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VOLTERRA COMPOSITION OPERATORS BETWEEN
WEIGHTED BERGMAN-NEVANLINNA
AND BLOCH-TYPE SPACES

Abstract. Let g and ¢ be holomorphic maps on D such that (D) C D. Define
Volterra composition operators J, , and I, induced by g and ¢ as

Joof(2) = (f o) () (go9) (O)d and I,,,f(z) = {(fop) (O)(go9)(¢)d

for z € D and f € H(D), the space of holomorphic functions on I. In this paper, we
characterize boundedness and compactness of these operators acting between weighted
Bergman-Nevanlinna spaces .Aﬁ, and Bloch-type spaces. In fact, we prove that Jg, :
A% — B* (or BY) and I,,, : AR — B (or B§) are compact if and only if they are
bounded.

1. Introduction

Let D be the open unit disk in the complex plane C. Throughout this
paper, we denote by H (D), the space of holomorphic functions on D and by
S(D) the class of holomorphic self-maps of D. Let dA(2) = %dwdy = Lrdrdo
be the normalized area measure on ID. For each 8 € (—1, 00), we set dvg(2) =
(B+1)(1 - |22)PdA(z), z € D. Then dvg is a probability measure on D. For
0 < p < oo the weighted Bergman space .A% is defined as

a5 = {7 € HD) : 17lLgy = (§ 15 )Pdug(=)) "* < o0}
D

Note that Hf”Afa is a Banach space only if 1 <p < co. When 0 < p <1, A}

is a an F-space with respect to the translation invariant metric defined by
d,ﬂ,( f,9) =1 -4l 4B The weighted Bergman-Nevanlinna space Aﬁ, defined
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as
A = {f € H(D) : | log* | £(2)|dvp(z) < oo},
D
where
1 if 7>
log+:1:= ogzx if z2>1
0 if z<l.

The space Aﬁ, appears in the limit as p — 0 of the weighted Bergman space

AP in the sense of
®_

lim
—0 p
and it contains all the Bergman spaces A’ﬂ’. Obviously, the inequality

= logt, 0<t< o

logtz <log(l+2z)<1+logtz, >0
implies that f € Aﬁ/ if and only if
111 48, = § Jog(1 + |f (2))dvp(2) < co.
D

Of course, we are abusing the term norm since || f|| AL, fails to satisfy the
properties of norm, but in this case (f,g) — ||f —g|| A8, defines a translation
invariant metric on .Afi, and this turns Ajﬂ\, into a complete metric space.
Also, by subharmonicity of log(1 + |f(z)|), we have
1fiLg

(1 - |2/%)+2

for all f € .Af/-. In particular, (1.1) tells us that if f, — f in .Af/, then
fn — [ locally uniformly. Here, locally uniform convergence refers to the

uniform convergence on every compact subset of I.

Let a > 0. A function f holomorphic in D is in a-Bloch space B® if
sup(1 — [2%)%| f'(2)| < oo
z€D

and in the little a-Bloch space Bf if

lim (1~ |2]*)%|'(2)] = 0.

|2|—1

(1.1) log(1+ |f(2)]) < Cp

For f € B* define
1 fllBe = | £(0)] + Slellg(l — 2| (2)I-
With this norm B® is a Banach space and the little a-Bloch space Bf is a

closed subspace of the a-Bloch space. Note that B! = B is the usual Bloch
space and B} = By is the usual little Bloch space.
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Moreover, for f € B?,

Cllflga if0<a<l;
(12) If(2)] < § Clog 2 I fllgs if =1
it if > 1.

For general background on weighted Bergman spaces A%, weighted Bergman-
Nevanlinna spaces Af[ and Bloch spaces B* and Bf one may consult [5] and
the references therein.

Let g € H(D) and ¢ € S(D). Associated with ¢ € S(D) is the composi-
tion operator defined by

Cof =Ffop (fe HD)).

For z € D and f € H(D), we can define a linear operator Jg, induced by g

and ¢ as
z

Jowf(2) = [ (fo0) () (gow) (¢)dC.
0

The operator J, , can be viewed as a generalization of the Riemann-Stieltjes
operator J, induced by g, defined by

z 1
Jof(2) = F(¢)dg(¢) = [ 7 (t2)29/(t2)dt, =€ D.
0 0

Ch. Pommerenke [8] initiated the study of Riemann-Stieltjes operator on H2,
where he showed that J, is bounded on H? if and only if g is in BMOA. This
was extended to other Hardy spaces HP, 1 < p < oo, in [1] and [2] where
compactness of J; on H? and Schatten class membership of J; on H 2 was
also completely characterized in terms of the symbol g. Similar questions on
weighted Bergman spaces were considered by A. Aleman and A. G. Siskakis
in [3]. We also consider another integral operator I, , induced by g and ¢

and defined as
z

Lo f(2) ={(fo ) (€)(gow) (C)dC.

0
The operator Iy, is the generalization of the operator I, recently defined
by Yoneda in [13] as

z

If(z) =\ f'(¢)9(Q)d¢, =zeD.

0

Recently, several authors have studied these operators on different spaces of
analytic functions. For example, one can refer to ([6], [9], [10], [12], [13]) and
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related references therein for the study of these operators on different spaces
of analytic functions.

In fact, when ¢ (z) = z, we have Jg , = Jy and I, = I, whereas when
g =1, then I, , = C,. Let X be an F-space of analytic functions and Y is a
Banach space of analytic functions. Then one may ask, for what symbols g
and ¢, Jgo: X —Y and I, , : X — Y are bounded operators, are compact
operators? Furthermore, for what X and Y, Jg o, : X Y and [, : X - Y
are compact if and only if they are bounded? If X = .Afé and Y = B® or B,
then by Theorem 1, Theorem 2, Theorem 3, and Theorem 4 of [6], there do
exist p, @ and [ such that Jy ,: X — Y and Iy, : X — Y are bounded but
not compact.

In this paper, we note that Jy ,, Aff — B* (or BY) and Iy, : Af,— - B
(or Bf) are compact if and only if they are bounded.

2. Boundedness and compactness of J; , and I, ,

In this section, we characterize the boundedness and compactness of Jg ,, :
Afz/- — B (or Bf) and Iy, : .Af/ — B2 (or Bf).

A subset E of Aﬁ/ is bounded if it is bounded for the defining F-norm
g2,

Given a Banach space ), we say that a linear map T : Aﬁ, — Y is

bounded if T'(E) C Y is bounded for every bounded subset E of Af,. In
addition, we say that T' is compact if T (E) C Y is relatively compact for
every bounded set E C .Af/.

The following criterion for compactness is a useful tool to us and it follows

from standard arguments, for example, to those outlined in Proposition 3.11
of {4]. For completeness, we include its proof.
LEMMA 2.1. Let a € (0,00), f§ € (-1,00), g € H(D) and ¢ € S(D).
Then Jg, (orly,) : Ajﬁv — B® is compact if and only if for any sequence
{fn} in .Af/ with supy, || fall s = M < 0o and which converges to zero locally
uniformly on D, we have o

Tim g fallge =0 (or lim [gpfallge =0).
Proof. We prove the result for J, , only. Suppose that Jg, : Aﬁ, — B%is
compact and {f,} isin A?\/’ with sup || fn|| A= M < oo and which converges
n

to zero locally uniformly on D as n — co. Then {Jy, fr} has a subsequence
{Jg,0fn,} that converges to h € B®. Thus by (1.2) for all compact subsets
K C D, there is a positive constant Cx independent of f, such that

| Jgsofri(2) — (2)| < Ck||Jg 0 fr. — hliB=
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for all 2 € D. Therefore, {Jg,fr,(2) — h(z)} converges to zero uniformly
on K. Notice that, there is a constant C > 0 such that |(g o ¢)(2)| < C for
all z € K. Also ¢(K) is compact in D and so we have f,, (¢(z)) converges
to zero for each z € . Therefore, |Jy ,fn,(¢(2))] — 0 uniformly on K.
Thus for the arbitrariness of K, we have h = 0. Since it is true for arbitrary
subsequence of fn, we see that Jy,fn, (¢(2)) — 0 in B%*, when n — oo.

Conversely, let {hi} be a bounded sequence in .Ajﬁv. Since sup || fa| A=
n
M < oo, the sequence {hi} is uniformly bounded on compact subsets of D

and hence a normal family by Montel’'s Theorem. Hence we may extract a
subsequence {hkj} which converges uniformly on compact subsets of D to

some h € H(D). Moreover, h € .Af/ and ||h|| A, < M. Thus the sequence
{(hx; —h)} is such that ||hg, — Al| A, < M and converges to zero on compact
subsets of . By hypothesis, we have Jg ,hy, — Jgoh in B*. Thus Jg, :
.Af/ — B® is compact as desired.

LEMMA 2.2. [7] Let K C By. Then K s compact if and only if K is closed,
bounded and satisfies

lim_sup(1 - [2[*)?|f'(2)] = 0.
|z|—1~ ek

THEOREM 2.3. Leta >0, 8> -1, g € H(D) and ¢ € S(D). Then the
following are equivalent:

(i) Jgp: Ajﬁv — B% is bounded.

(i) Jgp: Aﬁf — B® is compact.

(iii) For allc >0,

(2

im | (1-1:7)"I¢ (o] ¢! @] exo |

l(2)}—1

[

(1- lw(Z)IQ)M]

— _z2a / z Iz Q.
N_ilellg(l ||) Ig (p( ))80()|<

Proof. It suffices to show only two implications: (i)=-(iii) and (iii)=>(ii).
(i)=(iii). Suppose (z) holds. Let A € D be fixed. For w = ¢ (A\) and
¢ > 0, consider the function

(=P T fe -y
fulz) = ((1 —mz)2) exP{(l —wz)2<ﬂ+2>}'

Using the inequalities
log(1+zy)<log(1+z)+log(l1+y); z,y>0

=0

and

and
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log(1+z)<1+logtz; z2>0,

h
e 1—Jwl® \7*? c(1 — [w]*)P+2
log(l—f-lfw(z)l)glog l:l—i-(m) :|+1+{m}
(1= w[*)5+2
and so

1— lw|2 £+2
||fw||AﬁfS1+(1+C)HS)<|1—_£;'§> dvg(z) <2+e.

Since Jg o, : Aﬁf — B is bounded, we can find a constant M > 0 such that
M2 (1-DP g (e ()@ W1 (e V)]

_ A= DPlg e I NI [ ¢ ]
(1= o (W)[F)+2 (1 [P+
That is,
_ 2N\B | . 7 ex c B 2 £+2
(1= g (e (V) ¢ (V)] exp [(1_ |<p(A)|2)ﬂ+2] gM(1 o (V)] ) _

Taking limit as |¢ (A)] — 1 on both sides of above inequality, we have
B c
lim (1-[AP) ¢ (e ')\ex[ }:
(ili)=-(ii). Assume that (iii) is valid for all ¢ > 0. Using (1.1) we have for
all fe A%

My ”fn“Af,’v }
(= )P+

Choose a sequence {fp} in Ajﬂv such that sup, || fx/| A = M < oo and

fa(2)] < exp{

frn — 0 locally uniformly on D. By Lemma 2.1, it is sufficient to show that
”Jg,gafn“Ba —Q0asn— oo Forre (O, 1)

sup (1= |2*)" [(guotu) (2)]

lp(2)|<r

= s (1-12) o (0 (2D @ (D) 17 (2 ()

lp(z)|<r
< sup (1=12P) 19 (0 ()¢ ()] sup |falp ()]
le(2)|<r lp(2)<r

<N sup |fa(p(2))] >0 as n— oo.
lo(2)I<r
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On the other hand, whenever r — 1, we have

sup |z| l(Jg <pfn) (z)|

I<P(Z)|>T

= sup (1- 2P |¢ (0 (2)) ¢ ()] exp [ (

le(2)|>r

MoM ]
1o (2)[%)p+2
Combining the above estimates we see that ||Jg, fnll A8 = 0 as n — oo.

This completes the proof.

THEOREM 2.4. Leta >0, > —1, g € H(D) and ¢ € S(D). Then the
following are equivalent:

(i) Jge AN — By is bounded.
ii : AP BE s compact.
Jop + An 0
(iii) For all ¢ > 0,

i (1= )7 |¢ (o () ¢! @] exp |

c ] —0
(1 - g (2)])P+2

Proof. Once again we only need to prove two implications: (i)=-(iii) and
(iii)=>(i).

(i)=(iii). By taking f (z) = ¢, a constant function in Af/, we get

(2.1) Il}m (1—]2%) lg' (¢ (2)) ¢’ ()] = 0.

Again using the same test functions as in Theorem 2.3, we get

. 2va |/ / c =
(2.2) |¢(l§§|n—»1(1 — 2% |g' (¢ (2)) ¢' ()| exp [(1 n |(p(z)|2)ﬁ+2] =0

By (2.2), for every € > 0, there exists r; € (0,1) such that

(1= 121")*]g (v (2) ¢' (2)] exp

[(1 . (cz>|2>ﬂ+2} N

whenever 1 < |p(z)| < 1. By (2.1), there exists 72 € (0,1) such that

(1= 1P| (¢ ()¢ (2)] < (xp[m])<

for all ¢ > 0, whenever 3 < |z| < 1.
Thus, whenever 73 < |2| < 1 and r; < |¢(2)]| < 1, we have

@) 0=l D e [ ] <
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If ro < |2| <1 and |p(2)| < 1, then we have

@) (1= 416 (0 ()¢ () exp | s
< Q=) 19 0 @ @] exp | r—agara] <

Combining (2.3) and (2.4), we get (iii).
(iii)=(i) Assume that (iii) holds. It follows from Lemma 2.2 that Jy, :
.Afz,- — B® is compact if and only if

(2.5) m sup (1— 2% |(Jgef) (2)| =0.
le=1 ) a8, <1

By (1.1), we have
(L= =) |g (0 (2) ¢ ()] 1f ( (V)

Mo £
< (1= A9 (0 (2)) ¢ (2)] exp [( oM

1— o (2))P+2 )

By (iii), the above inequality implies (2.5). Thus Jg, : Aﬁf — B is compact.

COROLLARY 2.5. Let a > 0, 8 > —1 and g € H (D). Then the following
are equivalent:

(i) Jg : A% — B> is bounded.
(i) Jg: Af/ — B® is compact.
(iii) Jy Aff — B is bounded.
(iv) Jg: Aff — By is compact.
(v) g is constant.

Proof. The equivalence of first four conditions follows by Theorem 2.3 and
Theorem 2.4. That (i) — (iv) are equivalent to (v) follows by the maximum
modulus principle.

THEOREM 2.6. Leta >0, 3> —1,g € H(D) and ¢ € S(D). Then the
following are equivalent:

(i) Ige: .Af/ — B® is bounded.
(i) Ig, : Aﬁ, — B® is compact.
(iii) For all ¢> 0,

0Pl @)@, c _
@6\ im, 1-le)P) it e@pee) =
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and

M = sup(1 - |2[*)* |g (¢ (2)) ¢ (2)] < 0.
zeD

Proof. Once again we only need to prove two implications: (i)=>(iii) and
(iii)=>(ii).

(i)=(iii). Suppose (¢) holds. By taking f(z) = z in Af/, we get
supzeD(1—|z|2)°‘ lg (¢ (2)) ¢’ (2)| < 00.Fix 29 € D. For ¢ > 0 and w = ¢ (20) ,
consider the function

e(1 =~ Jwf*)P+?
fw (Z) = exp {(_]_thﬂ—)}

Using the obvious inequality, log(l+z) < 1+logtz for =z >0, we
have

(1~ Jwl*)P+2

”fw“Afv <1 +C]§)deg (2) L1l+ec

Since Iy , maps .Af/ boundedly into B* and

sy 2B+ 2)am(l = [w)P? [ e(l - jwl?)PH?
pute) = et — e { £t

there is a constant N > 0 depending only on ¢ and 3 such that
N > (1—|20*)*|g (¢ (20)) ¢ (20)] | f0, (12 (20))]

o\ B+2
2O el el ol o (1 - ful’) |
(1= lp (20)|%)+3 (1 — o (20)]2)206+2) [

where |9 (20)| = |9 (¢ (20)) ¢’ (20)|- That is,

(1 = |20*)* |4 (20)| exp [ ] o M- | (20)|2)P+1
(1 -l (20)%) (1— e (20))f+2] = 2(B+2)cle ()]

= (1 - |20/*)

Taking lim),(,4)|—1 on both sides of above inequality, we get (2.6).

(iii)=>(ii). Assume that (iii) is valid for all ¢ > 0. Note that if f € 42,
then by (1.1) and Cauchy’s integral formula for derivatives
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(-1 ) < 2 |

oD
[42+5M0 “fw”Af,]
S eXp .
(1 - lp (2)[*)P+2
Choose any sequence f, in Aﬁf such that || fn| A2, < M and f, — 0 locally

=+ 5 -1e0¢) e

uniformly on D. By Lemma 2.1, it is sufficient to show that Iy, f, — 0 as
n — oo. For r € (0,1)

sup (1= |21)* | gofn(2)| = sup (1—[21*)*|g (¢ (2)¢ ()] |fn (¢ (2))]
le(2)|<r lp(2)|<r

<A swp |fp(p(2))] —0
(<

as n — 0o, where A = sup,cp(1—|2]*)]g (¢ (2)) ¢ (2)] < 00. On the other
hand, whenever r — 1, we have

sup (1-— Izlz)a g0 fn (2)]
lo(2)|>r
VAV / 2+83
— 4 M
¢ UL OCEDE G [ EMoM
le()|>r 1=l (2% (1=l (2)[7)P+
Combining the above estimates, we see that || Iy, fnll 4-a — 0 as n — oo.
This completes the proof.

THEOREM 2.7. Leta >0, 3> —1,¢ € H(D) and ¢ € S(D). Then the
following are equivalent:

(i) I, maps Aﬁf boundedly into Bf.

(it) Ig,, maps .Afz/ compactly into B§.
(iii) For all ¢ > 0,

2\ /
m P l8 G @ R
|z]-1 (1= le(2)]%) (1 =l (2)[9)P+2

Proof. The proof follows on same lines as the proof of Theorem 2.4. So we
omit the details.

COROLLARY 2.8. Let a > 0, 8 > —1 and g € H (D). Then the following
are equivalent:
(i) I : Aﬁ, — B® is bounded.
(i) Ig: .Ajﬂv — B% is compact.
(iii) I - .Afz,- — Bf is bounded.
(iv) Ig - .Afv— — B§ is compact.
(v) g=0.
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Finally, we have the following two corollaries, the first of which is a recent
result of Jie Xiao [11].

COROLLARY 2.9. Let o > 0, 8 > ~1 and ¢ € S(D). Then the following
are equivalent:

(i) Cop: Aﬁf — B* is bounded.
(i) Cyp : Afi/ — B® is compact.
(iii) For all ¢ >0,
_ .12y |,
o A l2) |<P2(2)| exp c -
le(=)1=1 (1= (2)]%) 1 - lp(2)1?)

COROLLARY 2.10. Let a > 0, 8 > —1 and ¢ € S (D). Then the following
are equivalent:

(i) Cyp: Aﬁ, — B is bounded.
(ii) Cy : Af/ — B is compact.
(iii) For all ¢ > 0,
1-— A\ /
LSl WY S
lZ=1 (1 —[p (2)[%) (1 —1le ()%
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