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ENTIRE GRAPHS UNDER A GENERAL FLOW

Abstract. An initial entire graph with bounded second fundamental form in R™+?
over some hyperplane is evolving under a general flow defined in the paper. For an
additionally suitable condition in the main theorem, we obtain gradient and curvature
estimates, leading to long-time existence of the flow, and convergence to an entire graph
in the limit.

1. Introduction

Consider n-dimensional hypersurfaces M;, defined by a one parameter
family of smooth immersions X; : M™ — R"*1 with M; = X;(M™). The
hypersurfaces M; are said to move by mean curvature, if X; = X (-, t) satisfies

d
(1) aX(p, t)=—H(p,t)v(p,t), peM™, t>0.

By v(p, t) we denote a choice of unit normal of M, at X(p,t), and by H(p,t)
the mean curvature with respect to this normal. The surface area |M;| of
the hypersurface is known to decrease under the flow. So the evolution can
be used for obtaining minimal surface in the limit, if it converges.

Here we are interested in the evolution of entire graphs M; over some
hyperplane. In particular, we consider the evolution equation

@) 4 X (p,t) = —H(p,t)i(p,t) + cX(p,t), pEM™, t>0
X(’O) = Xo,

where H is the mean curvature of M; = X;(M") and c is bounded non-nega-
tive constant. As initial hypersurface we choose a locally Lipschitz continu-
ous entire graph over some hyperplane. The vector ¢(p,t) is the outer unit
normal.
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The smooth solutions M; of (2) are still entire graphs over R™ (see sec-
tion 3). In this case, the hypersurfaces can be expected to converge to a
surface which is an entire graph over R" in the limit.

The mean curvature flow has been studied by many mathematicians and
obtained some good results. Readers can get the basic notations and meth-
ods from Huisken’s classical works, such as [1], [2] and so on.

The main theorem we prove is

THEOREM. Let X : R* — R™! be a locally Lipschitz continuous entire
graph over R™. The Cauchy problem (2) has a smooth solution X (-,t) :
R — R™ for all time t € [0,+00). Moreover, each X(-,t) is also an
entire graph over R™.

The paper is organized as follows:

In Section 2 we give some definitions and the evolution equations of
the flow. Gradient estimates (see section 3) and curvature estimates (see
section 4) lead to long-time existence (see section 5).

The methods we use here are those introduced by Ecker-Huisken [3] for
the mean curvature flow, and also used for instance in [4].

The first author would like to thank my supervisor professor Guanghan
Li for his interest, advice and encouragement throughout the production of
this work.

2. The evolution equations
Let M™ be an n-dimensional smooth manifold and let

X(-,t): M* - R*"!
be a one-parameter family of smooth hypersurface immersions in R**1.
In a local coordinate system {z'}, 1 < ¢ < n, the metric and the second
fundamental form of M; can be computed as follows
0X(p.t) 9X(p,t) _ 0°X(p,t)
9ij(p,t) = ( o ox » hij(p,t) = - 7, oz )
The Gauss-Weingarten relations can be given as follows at the same time
2X (p, X
0X(m.t) _pp0X 4 5
0z dxI Y i J
Oy gmIX
9zi Y ggm
If X(-,t) is locally given as a graph over some hyperplane in R"*! such
that (7,w) > 0 for some fixed vector @ € R", |w| = 1, we will consider the
gradient function v defined by
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Because the second fundamental form of initial entire graph is bounded,
one can get the short time existence of (2) according to the standard theory
of parabolic equation. The gradient on M; and Beltrami-Laplace operator
on M; are denoted by V and A respectively. We first have the following
equations.

LEMMA 2.1. If X(-,t) satisfies (2), we have

(i) (—% ij = —2Hh;; + 2cgi5,
s B i 0X
(ll) 3{ VZH g

(iid) gt‘hij = Ah; — 2Hhilglmhmj + |A|2hij + chij,
(iv) % = AH +|A]?H — cH,
(v) 6t|A|2 A|A|2 2|VAI? +2|A]4 — ZC|A|2.

Proof. In the following computations we will use the definition of metric,
the normal and the second fundamental form, and we will also use the Gauss-
Weingarten relations.

o 8, 0 (0X X
Vo599 T ot \ 0z’ oI

5 80X\ (89X B
_(6:1:( Hi +cX),aJ)+<8z,6]( _HY +cX)>

= —H(—a—ﬁ— Q)ﬁ) - (811 aX) + 2cg;
Oz’ OzI 1’ Ort 4
L 0?°X
=2H (v, W) + 2cg;;
= —2Hh;; + 2cgsj
W B ()X,
ot ot’ Ozt ) Ox7
(a2,
' Ot 0zt ) OxI

0
= (v g( Hv+cX)>
0H ;;0X 0X

tj
ij

50X

o
=509 g = VH 55 = VH
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ity O _ 0 PX
ot  Ot\0xidzi’

0? - . 02X (9H 0X
T (fhiaxj (—HE+cX), v) ((%’(%J i 69:"‘)

0? %X 8H 0X
(83:’8:1:3 (H7), )  chig = (811:’810 > o1? axm)

0 OH m0X |
(8%‘1(6 J'U+Hh’]l oz m)’ )

(rk OX _, - OH 4, 0X ) + chi

<

Y gk zJv’alg orm

0’H 0 0X (9

O0x'0zI
0*H x OH ’2x
_W—I‘”ak—kH(h aial'm,v)_i-Chlj

= ViV;H — Hhjjg"™him + chij.
LEMMA 2.2.
(1) Ahyj = YV, H + Hhig™hm; — |A|*hij
(2) %A|A|2 = (hij, ViV;H) + |VAP* + Z
where Z = Htr(A%) — |Al*, tr(43) = g9 g* g™ hixhimbng.
Proof. Lemma 2.2 is the same as Lemma 2.3 in [4].

Let us come back to the proof of (iii). Substitute (1) in Lemma 2.2 into
the above computation, we get

0
Eﬁhij = Ahij — 2th'lglmhmj + |A|2hij + chy;.
. BH 8 iy
89[ Ohi;
— il m _mj 1] L]

=2Hh ]hij — 2cg“h¢j + gij(Ahij — 2thnhmj + |A‘2hi]‘ -+ Chij)
= AH + |A]*H — cH.

9 9,
(v) alAP = 5;(9 *g9hiiha)

P ey
2(8t ) ¢ hijhy + 2g kg]l<6th1]>hkl
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— 4gim(Hhmn — Cgmn)gnkgjlhijhkl
+ 2gikgﬂ(Ahij — 2Hhilglmhmj + (A|2hij + Chij)hkl
= —4cg®* g7 hijhiy + 209 Ahy; + 2| AJ* + 2¢| AP
= 2(hij, Ohiz) + 2| A]* — 2| A
However
A|A|2 = gklvkvl<hij, hij> = 2_qkl\7k<hij, Vlhij> = 2|VA|2 + 2<hij, Ahij).
Thus 5
B—tw? = AA? - 2|VAP?2 +2|A* - 2¢|A]%
LEMMA 2.3. If X(-,t) satisfies equation (2), we have
(1) |X|2 Al X2 —2n + | X)?,
(2) mu = Au+ cu, where u = (X, ),
(3) g;v = Av — |A]%v — 207 1| V|2
Proof. By direct computations, we have

9 512 _ 9\ _
(1) X _2<X 8tX> =2(X,AX +cX)
= AIX|2 - 2(ViX,VIX) + | X2 = AIX|2 - 2n 4 ¢| X%,

0 0. . "
(2) U= (aX,w> = (AX + cX, W)

= A(X,d) + (X, W) = Au+ cu,

6 _ 2 a - - _ 2 i
(3) 0= Y (av,w) = —v*(VH,w).
On the other hand,

v = g99,9;((7,@)") = ¢ Vi(—v*(V;7,))
= gijvi(—v (hjg™™ gﬁ,w))
=203 (hikgk”g—fﬁ, u'f) (hjlglm%, u‘)‘) - v2(gijvihjl-glm%, )
—? <hﬂglmg” v; ()a)fn , w)
= 2v‘lgijvivvjv —v (VH, W) + vz(hjlglmgijhimz‘i, W)
= v?(VH, &) + v]A]* + 20| Vo2

Then we get the evolution equation for v.
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3. Gradient estimates

As an immediate consequence of Lemma 2.3 (3), we know from the max-
imum principle that if M™ = R™ and X (-, 0) is an entire graph with uniform
bounded gradient v, then the solution X (-,t) remains to be entire graphs
and its gradient also uniformly bounded by the same constant. The local-
ized version of this gradient estimate is the following proposition.

Let R > 0 and 29 € R™*! be arbitrary, we define

©(X,t) = R? — | X — xo|2 — 2nt
and denote ¢4 to be the positive part of .

ProprosITION 3.1.

v(X,t)py < sup vpy

as long as v(X,t) is defined everywhere on the support of p.

Proof. Without loss of generality, we may assume xg = 0. For R > 0 we
define
n(r) = (R? —r)*

Note that 7 satisfies
Y72 =4 and 7" =2.
If 7 = | X|? 4+ 2nt, we derive from Lemma 1.3 (1) that

a _ 2 37‘
=2(r — RZ)(—%(|X|2 + 2nt)
= 2(r — R)A|X|? + 2¢(r — R?)| X |2

On the other hand,
An = V(2(r — R?)v,r)
= 2(r — R®)Ar 4 2V'r - V;r
=2(r — RH)AIX]? + 2|V X2
Thus we get
(3) gZ = An - 2|VIX|?|? + 2¢(r — R®)|X|*.
Combining (3) with Lemma 2.3 (3) we obtain
0, 9\ _ v 201
&(v n)=2v—-n+v 5
= 20(Av — |A|* — 2071 |Vu|P)n
+v3(An - 2|V|X |22 + 2¢(r — RH)|X|?)
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and
A(vPn) = Ay + v An+2Ve? -V
= (20Av + 2|Vu|>)n + v An + 2Ve? - Vi
Thus
0

57(V"1) = &(v*n) — 6[Voln — 2V0* -V
— 202 A2 — 20%|V| X2 + 2c0®(r — R?®)| X2
Observe that
—2Vv? . Vn = —6vVoVn + 5~ VnVely — 77—1|V77|21)2,
we have
(4) %(vzn) < A@Wn) = 2|AP(vn) + 17 VnVoPn + 2e0%(r - R?)| X2,

If we replace R? — r by ¢, this computation remains valid on the support

of ¢4 as long as v is defined. The inequality (4) will change into

0 -

5 (V291) S AWL) —20AP(0°61) + 3P VRLV(v%6]) — 200%p4 | X |2
<AE*RY) + 9PV V(?6}).

That is 5

51 (V703 — D) < pVRLV(v6h).

By the maximum principle we can get the result.

COROLLARY 3.2. Let X(-,t) be a solution of (2) on [0,w). Suppose the

initial hypersurface X (-,0) is an entire graph over R™. Then X (-,t) remains

to be an entire graph over R" for any t € [0, w).

4. Curvature estimate

In the followings we shall prove that as long as X(-,¢) can be written as
a graph with bounded gradient, the curvature remains bounded as well. We
begin with a global version of curvature estimate. Recall from Proposition
3.1 and Lemma 2.3 that

Al?
<‘9Ia_tl < AJAP - 2|V]A| 2 + 2|41
and .
aait = Av? — 2|A]%v? — 6|Vu[2.

Then we have

(z% - A) |APv? < ~2V]APVY? — 2|V A|[%* — 6|Vu[ AP,
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where
—2V|A|2Vo? = V]A]>Vv? — 40| A|V|A|Vv
= —v72V?V|A|20? + v 2| V2P| A2 — 40]A|V|A| V.
This implies

0
(& - A) |A]%0? < —v72Ve?V| A%
Thus we obtain the curvature estimate
sup |A%v? < sup |A]%v?.
X('at) X(70)
To deduce the localized version of this curvature estimate, we use the nota-
tions and methods introduced in [4].
Let R > 0 and g € R™! be such that {X € X(-,t)|2nt+|X —zo|? < R?}
can be written as graph over some hyperplane for t € [0, T.
Denote

K($07t7R2) = {X € X(at)'2nt + |X - .’L‘0|2 < R2}
Then we have the following proposition
PROPOSITION 4.1. For any 0 < 08 < 1 we have the estimate

sup |JAP<Dm)(1-60)"%"1 sup sup o7
K(zo,t,0R?) 0<s<t K(z0,5,R?)

where D(n) is a constant which is depend on n.

Proof. We proceed as in [4] (proof of Proposition 7.5) and calculate the
evolution inequality of product gn, where g = |A|?pv? and ¢(v?) = ﬁp,
k > 0. The only difference is the evolution equation of 7, which is affected

by an additional term 2c(r — R?)|X|? (see (3) above), we end up with the
inequality

_ < - - — . —
(c’)t A)gn < —2kg°n a _kv2)2|Vvl gn — 2pv"VoVg-n —2VgVn

- 2|V|X|??g + 2gc| X |*(r — R?).

Since ¢, g are non-negative and » — R? < 0 in K(xo,t, R?), that means the
last term 2gc|X|?(r — R?) is non-positive. Then the inequality above will
change into

0 2 2k 2
—_ < — e —
<6t A)gn < —2kg°n = kvz)ZIVvl gn
— 200 3VuVg - — 2VgVn — 2|V|X 2|2,

which is the same as the corresponding inequality in [4]. In the forthcoming,
the remainder is totally the same with the proof of Proposition 7.5 in [4].



Entire graphs under a general flow 639

We know from the proof of Proposition 4.2 in [4] that the derivatives
of the curvature in the case of mean curvature flow satisfy the following
equation

2| mAR = AJVTAP - 2vmHAR + )T VmAx VARV AX VR4,

ot L
i+j+k=m
where S x T denotes linear combination of traces of S and T. By the similar
argument, we can get the derivatives of the curvature under the flow (2)
satisfy the following equation

LEMMA 4.2. Under the flow (2) we have

%| mAR = A[VTAR-2vTIAR + )" A VIAxVIAxVRA
i+j+k=m
—cV™Ax P(V"A, V™ 14,...,VA),
where P(V™A, V™ 1A, ... VA) is a polynomial which denotes linear com-
bination of V™A, V™ 1A, ... VA and the operator * has the same meaning
as above.

By the similar argument it is not hard to extend the exterior estimate in
Proposition 4.1 to all derivatives of A.

PROPOSITION 4.3. Foranym >0, 0< 0 <1 andt € [0,T] we have the
estimate

sup lva|2<Dm(—2 —) ,
K(z0,t,0R?) R*

where Dy, = D, (6,n,m,c, SUPo<s<t SUPK (zo,5,R2) v).

5. Long time existence

THEOREM 5.1. Let X : R* — R™! be a locally Lipschitz continuous entire
graph over R™. The Cauchy problem (2) has a smooth solution X (-,t) : R® —
R™ for all time t € [0,400). Moreover, each X(-,t) is also an entire graph
over R™.

Proof. According to the general theory of linear parabolic equation, the
equation (2) has a unique smooth solution on some short time interval. Our
gradient and curvature estimates then ensure that this solution extends to
all t > 0. Readers can also see the detailed proof of Theorem 7.1 in [4].

REMARK. We consider the following equation
#X(0,t) = —H(p,t)o(p,t) + cX(p,t), pe M, t>0
X(" 0) = XO,

where the initial hypersurface Xy with boundary satisfies
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(i) Xo is an entire graph over some hyperplane II if we can’t consider the
boundary,

(i) Xo intersects IT orthogonally at the free boundary,
in addition,

(iii) the boundary X:(0M) is contained in II.

Then the Cauchy problem (2) will change into the Neumann boundary prob-
lem. In this case, one can use the same method to deal with the problem,
then you can get a similar conclusion.

By the way, if the nonnegative constant ¢ in evolution equation (2)
changes into a bounded continuous function ¢(t), we could also get the same
conclusion by the totally same argument in the paper. Obviously, that will
be an extension to our consequence. In order to embody the continuity of
the authors’ thought about the problem and the surprising identity between
the proofs of two cases, so we just consider the case of nonnegative constant
in the main body of this paper. Specially, if ¢ = 0 in this paper, then the flow
will change into the mean curvature flow which has done by Ecker-Huisken
in [3].
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