f € Fpr. Thus
¢ts(f]S)71(0,00)) is an open set in 7x,, by assumption. It follows that

(3) ') = 5t (U £70,00) = Jfil$) (0, 0)
el el

and also

(4) M) =8SNM=38.

It follows from equations 3 and 4 above that S = (J;;(f:|S) (0, 00). Hence
Se TFm C TCar-

Let S be open set in M for 7r,,. From Lemma 3.3, any 7#,,(S)-open U
is also 7£,,-open. That is,

u=J [Sm (Ufigl(o, oo))] with § = | Jh;1(0,00), h; € Far for all j.

teT iel jeJ
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Therefore,
U= [(Ur'o,00)n (s (0,00)]
teT ] jeJ i€l
= U #0000 ' (0,00)]

teT  (jit)eIxIXT i€l

= [ U gﬂt (0, oo)] U gkl(O 00)

teT  (jit)eJxIxT keK

for gr, € Far. It follows that & = 1g(U) is open in 7r,, for every 75, (S)-
open U. Therefore, 15 is an open map.
2. Obviously, the closed case can be proved in a similar way. =

PROPOSITION 3.1. Let S be a subspace of an FRL-object M. Then 7r,,(S)
C 7rg C Tcg- That is, the trace topology 77,,(S) is the smallest topology on
S for which the inclusion map tg is continuous.

Proof. 1. Let U € 7£,,(S). That is,

U=S8nV =[J(8n £71(0,00)), with V = J £7(0, 00).
i€l i
It follows that
U= J@s' (71(0,00))) = [ J((fi 0 15)71(0,00)) = | (g;71(0,00)) € 755,
iel i€l i€l
where g; = fi|S. So the required inclusions hold.
2. Let V € 7£,,(S) and 7 is any topology on S, where g is continuous.
Then V = SNU, with U € 7,, and 15 (U) € T since ¢ is continuous for .

So, 13t (U) = SNU = V. Hence V € 7 and 75, (S) C 7 is the smallest
topology on S for which ¢g is continuous. =

PROPOSITION 3.2. Let M be an FRL-object and S a subset of its under-
lying set. The following hold: if S € 7r,,, then 75, = 75,,(S). If S € 1¢,,,
then 1cs = 1¢,,(S5).

Proof. 1. Assume U € 7z, that is U = (J;c; (fi|S)71(0,00)), where f; €
Fu and f;|S is a generator of the structure (Cg, Fs). It follows that

U = izhsth) = 5[ U es(£19)71(0,00))] = 5t [ 5740, 0)
el ' i€l
= Jls (57 0,000) = IS 1 £71(0, 00)] € 7, (),
el el

using the fact that S is open and tg is an open map. That is, 7£, C 7£,,.
The reverse inclusion 7x,,(S) C 7£, was proved in Proposition 3.1 above.
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2. Assume U € 7¢g, that is d~1(U) € ¢, with d € Cs. But S € 7¢,,,
hence for some ¢ € Cpz, ¢71(S) € TR = 7r. (We used the fact that ¢, = 7r)-
Let d € Cs. It follows that

d7MU) = d7 (15 (s W) = (s 0 d) (s W) = 1Y),

where ¢ € Cps. Since 1g is smooth, d~1(U) = ¢ () € r. Now U € 7¢,,,
that isid C S C M. It follows that

U= 15" (sU)) = SNusU) = SNU € 1¢,,(S)
since U € 7¢,,. Therefore 7¢,,(S) D 1¢s. Hence, ¢y = 7¢,,(S). »

4. F-quotient space and associated topologies

In this section, an F-quotient space is regarded as a final object whose
structure is obtained by the process of lifting from the category SETS to
the category FRL. That the quotient structure exists in the category FRL
was proved in [9].

In what follows, we are given an equivalence relation ~ on the under-
lying set of an FRL-object M such that the quotient M:=M / ~in SETS
is given the final Frolicher structure generated by the canonical map m.,
M — M. Recall the universality condition as follows. For an arbitrary
object N € SETS and a map f : M — N, one obtains an equivalence
relation ~; in the underlying set M by defining (x,y) €~y if and only if
f(x) = f(y), for x,y € M, the equivalence classes of which are the fibers
of f. They are f~!(s), where s € im(f).

Taking f = w., it is clear that every equivalence relation ~ arises in
this way. The map f is said to be consistent with ~ if x ~ y implies
f(z) = f(y), i.e. f is constant on each equivalence class modulo ~ and
there exists a unique one-to-one map § : M — N such that jor. = f. That
is, f(z) = g(n~(z)) = g([z]). This associated map § is one-to-one due to
the fact that ~; is the kernel equivalence of f, that is, the consistency of
~ with the smooth map f € Fjps. In this case, (2] 7é [y] implies f(z) #
f(y) and thus g([z]) # §([y]) or alternatively g([z]) = g([y]) reads f(z)
= f(y). Thus f~'(f(z)) = f~'(f(y)) yields

{SGle(S) f@)}={te M|f({t) =)}

that is, [z] = [y]. Without the consistency of ~ with f € Fpy, the inclusions
T oCM C Cy and Fy o C Fa have to be strict. [z] € M if and only if
z)) ={ye M| f(y) f(z)} if and only if f(7~([z])) = f(z) = §([z)),
1fand0nly1ffo7r l=g.
Let Hom.(M,N) denote the subalgebra of Hom(M, N) consisting of
functions which are constant on equivalence classes of ~. Hence there is
an algebra isomorphism among Hom(M, N) and H om(M ,N), in particular
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among Hom..(M,R) and H om(M R) for N = R in our case. And from this
property of g, the algebra H om(M R) separates points of M, which are the
equivalence classes of ~ . This is the reason why we choose to work with
the kernel equivalence. More general equivalence relations can be considered,
but the conclusions of these investigations are beyond this work.

Now we need to describe the Frélicher structure on the quotient. Let Cops
be a set of curves generating an F-structure on M. Then C, = {mroc|c €
Con} will generate an F-structure on M as follows.

Fi = ®Co
={G: M —>R|go(moc)e C®(R), forall moceCl}
={§: M —R|jo(moc) € C®(R), forall c € Cop}
={G: M —>R|(§om)oce€ C®(R), forall c€ Cop}
={§g: M - R, gore Fuy}.
The structure curves are given by
Cyy =T®C, =TF;
={¢:R— M| §oée C®(R), forallje Fy}.
Since jom € Fp, we have owoc € C®(R) for all ¢ € Cpr. That is,
Cy={moc, c€Cun}. Also Copmr € Car and Cp C C (see [9], [3]), then from

Lemma 2.3, ¢ = m o ¢ shows that the canonical map is an FRL-morphism.
Its smoothness reads Fy; om C F if, and only if m o Cpr C Cp.

DEFINITION 4.1. The F-space (M,C 51 Fxz) is called an F-quotient space of
the F-space M by the equivalence relation ~. The pair (Cy;, Fj;) is the final
F-quotient structure (quotient structure for short) making # into a smooth
map.

DEFINITION 4.2. Let M be an FRL-object and ~ a kernel equivalence
on M. The topology generated on the quotient space M = M / ~ by struc-
ture functions is 7, = {U C M|f~Y(V)=U, Verr, fc F iz} with sub-
base § = {f71(0,1) | f € Fy} and base given by B = {f71(0,+00) | f €
fM}. The topology generated by structure curves on the quotient space
is given by ¢, = {O C M|c™}(0) € 75}, where c is a structure curve
on M. Both TF, as well as ¢ are called F-topologies on M or F-quotient
topologies.

Recall that the quotient topology (or standard quotient topology or iden-
tification topology) on M is the one which is generated by the canonical map
7:M — M =M/ ~. It is defined by 7. = {V C M : 7~ Y(V) € 7£,,} and
known to be the strongest one in which 7 is continuous. In this section we
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need to compare three topologies on M , two of which arise from the Frolicher
quotient structure. Recall that:

1. G C M isaT.-closed set in M if, and only if 7~'(G) = F is a 7,,-closed
set in M. For 77 1(@) = n~ (M —V) = a {(M) -7~ (V) = M-U =
F, where V €71.,and U € 7r,,.

2. The identification topology is Hausdorff. For, let § € F; and let [z] # [y].
Hence §([z]) # g([y]) since § is injective. Thus g separates points in M.

3. The identification topology is the largest (finest) topology in M for which
7 is continuous. So 7r, C 7.. For, let 7 be another topology making
7 a continuous map on M. Let V € 7. It follows from the continuity
of m, that m~1(V) € 7, that is V € 7. Hence 7 C 7. In particular,
TFy © T

4. Let m : M — M be the canonical projection. Then 7 is open (closed)

map with respect to 7r,, and 7.. In effect, let i be a 7x,,-open set in
M, ie U=U,e; fj_l(0,+oo). Then

w@h) = m( | J (70, 4+00))) = [ (x(f57 0 (0,400)).
JjeJ jedJ
We need to show that () is open in M. That is, 7~ (m(U) must lie in
Fun. But

n @) =7 (Un(70,00))) = U (n(5570,00))

J

contains | J; f71(0,00). 1t follows that m~ (7 (i)) is open in 7x,,. Then
so is w(U). Thus, 7 is an open map. The proof is similar using a closed
set.

LEMMA 4.1. Let 7 : M — M be the canonical projection. Let g € Fy;
such that gon = f, f € Fum. Then § is open (closed) map with respect to
7. and Tr if, and only if f(U) is open (closed) set for each open (closed) set
U=7"1nU. Let us say that U is w-satured.

Proof. “=" Assume that § is an open map with respect to 7.. and TR.
That is g(V) € & for any V € 7... Hence n~}(V) = U is a 7,,-open
set in M by definition of 7... Applying 7 to both sides yields naturally
V = n(U) by surjectivity of . Thus U = n~Y(V) = 7~ 'ald. It follows
that g(V) = gn(U) = f(U) is an open set in 7z, such that Y = 7~ 7lf and
feFu.

“«<” Assume f(U) be a Tx,-open set with U = m~ 7. That is,

(5) fU) = f(n~tald) = (fn~ 1) () = g(=U).
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Let V € 7. By the definition of 7... and the surjectivity of =, it follows that
(6) X V) =U, V €1g,if, and only if V = =(U).

Therefore, from equations 5 and 6, f(U) = (V) is a 7r-open set, with V’
any T~-open set in M. Hence g is an open map.
It is no difficult to prove the closeness of 7. m

COROLLARY 4.1. Let 7£, and 75, be given on M. Then B = {nld |
U € 7x,} 15 a base for 7. and B = {x(f~1(0,+0)) | f € Fr} is a base
for 7z,

Proof. Let V € 7.. That is, V = «ldf with U € 7£,, by definition of 7.
and Lemma 4.1. Thus B = 7. is the trivial base. From the universality
condition, w(f~1(0,+00)) = §1(0,+00). Thus B is the standard base of
the F-space M. w

PROPOSITION 4.1. Given the three topologies defined on M. Then TFy =
Ty = T

Proof. In the above section, we proved that 77, C 7¢. C 7~. We need
to show that one can reverse these inclusions. Let V € 7.. From as-
sumption, 71(V) lies in TFy, the weakest topology on M in which 7 is
continuous. Hence, 7=3(V) = Usery f71(0,00). But 7 is surjective, so
a(r"Y (V) =V = Usern 7 f71(0,00). From the universality condition on
F-quotient, there exists a unique map g € F; such that f = gom. So,

F710,00) = () 1(0,00) = 7 157(0, 00)

and
mf7H0,00) = w(n " (§ (0, 00))) = §71(0,00)

again since 7 is surjective. This ends the proof. m

REMARK 4.1. Note that because the three topologies coincide, they can
indiscriminately be denoted by one of the three symbols 7~ or 77 or 7¢ .

References

[1] A. Arkhangel’skii, L. Pontryagin, General Topology I, Springer-Verlag, Berlin 1990.

[2] A.Batubenge, Symplectic Frolicher Spaces of Constant Dimension, PhD Thesis, Uni-
versity of Cape Town, 2005 (unpublished).

[3] A. Batubenge, On transversal intersection and gluing symplectic pseudomanifolds,
Conference on Symplectic Topology, Stare Jablonki, Poland, 3-10 July 2004 (manus-
ript).

[4] A. Cap, K-Theory for Convenient Algebras, Thesis, 1993.

[5] P. Cherenack, Applications of Frolicher spaces to cosmology, Annals Univ. Sc. Bu-
dapest 41 (1998), 63-91.



Topologies of Frolicher spaces 655

[6] P. Cherenack, Frolicher versus differential spaces: A prelude to cosmology, G. Briim-
mer and C. Gilmour (eds), Papers in Honour of Bernhard Banaschewski, 2000 Kluwer
Academic Publishers, Printed in the Netherlands (1998), 63-91.

[7] B. Dugmore, A Framework for Homotopy Theory and Differential Geometry in the
Category of Frolicher Spaces, PhD Thesis, University of Cape Town, Cape Town 1999
(unpublished).

[8] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston 1966.

[9] A. Frolicher, A. Kriegl, Linear Spaces and Differentiation Theory, Wiley-Interscience,
1971.

[10} P. Z. Iglesias, Symplectic Diffeology, Private Draft, Typeset, June 2004.

[11] A. Kriel, P. W. Michor, The Convenient Setting of Global Analysis, Mathematical
Surveys and Monographs, Volume 53, American Mathematical Society, 1997.

[12] P. Ntumba, A. Batubenge, On the way to Frélicher Lie groups, Second Edition,
Quaestiones Mathematicae 28 (2005), 73-74.

[13] R. S. Palais, Real Algebraic Differential Topology, Part I, Publish or Perish, Wilm-
ington, 1981.

SCHOOL OF MATHEMATICS

UNIVERSITY OF THE WITWATERSRAND

JOHANNESBURG PRIVATE BAG 3

WITS 2050, SOUTH AFRICA

E-mail: Tshidibi.Batubenge@wits.ac.za
Mukinayi. Tshilombo@wits.ac.za

Received March 11, 2008; revised version February 11, 2009.






