

Krzysztof Witczyński

GENERALIZED PAPPUS' THEOREM

Abstract. The paper contains a generalization to the n -dimensional projective space over a commutative field of a famous theorem of Pappus.

The well-known theorem of Pappus, as one of the most important theorems of the projective geometry, was a subject of many investigations. We may mention here for instance the works [1], [2], [3] and [4], where this theorem was generalized to the n -dimensional projective space P^n (projective space over an arbitrary commutative field). In particular, the generalization from [1] concerns two sets of points $A = \{a_0, \dots, a_n\}$ and $B = \{b_0, \dots, b_n\}$ on two hyperplanes H_1 and H_2 , respectively. The theorem says that the dimension of the join of subspaces (points in general) S_0, \dots, S_n is not greater than $n - 1$ ($S_j = \bigcap_{i=0, i \neq j}^n S_{ij}$, where $S_{ij} = J(b_i, A \setminus \{a_i, a_j\})$, $i \neq j$ (the symbol $J(P_1, \dots, P_m)$ denotes the join of subspaces P_1, \dots, P_m). Points a_0, \dots, a_n as well as b_0, \dots, b_n are assumed to be in a general position i.e. no n of them are in an $(n - 2)$ -dimensional subspace. Obviously, when $n = 2$, it is the usual plane Pappus' theorem. In this work we present a more general theorem than that from [1]. Throughout the paper we investigate two sets of points $A = \{a_0, \dots, a_n\}$ and $B = \{b_0, \dots, b_n\}$ such that $\dim J(A) = n - 1$, $\dim J(B) = k$, $1 \leq k \leq n - 1$, and points a_0, \dots, a_n as well as b_0, \dots, b_n are in a general position (no $k + 1$ points of b_0, \dots, b_n are in a $(k - 1)$ -dimensional subspace). Then we shall show that $\dim J(S_0, \dots, S_n) \leq k$. First we prove

LEMMA 1. *If points b_0, \dots, b_m ($0 \leq m \leq k - 1$) are in $H_1 = J(A)$, then $\dim J(S_0, \dots, S_n) \leq \max(1, m)$.*

Proof. First suppose $b_0 \in H_1$ and $b_i \notin H_1$ for $i = 1, \dots, n$. Then [1] $S_j = a_0$ (when $b_0 \notin J(A \setminus \{a_0, a_j\})$) or $S_j = \emptyset$ (when $b_0 \in J(A \setminus \{a_0, a_j\})$) for all $j = 1, \dots, n$. Since $\dim S_0 = 0$, $\dim J(S_0, \dots, S_n) = 1$.

2000 *Mathematics Subject Classification:* 51M04, 51M20.

Key words and phrases: Pappus theorem, projective space, commutativity.

Let now $m \geq 1$. For $j \leq m$ $S_j = A_j \cap B_j$, where $A_j = \bigcap_{i=0, i \neq j}^n S_{ij}$, $B_j = \bigcap_{i=m+1}^n S_{ij}$. Notice that $\{a_0, \dots, a_m\} \setminus \{a_j\} \subseteq B_j$ and $\dim B_j = m$. Hence $B_j \cap H_1 = J(\{a_0, \dots, a_m\} \setminus \{a_j\})$. Since $A_j \subseteq H_1$, $S_j \subseteq J(a_0, \dots, a_m)$. On the other hand, for $j \geq m+1$ $S_j = C_j \cap D_j$, where $C_j = \bigcap_{i=0}^m S_{ij}$, $D_j = \bigcap_{i=m+1, i \neq j}^n S_{ij}$. We have $\{a_0, \dots, a_m\} \subseteq D_j$, $\dim D_j = m+1$ and, consequently, $\dim(D_j \cap H_1) = m$. It means that $D_j \cap H_1 = J(a_0, \dots, a_m)$. As in the previous case $C_j \subseteq H_1$, hence $S_j \subseteq J(a_0, \dots, a_m)$. Thus we see that $J(S_0, \dots, S_n) \subseteq J(a_0, \dots, a_m)$. This ends the proof. ■

LEMMA 2. *Let $A = \{a_0, \dots, a_n\}$ and $B = \{b_0, \dots, b_n\}$ be two sets of points on two hyperplanes H_1 and H_2 , respectively. Points a_0, \dots, a_n are assumed to be in a general position. If some of points b_i coincide, then $\dim J(S_0, \dots, S_n) \leq n-1$.*

Proof. In view of Lemma 1 we may assume that $b_i \notin H_1$ for $i = 0, \dots, n$. Hence [1] $\dim S_j = 0$, all j (i.e. S_j are points). Suppose e.g. $b_0 = b_1$. We have $S_{01} = J(b_0, a_2, \dots, a_n) = S_{10} = J(b_1, a_2, \dots, a_n)$. Hence $S_0, S_1 \in S_{01}$. Observe that for $j \geq 2$, $S_j \in J(b_0, \{a_2, \dots, a_n\} \setminus \{a_j\}) \subset S_{01}$. ■

Let now $A = \{a_0, \dots, a_n\}$ and $B = \{b_0, \dots, b_n\}$ be two sets of points in a general position such that $b_i \notin J(A)$ for all i , and $\dim J(A) = n-1$, $\dim J(B) = k$, $1 \leq k \leq n-2$. There are, among points a_i , at least $n-k+1$ not belonging to $J(B) = H_2$. We choose $n-k-1$, say a_0, \dots, a_{n-k-2} , from them in such a way that $\dim J(a_0, \dots, a_{n-k-2}, H_2) = n-1$.

LEMMA 3. *There are, in $\bar{H}_2 = J(a_0, \dots, a_{n-k-2}, B)$, points c_{k+1}, \dots, c_n such that points $\bar{b}_0, \dots, \bar{b}_n$ are in a general position, where $\bar{b}_i = b_i$ for $i = 0, \dots, k$, $\bar{b}_i = c_i$ for $i = k+1, \dots, n$, and $\bar{S}_j = S_j$ for $j = n-k-1, \dots, n$ ($\bar{S}_j = \bigcap_{i=0, i \neq j}^n \bar{S}_{ij}$, $\bar{S}_{ij} = J(\bar{b}_i, A \setminus \{a_i, a_j\})$).*

Proof. We choose a point $c_{k+1+i} \neq b_{k+1+i}$, a_i on a line $l_i = J(a_i, b_{k+1+i})$, $i = 0, \dots, n-k-2$. Obviously, $c_{k+1} \notin H_2$, $c_{k+2} \notin H_3 = J(H_2, c_{k+1}), \dots, c_{n-1} \notin H_{n-k-2} = J(H_{n-k-3}, c_{n-2})$. Thus we have n linearly independent points $b_0, \dots, b_k, c_{k+1}, \dots, c_{n-1}$ which are vertices of an $(n-1)$ -dimensional simplex S contained in \bar{H}_2 . Consider the $(n-k-1)$ -dimensional subspace G determined by points $a_0, \dots, a_{n-k-2}, b_n$. G cuts the faces of S in subspaces G_i $i = 1, \dots, n$. Finally we choose a point c_n in G in such a way that $c_n \notin G_i$, all i . We have still to show that $\bar{S}_j = S_j$ for $j = n-k-1, \dots, n$. Observe that

$$S_j = \bigcap_{i=0}^k S_{ij} \cap \bigcap_{i=k+1, i \neq j}^n S_{ij}, \quad \bar{S}_j = \bigcap_{i=0}^k S_{ij} \cap \bigcap_{i=k+1, i \neq j}^n \bar{S}_{ij} \quad \text{for } j = n-k-1, \dots, n.$$

Nevertheless, when $k + 1 \leq i \leq n - 1$,

$$\begin{aligned} S_{ij} &= J(a_0, \dots, a_{n-k-2}, b_i, \{a_{n-k-1}, \dots, a_n\} \setminus \{a_i, a_j\}) \\ &= J(a_0, \dots, a_{n-k-2}, c_i, \{a_{n-k-1}, \dots, a_n\} \setminus \{a_i, a_j\}) = \bar{S}_{ij}, \end{aligned}$$

since $c_i \in J(a_{i-k-1}, b_i)$ and points c_i, a_{i-k-1}, b_i are all distinct. If $i = n$, then

$$\begin{aligned} S_{nj} &= J(a_0, \dots, a_k, \{a_{k+1}, \dots, a_{n-1}\} \setminus \{a_j\}, b_n) \\ &= J(a_0, \dots, a_k, \{a_{k+1}, \dots, a_{n-1}\} \setminus \{a_j\}, c_n) = \bar{S}_{nj}, \end{aligned}$$

since $c_n \in J(a_0, \dots, a_{n-k-2}, b_n) = G$ and $b_n \in J(a_0, \dots, a_{n-k-2}, c_n) = G$. This completes the proof. ■

LEMMA 4. *As previously, we consider two sets of points, in a general position, $A = \{a_0, \dots, a_n\}$ and $B = \{b_0, \dots, b_n\}$ such that $\dim H_1 = \dim H_2 = n - 1$, where $H_1 = J(A)$, $H_2 = J(B)$. If $a_0, \dots, a_{k-1} \in H_2$ and $b_i \notin H_1$, all i , then $\dim J(S_k, \dots, S_n) \leq n - k - 1$.*

Proof. Obviously, without loss of generality, we may assume that $a_j \notin H_2$ for $j \geq k$. Suppose we choose in P^n an allowable coordinate system in such a way that the j -th coordinate of point a_i equals to δ_i^j , the equation of H_2 is $\sum_{i=k}^n x_i$ and $a_n = (1, 1, \dots, 1, 0)$, where $i = 0, \dots, n - 1$, $j = 0, \dots, n$, and δ_i^j is the Kronecker δ . By b_{ij} we denote the j -th coordinate of point b_i , $i = 0, \dots, n$, $j = 0, \dots, n - 1$. Then b_{in} will equal to $-\sum_{j=k}^{n-1} b_{ij}$. Notice that $\sum_{j=k}^{n-1} b_{ij} \neq 0$ for $i = 0, \dots, n$. Let us denote the sums $\sum_{j=k}^{n-1} b_{ij}$, $\sum_{j=k}^{n-1} b_{nj}$ by M_i and M , respectively. One can check easily that the hyperplane S_{ni} has the equation $x_i M_i + x_n b_{ii} = 0$, $i = 0, \dots, n - 1$. Consequently, the i -th coordinate s_{ni} of point S_n is b_{ii}/M_i , $i = 0, \dots, n - 1$, while the n -th coordinate of this point equals to -1 . Similarly, we check that hyperplane S_{ji} has the equation $(x_j - x_i)M_i + x_n(b_{ij} - b_{ii}) = 0$ $j = k, \dots, n - 1$, $i = 0, \dots, n - 1$, and the equation of S_{jn} is $x_j M + x_n b_{nj} = 0$, $j = 0, \dots, n - 1$. Hence the i -th coordinate s_{ji} of point S_j is

$$\frac{b_{ij} - b_{ii}}{M_i} - \frac{b_{nj}}{M}, \quad i = 0, \dots, n - 1, \quad i \neq j, \quad s_{jj} = -\frac{b_{nj}}{M}, \quad s_{jn} = 1, \quad j = k, \dots, n - 1.$$

Observe that

$$(n - k)s_{ni} + \sum_{j=k}^{n-1} s_{ji} = 0 \quad \text{for } i = 0, \dots, n.$$

It means that points S_k, \dots, S_n are linearly dependent i.e. $\dim J(S_k, \dots, S_n) \leq n - k - 1$.

Let now $A = \{a_0, \dots, a_n\}$, $B = \{b_0, \dots, b_n\}$ be two sets of points like those described in the introduction.

THEOREM. *If $\dim J(A) = n - 1$ and $\dim J(B) = k$, $1 \leq k \leq n - 1$ and $J(B) \not\subset J(A)$, then $\dim J(S_0, \dots, S_n) \leq k$.*

Proof. Of course, we may consider $k \leq n - 2$. In view of Lemma 1, we may assume that $b_i \notin H_1$ for $i = 0, \dots, n$. In fact, from $b_0, \dots, b_m \in H_1$ it follows that $\dim J(S_0, \dots, S_n) \leq \max(1, m)$, but $m \leq k - 1$. Thus [1] the subspaces S_0, \dots, S_n are points. Suppose $\dim J(S_0, \dots, S_n) > k$. Hence there exist $k + 2$ points, among S_0, \dots, S_n , say S_{n-k-1}, \dots, S_n , such that $\dim J(S_{n-k-1}, \dots, S_n) = k + 1$. Take into account points a_0, \dots, a_{n-k-2} . Denote $J(B, a_0, \dots, a_{n-k-2})$ by H_2 . If $\dim H_2 = n - 1$, then by Lemma 3, there are points c_{k+1}, \dots, c_n in H_2 such that the respective points \bar{S}_j are equal to S_j for $j = n - k - 1, \dots, n$. According to Lemma 4, $\dim J(S_{n-k-1}, \dots, S_n) \leq k$, a contradiction. If $\dim H_2 < n - 1$, we add points a_{n-k-1}, \dots, a_m to the points a_0, \dots, a_{n-k-2} in such a way that $\dim J(B, a_0, \dots, a_m) = n - 1$ and $\dim J(B, a_0, \dots, a_{m-1}) < n - 1$. There is, among points a_0, \dots, a_m , a subset of $n - k - 1$ points, say $a_{i_1}, \dots, a_{i_{n-k-1}}$ such that $\dim J(a_{i_1}, \dots, a_{i_{n-k-1}}, B) = n - 1$. Hence, Lemma 3, there exist points c_{k+1}, \dots, c_n such that the respective points \bar{S}_j are equal to S_j for $j \notin \{i_1, \dots, i_{n-k-1}\}$. In particular, it has place when $j = m + 1, \dots, n$. According to Lemma 4, $\dim J(S_{m+1}, \dots, S_n) \leq n - m - 2$. It implies $\dim J(S_m, \dots, S_n) \leq n - m - 1$, $\dim J(S_{m-1}, \dots, S_n) \leq n - m$ and so on. Finally, we obtain $\dim J(S_{n-k-1}, \dots, S_n) \leq k$ which contradicts with the supposition $\dim J(S_0, \dots, S_{k+1}) = k + 1$. This ends the proof.

References

- [1] K. Witczyński, *Generalized Pappus' theorem in the projective space P^n* , Bull. Acad. Polon. Sci. Série Sci Math. Astr. et Phys. 9 (1979), 705–709.
- [2] D. Witczyńska, *Pappus' in the projective space P^n* , Demonstratio Math. 12 (1979), 593–598.
- [3] K. Witczyński, *On Pappus' theorem in the projective space P^n* , Demonstratio Math. 23 (1990), 1099–1103.
- [4] K. Witczyński, *Pappus' theorem in the projective space of even dimension*, Demonstratio Math. 25 (1992), 1001–1004.
- [5] K. Witczyński, *Perspective case of the Pappus' theorem in the n -dimensional projective space*, Demonstratio Math. 40 (2007), 925–928.

FACULTY OF MATHEMATICS AND INFORMATION SCIENCES
WARSAW UNIVERSITY OF TECHNOLOGY

Pl. Politechniki 1
00-661 WARSZAWA, POLAND
E-mail: kawitz@mini.pw.edu.pl

Received May 27, 2008.