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GENERALIZED PAPPUS’ THEOREM

Abstract. The paper contains a generalization to the n-dimensional projective space
over a commutative field of a famous theorem of Pappus.

The well-known theorem of Pappus, as one of the most important theo-
rems of the projective geometry, was a subject of many investigations. We
may mention here for instance the works [1], [2], [3] and [4], where this the-
orem was generalized to the n-dimensional projective space P™ (projective
space over an arbitrary commutative field). In particular, the generalization
from [1] concerns two sets of points A = {ao,...,a,} and B = {by,...,bp}
on two hyperplanes Hi and Hs, respectively. The theorem says that the di-
mension of the join of subspaces (points in general) Sy, ..., Sy is not greater
than n — 1 (S; = (Vi ;j»; Sij» where Sij = J(bi, A\ {ai,a;}), i # j (the
symbol J(Py,...,Py,) denotes the join of subspaces Pi,...,Py). Points
ag,..-,a, as well as by, ..., by, are assumed to be in a general position i.e. no
n of them are in an (n — 2)-dimensional subspace. Obviously, when n = 2, it
is the usual plane Pappus’ theorem. In this work we present a more general
theorem than that from [1]. Throughout the paper we investigate two sets of
points A = {ay,...,a,} and B = {by,...,b,} such that dimJ(A) =n -1,
dim J(B) =k, 1 < k <n—1, and points ag, ..., a, as well as by, ..., b, are
in a general position (no k+1 points of by, ..., b, are in a (k—1)-dimensional
subspace). Then we shall show that dim J(Sp,...,S,) < k. First we prove

LEMMA 1. If points by, ...,by (0 < m < k—1) are in Hy = J(A), then
dim J(Sp, ..., Sp) < max(1,m).

Proof. First suppose by € Hy and b; ¢ H; for i = 1,...n. Then {1} §; = ag
(when by & J(A\ {ao,a;}) or S; = @ (when by € J(A \ {ao,a;}) for all
Jj=1,...,n. Since dim Sy = 0, dim J(Sp, ..., S,) = 1.
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Let now m > 1. For j < m S§; = A; N Bj, where 4; = (g ;4; Sij,
Bj = (Ni=y41 Si. Notice that {ag,...am} \ {a;} € B; and dim B; = m.
Hence B;NHy = J({ag,...,am}\{a;}). Since A; C Hq, S; C J(ay,...an).
On the other hand, for j > m + 1 S; = C; N D;, where C; = (2, Sij,
Dj = Nicmt1,i; Sij- We have {ao,...,an} C Dj, dimD; = m + 1 and,
consequently, dlm(Dj N Hi) = m. It means that D; N Hy = J(ao,...,am).
As in the previous case C; C Hj, hence S; C J(ao,...,am). Thus we see
that J(So,...,S,) C J(ag,.-.,a). This ends the proof. m

LEMMA 2. Let A = {ag,...,an} and B = {by,...,b,} be two sets of
points on two hyperplanes Hy and Hi, respectively. Points ay,...,a, are
assumed to be in a gemeral position. If some of points b; coincide, then

dim J(Sp,...,S8,) <n—1.

Proof. In view of Lemma 1 we may assume that b; ¢ H; for i = 0,...,n.
Hence [1] dimS; = 0, all j (i.e. S; are points). Suppose e.g. by = b;. We
have Sp1 = J(bo,az, . ,an) = S0 = J(bl, ag, ..., an). Hence Sy, S1 € Sp1.
Observe that for j > 2, S; € J(bo, {az,...a,} \ {a;}) C So1. =

Let now A = {ap,...,a,} and B = {by,...,b,} be two sets of points
in a general position such that b; ¢ J(A) for all ¢, and dim J(A4) = n — 1,
dim J(B) = k, 1 < k < n—2. There are, among points a;, at least n —k+1
not belonging to J(B) = Ha. We choose n — k — 1, say ag, ..., ap_k—2, from
them in such a way that dim J(ao,...,an—k—2,H2) =n — 1.

LEMMA 3. There are, in Hy = J(ag,...,0n_k_2, B), points ciy1,. ,cn
such that points by, ...b, are in a geneml position, where b; = b; for i=
0,. kb—c@forz—k—kl nandS—S forj=n—k-1,.
(S =Nw 0,it Sij, Sij = J(bl,A \ {as, a5}).

Proof. We choose a point ¢xi1+i # bky1+4, a; on a line I; = J(a;, bgy144),
i=0,...,n—k —2. Obviously, cxr1 &€ Ha, ck+2 & Hs = J(H2,ckt1),- .-,
cn-1 & Hy ko = J(Hy—k_3,cn—2). Thus we have n linearly independent

points bg, . .., bk, Ck41, - - - , Cn—1 Which are vertices of an (n — 1)-dimensional
simplex S contalned in H 2. Consider the (n— k —1)-dimensional subspace G
determined by points ag,...,a,_k_2,b,. G cuts the faces of S in subspaces

G;i=1,...,n. Finally we choose a point ¢, in G in such a way that ¢, € G;,
all i. We have still to show that §; = S; for j =n —k —1,...,n. Observe
that

k n
S = nSUﬂ n Sij, §j= ﬂSi,ﬂ ﬂ g,;j forj=n—-k-1,...,n
i=k+1,i%jf =0 i=k+1,i#j
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Nevertheless, when k+ 1 <i < n~—1,
Sij = J(ao,- -, @n——2,bis {@n——1, ..., an} \ {as, a;})
= J(a'07 <oy n—k—2,GCi, {a”n—k—la ceey an} \ {aia aj}) = Sz]:

since ¢; € J(a;—k—-1,b;) and points ¢;,a;_k_1,b; are all distinct. If i = n,
then

Snj J(ao,...,ak,{ak+1,...,an_1}\{aj},bn)

J(ao, ey Ak, {ak+1, e ,an_1} \ {aj}, cn) = §nj1

since ¢, € J(ap,--.,an_k-2,bn) = G and b, € J(ao,-..,an-k-2,¢n) = G.
This completes the proof. »

il

LEMMA 4. As previously, we consider two sets of points, in a general posi-
tion, A = {ag,...,an} and B = {by,...,bn} such that dim H; = dim Hy =
n—1, where Hy = J(A), Hy = J(B) Ifag,...,ar_1 € He and b; ¢ Hy, all
i, then dim J(Sk,...,S,) <n—k—1.

Proof. Obviously, without loss of generality, we may assume that a; ¢ Ho
for j > k. Suppose we choose in P" an allowable coordinate system in such
a way that the j-th coordinate of point a; equals to &7, the equation of Hy
is )iz and ap, = (1,1,...,1.0), where t = 0,...,n—1, j = 0,...,n,
and 4] is the Kronecker 8. By b;; we denote the j-th coordinate of point b,
t=0,...,n,7=0,...,n—1. Then b;, will equal to — Z;‘:—,i b;;. Notice that
E;:,i bij # 0 for ¢ =0,...,n. Let us denote the sums E;‘;,i bij, Z;’;,: bn
by M; and M, respectively. One can check easily that the hyperplane Sy;
has the equation z;M; + z,b; =0,i=0,...,n — 1. Consequently, the i-th
coordinate sp; of point S, is b;;/M;, i = 0,...,n—1, while the n-th coordinate
of this point equals to —1. Similarly, we check that hyperplane Sj;; has the
equation (z; — x;))M; + zn(bij —by) =0j=k,...,n—1,i=0,...,n—1,
and the equation of S;, is ;M 4+ x,b,; =0, § =0,...,n— 1. Hence the i-th
coordinate sj; of point S; is

bij — by bpi . o . '
lMi l__]nwl,Z:O,...,n—l,l:,é], sjj:_ﬁ'a Sjn=1,9=k,...,n—1.
Observe that
n—1
(n—k)sni+z.sji=0 fori=0,...,n.
i=k

It means that points S, ..., S, are linearly dependent i.e. dim J(Sk,...,Sp)
<n-k-1.

Let now A = {ag,...,an}, B = {by,-..,b,} be two sets of points like
those described in the introduction.
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THEOREM. IfdimJ(A)=n-1anddimJ(B)=k, 1<k<n-1 and
J(B) ¢ J(A), then dim J(So, ..., Sn) < k.

Proof. Of course, we may consider £ < n — 2. In view of Lemma 1, we
may assume that b, ¢ Hy for i = 0,...,n. In fact, from by,...,b, € H;
it follows that dim J(Sy,...,S,) < max(l,m), but m < k — 1. Thus [1]
the subspaces Sy, ..., S, are points. Suppose dim J(Sy,...,S,) > k. Hence
there exist k + 2 points, among Sy, ..., S, say Sp—k—1,...,9,, such that
dim J(Sp—%—1,--.,Sn) = k+1. Take into account points ag, ..., a,_g_2. De-
note J(B, ag, . ..,an_k—2) by He. If dim Hs = n—1, then by Lemma 3, there
are points cgy1,...,cp in Hg such that the respective points §j are equal to
S; for j =n—k—1,...,n. According to Lemma 4 , dim J(Sp_g—1,-..,5,) <
k, a contradiction. If dim Hy < n — 1, we add points ap_g_1, ..., am to the
points ag, . .., @p—k—2 in such a way that dim J(B, ag,...,an) =n — 1 and
dim J(B,ag...,am-1) < n— 1. There is, among points ag, . .., am, a subset
of n—k—1 points, say a;,,...,a,_,_, such that dim J(a;,,...,a;,_,_,,B) =
n —1. Hence, Lemma 3, there exist points cx1,...,c, such that the respec-
tive points §j are equal to Sj for j & {i1,...,in—g—1}. In particular, it has
place when j = m+1,...,n. According to Lemma 4, dim J(Sp,41,...,5,) <
n—m—2. It implies dim J(Sy,,...,Sp) <n—-m-1,dim J(Sp-1,...,Sp) <
n —m and so on. Finally, we obtain dim J(S,_k—1,...,S,) < k which con-
tradicts with the supposition dim J(Sp,...,Sk+1) = k+ 1. This ends the
proof.
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