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ENTIRE GRAPHS UNDER A GENERAL FLOW 

Abstract. An initial entire graph with bounded second fundamental form in f i n + 1 

over some hyperplane is evolving under a general flow defined in the paper. For an 
additionally suitable condition in the main theorem, we obtain gradient and curvature 
estimates, leading to long-time existence of the flow, and convergence to an entire graph 
in the limit. 

1. Introduction 
Consider n-dimensional hypersurfaces Mt, defined by a one parameter 

family of smooth immersions Xt : Mn Rn+1, with Mt = Xt{Mn). The 
hypersurfaces Mt are said to move by mean curvature, if Xt = X(-,t) satisfies 

(1) jtX(p,t) = -H(p,t)v(p,t), p E Mn, i > 0. 

By v(p, t) we denote a choice of unit normal of Mt at X(p, t), and by H(p, t) 
the mean curvature with respect to this normal. The surface area \Mt\ of 
the hypersurface is known to decrease under the flow. So the evolution can 
be used for obtaining minimal surface in the limit, if it converges. 

Here we are interested in the evolution of entire graphs Mt over some 
hyperplane. In particular, we consider the evolution equation 

I £x(p, t) = -H(p, t)v(p, t) + cX(p, t), PeMn,t> 0 

where H is the mean curvature of Mt = Xt(Mn) and c is bounded non-nega-
tive constant. As initial hypersurface we choose a locally Lipschitz continu-
ous entire graph over some hyperplane. The vector v{p, t) is the outer unit 
normal. 
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The smooth solutions Mt of (2) are still entire graphs over Rn (see sec-
tion 3). In this case, the hypersurfaces can be expected to converge to a 
surface which is an entire graph over Rn in the limit. 

The mean curvature flow has been studied by many mathematicians and 
obtained some good results. Readers can get the basic notations and meth-
ods from Huisken's classical works, such as [1], [2] and so on. 

The main theorem we prove is 
T H E O R E M . Let Xq : Rn —> Rn+l be a locally Lipschitz continuous entire 
graph over Rn. The Cauchy problem (2) has a smooth solution X(-,t) : 
Rn —> Rn+1 for all time t G [0,+oo). Moreover, each X(-,t) is also an 
entire graph over Rn. 

The paper is organized as follows: 
In Section 2 we give some definitions and the evolution equations of 

the flow. Gradient estimates (see section 3) and curvature estimates (see 
section 4) lead to long-time existence (see section 5). 

The methods we use here are those introduced by Ecker-Huisken [3] for 
the mean curvature flow, and also used for instance in [4]. 

The first author would like to thank my supervisor professor Guanghan 
Li for his interest, advice and encouragement throughout the production of 
this work. 

2. The evolution equations 
Let Mn be an n-dimensional smooth manifold and let 

X(-,t) : Mn -> Rn+1 

be a one-parameter family of smooth hypersurface immersions in Rn+1. 
In a local coordinate system {x1}, 1 ^ i ^ n, the metric and the second 

fundamental form of Mt can be computed as follows 
fdX(P,t) dx(p,t)\ ( d2x(P,t)\ 

The Gauss-Weingarten relations can be given as follows at the same time 
92X(P,t) k d X _ 

M I O J dxSdx 'J 13 dxi 13 

dxi ~ j W dx™ 
If X(-,t) is locally given as a graph over some hyperplane in Rn+l such 

that (v,w) > 0 for some fixed vector w G Rn, |w| = 1, we will consider the 
gradient function v defined by 

v = (i;, u;)-1. 
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Because the second fundamental form of initial entire graph is bounded, 
one can get the short time existence of (2) according to the standard theory 
of parabolic equation. The gradient on Mt and Beltrami-Laplace operator 
on Mt are denoted by V and A respectively. We first have the following 
equations. 

L E M M A 2 . 1 . If X(-,t) satisfies (2) , we have 

Proof. In the following computations we will use the definition of metric, 
the normal and the second fundamental form, and we will also use the Gauss-
Weingarten relations. 

(i) §i9i] = —2Hhij + 2 c g i j , 

(ii) Ì v = V i H - § [ ! 

(iii) ^hij = A h i j - 2 H h a g l m h m j + \A\2hij + chijt 

(iv) ^ = AH + \A\2H - cH, 

(v) | | A | 2 = A|A|2 - 2|VA|2 + 2|A|4 - 2c\A\2. 

d idX dX 

dt\dxii~dx^ 

{Iw* )• SMS> )) 

- 2 Hhij + 2 cgij 

a „» 9 
OH i.dX :TT dX 

r g%3 r = V H • r 
dx% dxi dx% = VH 
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C"\ dhii - 9 ( 9 2 X -
lUlj 8t dt{dxidx3,V 

- ( 9 2 x\ A - ( 9 2 x ^L i m 9 X \ 
~ [dx^dx^ + )'V {dx'dx^dx19 dx 

- ( 92 fn^ -A _ ( 92X dJL Im dX \ 
~ {dx*dxi{ ),VJ + l3 [dx*dxJ'dx)g dx™ ) 

( d ,8H ^ l m a x . j 

fr^k 9X , _ ÖH lm dx \ 

dx%dx3 
d2H , OH r r / L lm d2X \ 

= + H ( H > 1 9 d ^ " V ) + C H I 3 

= ViVjH - Hhjiglmhim + chij. 
L E M M A 2 . 2 . 

(1) Ahij = ViVjH + Hhaglmhmj -\A\2hi0 

(2) ±A\A\2 = {hiJ,ViVjH) + \VA\2 + Z 

where Z = Htr(A3) - |A|4, tr(A3) = gijgklgmnhikhlTnhnj. 

Proof. Lemma 2.2 is the same as Lemma 2.3 in [4]. 

Let us come back to the proof of (iii). Substitute (1) in Lemma 2.2 into 
the above computation, we get 

—hij = A hij - 2 Hhüglmhmj + \A\2hij + chij. 

W f = 

= -gil^rLgmjhij + y dt y 3 y dt 
= 2Hhijhij - 2cgijhij + gij(Ahij - 2Hh™hmj + \A\2hij + chij) 
= AH+ \A\2H - cH. 

(v) ^ = § ¿ ( 9 * 9 * % ^ ) 

= 2 ( j / ^ h i j h u + 2g i kgi l (j^hij hki 
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= 4gim(Hhmn - cgmn)gnkg]lhvjhki 

+ 2gikgjl(Ahij - 2Hhilglmhmj + \A\2htJ + ch^hn 

= -4egikgilhijhid + 2hijAhij + 2\A\4 + 2c\A\2 

= 2(hij,Ahij) + 2\A\4-2c\A\2. 

However 

A\A\2 = gklVkVi{hij, htj) = 2gklVk(hij, V,/^) = 2\VA\2 + 2(hi,, Ahij). 

Thus 

pt\A\2 = A|A|2 - 2|VA|2 + 2|4|4 - 2c|A|2. 

LEMMA 2.3. If X(-,t) satisfies equation (2), we have 

(1) ||X|2 = A | X | 2 - 2 n + c|X|2, 

( 2 ) -jfiU = A u + cu, where u = (X, w), 

( 3 ) §tV = A v - \A\2v-2v~1\Vv\2. 

Proof. By direct computations, we have 

(1) ||X| 2 = 2 ( X , ^ X ) = 2 ( X , A X + CX) 

= A|X|2 - 2 ( V i X , VlX) + c|X|2 = A|X|2 - 2 n + c|X|2, 

(2) ^ t u = ( J i X , w ^ = ( A X + c X , w ) 

= A(X, w) + c(X, w) = Au + cu, 

(3) j U = - v 2 ^ , ^ = - v 2 ( V H , W ) . 

On the other hand, 

Av = g^ViVjiiv,™)-1) = sf'Vii-vHv&w)) 

-v2(hjlglmgiivi-^,wSJ 

= 2v-1gijViWjv - v2{VH, w) + v2(hjiglmgijhimv, w) 

= v2(VH,w) + v\A\2 + 2v~l\Vv\2. 

Then we get the evolution equation for v. 
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3. Gradient estimates 
As an immediate consequence of Lemma 2.3 (3), we know from the max-

imum principle that if Mn = Rn and X(-, 0) is an entire graph with uniform 
bounded gradient v, then the solution X(-,t) remains to be entire graphs 
and its gradient also uniformly bounded by the same constant. The local-
ized version of this gradient estimate is the following proposition. 

Let R > 0 and xo € Rn+1 be arbitrary, we define 

(p(X, t) = R2 - \X - x0 |2 - 2nt 
and denote to be the positive part of (p. 
PROPOSITION 3 . 1 . 

v(X,t)<p+ < sup v(p+ 
X(;0) 

as long as v(X,t) is defined everywhere on the support of tp+. 
Proof. Without loss of generality, we may assume XQ = 0. For R > 0 we 
define 

trfr) = (R2 - r f . 
Note that r) satisfies 

i ?-1(r /)2 = 4 and if'= 2. 

If r = \X\2 + 2nt, we derive from Lemma 1.3 (1) that 

'»I 
= 2{r-R?)jt{\X\2 + 2nt) 

= 2(r - R2)A\X\2 + 2c(r - R2)\X\2. 
On the other hand, 

ARJ = V®(2(r — ii2)Vir) 
= 2(r - i?2)Ar + 2vV • V^r 
= 2(r — i?2)A|X|2 + 2|V|X|2 |2 . 

Thus we get 

(3) i t r , = A v ~ 2 M * I 2 ! 2 + 2 < r - i? 2 ) |^ | 2 . 

Combining (3) with Lemma 2.3 (3) we obtain 
d , 9 s „ dv 9 drj 

= 2v(Av -\A\2V - 2v~1\Vv\2)RJ 
+ V2(AT] - 2 |V|X|2 |2 + 2c(r - i?2)|X|2) 
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and 

dt 
- 2v2\A\2t] - 2 v 2 | V | X | 2 | 2 + 2cv2(r - R2)\X\2. 

Observe that 
-2Vv2 • Vi? = -6vVvVt] + 7?_1V7?Vî;27? - 7?_1|Vt?|2?;2, 

we have 

(4) ^ t ( A ) ^ A(v27?) - 2|A|2(î;2r?) + r?_1Vr?Vt;2r? + 2cv2(r - R2)\X\2. 
dt 

If we replace R2 — r by (p+, this computation remains valid on the support 
of ip+ as long as v is defined. The inequality (4) will change into 

) ^ A ( * , V + ) - 2 | ^ | W + ) + </>;2V</>2 V ( , V 2 ) - 2 a ; V | X | 2 

< A(v2<p2
+) + ^ V ^ V ^ V l ) -

By the maximum principle we can get the result. 
C o r o l l a r y 3 . 2 . Let X(-,t) be a solution of (2) on [0,u;). Suppose the 
initial hypersurface X(-, 0) is an entire graph over Rn. Then X(-,t) remains 
to be an entire graph over Rn for any t € [0, w). 

4. Curva tu re es t imate 
In the followings we shall prove that as long as X(-,t) can be written as 

a graph with bounded gradient, the curvature remains bounded as well. We 
begin with a global version of curvature estimate. Recall from Proposition 
3.1 and Lemma 2.3 that 

That is 

and 

^<A\A\2-2MA\\2 + 2\A\ 

^ = Av2-2\A\2V2-G\VV\2. 

4 

Then we have 

- A^ \A\2v2 ^ —2V|j4|2Vv2 - 2 |V | ;4 | |V - 6 | V v | V | 2 , 
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where 
-2V\A\2VV2 = V\A\2Vv2 - 4i;|y4|V|^4|Vf 

= -V~2VV2V\A\2V2 + V~2\VV2\2\A\2 - 4v\A\V\A\Vv. 

This implies 

(J-t - A^ |A| V ^ —v~2VV2V\A\2V2. 

Thus we obtain the curvature estimate 
sup \A\2V2 < sup \A\2V2. 

X(;t) X(;0) 

To deduce the localized version of this curvature estimate, we use the nota-
tions and methods introduced in [4], 

Let R > 0 and x0 e Rn+1 be such that {X G X(-, t)\2nt+\X-x0\2 < R2} 
can be written as graph over some hyperplane for t <G [0, T], 

Denote 
K(xo, t, R2) = {X € X(-, t)\2nt +\X- x0|2 ^ R2}-

Then we have the following proposition 
PROPOSITION 4.1. For any 0 ^ 6 ^ 1 we have the estimate 

sup \A\2 ^ D{n)(l - e)~2rx sup sup v2, 

where D(n) is a constant which is depend on n. 
Proof. We proceed as in [4] (proof of Proposition 7.5) and calculate the 
evolution inequality of product grj, where g = \A\2(pv2 and ¡p(v2) = , 
k > 0. The only difference is the evolution equation of r/, which is affected 
by an additional term 2c(r — i?2)|X|2 (see (3) above), we end up with the 
inequality 

/ d \ 2k 
f — - AJgri^ -2kgS - _ 2\Vv\2gr] - 2<pv~3VvVg • r? - 2VgVrj 

-2\V\X\2\2g + 2gc\X\2(r-R2). 
Since c, g are non-negative and r — R2 ^ 0 in K(xo,t, R2), that means the 
last term 2gc\X\2(r — R2) is non-positive. Then the inequality above will 
change into 

(I 
- 2<pv~3VvVg • 7] - 2VgVrj - 2|V|X|2 |2

5, 
which is the same as the corresponding inequality in [4], In the forthcoming, 
the remainder is totally the same with the proof of Proposition 7.5 in [4]. 
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We know from the proof of Proposition 4.2 in [4] that the derivatives 
of the curvature in the case of mean curvature flow satisfy the following 
equation 

^-\VmA\2 = A|V m A| 2 -2|V m + 1 A| 2 + VmA * VM * * V*Vl, 
i+3+k=m 

where S * T denotes linear combination of traces of S and T. By the similar 
argument, we can get the derivatives of the curvature under the flow (2) 
satisfy the following equation 

LEMMA 4.2. Under the flow (2) we have 

^-\VmA\2= A|Vmj4|2 — 2|Vm+1A|2 + V"M * v U * VjA * VkA (/C i+j+k=m 
- cVmA * P(VmA, sjm~lA,..., VA), 

where P(VmA, Vm~1A,..., VA) is a polynomial which denotes linear com-
bination of VmA, Vm~1A,..., VA and the operator * has the same meaning 
as above. 

By the similar argument it is not hard to extend the exterior estimate in 
Proposition 4.1 to all derivatives of A. 

PROPOSITION 4 .3 . For any m ^ O , O ^ 0 < 1 and t e [0,T] we have the 
estimate ., / i i\m+l 

sup \7 m A\ 2 ^D m U J + T , 
K(x0,t,OR?) \K l J 

where Dm = Dm{0, n, m, c, sup0^s^ t supjftr(a.0 SvR2) v). 

5. Long time existence 
T H E O R E M 5 . 1 . Let XO : Rn —> Rn+l be a locally Lipschitz continuous entire 
graph over Rn. The Cauchy problem (2) has a smooth solution X(-,t) : Rn —• 
Rn+1 for all time t e [0, +oo). Moreover, each X(-, t) is also an entire graph 
over Rn. 
Proof. According to the general theory of linear parabolic equation, the 
equation (2) has a unique smooth solution on some short time interval. Our 
gradient and curvature estimates then ensure that this solution extends to 
all t > 0. Readers can also see the detailed proof of Theorem 7.1 in [4]. 
REMARK. We consider the following equation 

±X{p, t) = -H(p, t)v(p, t) + cX(p, t), p € Mn, t > 0 
X(;0)=X0, 

where the initial hypersurface Xq with boundary satisfies 
{ 
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(i) XQ is an entire graph over some hyperplane II if we can't consider the 
boundary, 

(ii) Xo intersects II orthogonally at the free boundary, 
in addition, 

(iii) the boundary Xt(dM) is contained in II. 
Then the Cauchy problem (2) will change into the Neumann boundary prob-
lem. In this case, one can use the same method to deal with the problem, 
then you can get a similar conclusion. 

By the way, if the nonnegative constant c in evolution equation (2) 
changes into a bounded continuous function c(i), we could also get the same 
conclusion by the totally same argument in the paper. Obviously, that will 
be an extension to our consequence. In order to embody the continuity of 
the authors' thought about the problem and the surprising identity between 
the proofs of two cases, so we just consider the case of nonnegative constant 
in the main body of this paper. Specially, if c = 0 in this paper, then the flow 
will change into the mean curvature flow which has done by Ecker-Huisken 
in [3], 
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