

Ajay K. Sharma

**VOLTERRA COMPOSITION OPERATORS BETWEEN
 WEIGHTED BERGMAN-NEVANLINNA
 AND BLOCH-TYPE SPACES**

Abstract. Let g and φ be holomorphic maps on \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$. Define Volterra composition operators $J_{g,\varphi}$ and $I_{g,\varphi}$ induced by g and φ as

$$J_{g,\varphi}f(z) = \int_0^z (f \circ \varphi)(\zeta) (g \circ \varphi)'(\zeta) d\zeta \quad \text{and} \quad I_{g,\varphi}f(z) = \int_0^z (f \circ \varphi)'(\zeta) (g \circ \varphi)(\zeta) d\zeta$$

for $z \in \mathbb{D}$ and $f \in H(\mathbb{D})$, the space of holomorphic functions on \mathbb{D} . In this paper, we characterize boundedness and compactness of these operators acting between weighted Bergman-Nevanlinna spaces \mathcal{A}_N^β and Bloch-type spaces. In fact, we prove that $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α) and $I_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α) are compact if and only if they are bounded.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Throughout this paper, we denote by $H(\mathbb{D})$, the space of holomorphic functions on \mathbb{D} and by $S(\mathbb{D})$ the class of holomorphic self-maps of \mathbb{D} . Let $dA(z) = \frac{1}{\pi}dxdy = \frac{1}{\pi}rdrd\theta$ be the normalized area measure on \mathbb{D} . For each $\beta \in (-1, \infty)$, we set $d\nu_\beta(z) = (\beta + 1)(1 - |z|^2)^\beta dA(z)$, $z \in \mathbb{D}$. Then $d\nu_\beta$ is a probability measure on \mathbb{D} . For $0 < p < \infty$ the weighted Bergman space \mathcal{A}_β^p is defined as

$$\mathcal{A}_\beta^p = \left\{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{A}_\beta^p} = \left(\int_{\mathbb{D}} |f(z)|^p d\nu_\beta(z) \right)^{1/p} < \infty \right\}.$$

Note that $\|f\|_{\mathcal{A}_\beta^p}$ is a Banach space only if $1 \leq p < \infty$. When $0 < p < 1$, \mathcal{A}_β^p is a an F-space with respect to the translation invariant metric defined by $d_p^\beta(f, g) = \|f - g\|_{\mathcal{A}_\beta^p}$. The weighted Bergman-Nevanlinna space \mathcal{A}_N^β defined

2000 *Mathematics Subject Classification*: Primary 47B33, 46E10; Secondary 30D55.

Key words and phrases: Volterra composition operator, Bloch-type space, Bergman-Nevanlinna space.

as

$$\mathcal{A}_N^\beta = \left\{ f \in H(\mathbb{D}) : \int_{\mathbb{D}} \log^+ |f(z)| d\nu_\beta(z) < \infty \right\},$$

where

$$\log^+ x = \begin{cases} \log x & \text{if } x \geq 1 \\ 0 & \text{if } x < 1. \end{cases}$$

The space \mathcal{A}_N^β appears in the limit as $p \rightarrow 0$ of the weighted Bergman space \mathcal{A}_β^p , in the sense of

$$\lim_{p \rightarrow 0} \frac{t^p - 1}{p} = \log t, \quad 0 < t < \infty$$

and it contains all the Bergman spaces \mathcal{A}_β^p . Obviously, the inequality

$$\log^+ x \leq \log(1 + x) \leq 1 + \log^+ x, \quad x \geq 0$$

implies that $f \in \mathcal{A}_N^\beta$ if and only if

$$\|f\|_{\mathcal{A}_N^\beta} = \int_{\mathbb{D}} \log(1 + |f(z)|) d\nu_\beta(z) < \infty.$$

Of course, we are abusing the term norm since $\|f\|_{\mathcal{A}_N^\beta}$ fails to satisfy the properties of norm, but in this case $(f, g) \rightarrow \|f - g\|_{\mathcal{A}_N^\beta}$ defines a translation invariant metric on \mathcal{A}_N^β and this turns \mathcal{A}_N^β into a complete metric space. Also, by subharmonicity of $\log(1 + |f(z)|)$, we have

$$(1.1) \quad \log(1 + |f(z)|) \leq C_\beta \frac{\|f\|_{\mathcal{A}_N^\beta}}{(1 - |z|^2)^{\beta+2}}, \quad z \in \mathbb{D}$$

for all $f \in \mathcal{A}_N^\beta$. In particular, (1.1) tells us that if $f_n \rightarrow f$ in \mathcal{A}_N^β , then $f_n \rightarrow f$ locally uniformly. Here, locally uniform convergence refers to the uniform convergence on every compact subset of \mathbb{D} .

Let $\alpha > 0$. A function f holomorphic in \mathbb{D} is in α -Bloch space \mathcal{B}^α if

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty$$

and in the little α -Bloch space \mathcal{B}_0^α if

$$\lim_{|z| \rightarrow 1} (1 - |z|^2)^\alpha |f'(z)| = 0.$$

For $f \in \mathcal{B}^\alpha$ define

$$\|f\|_{\mathcal{B}^\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)|.$$

With this norm \mathcal{B}^α is a Banach space and the little α -Bloch space \mathcal{B}_0^α is a closed subspace of the α -Bloch space. Note that $\mathcal{B}^1 = \mathcal{B}$ is the usual Bloch space and $\mathcal{B}_0^1 = \mathcal{B}_0$ is the usual little Bloch space.

Moreover, for $f \in \mathcal{B}^\alpha$,

$$(1.2) \quad |f(z)| \leq \begin{cases} C \|f\|_{\mathcal{B}^\alpha} & \text{if } 0 < \alpha < 1; \\ C \log \frac{2}{1-|z|} \|f\|_{\mathcal{B}^\alpha} & \text{if } \alpha = 1; \\ C \frac{\|f\|_{\mathcal{B}^\alpha}}{(1-|z|^2)^{\alpha-1}} & \text{if } \alpha > 1. \end{cases}$$

For general background on weighted Bergman spaces \mathcal{A}_β^p , weighted Bergman-Nevanlinna spaces \mathcal{A}_N^β and Bloch spaces \mathcal{B}^α and \mathcal{B}_0^α one may consult [5] and the references therein.

Let $g \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Associated with $\varphi \in S(\mathbb{D})$ is the composition operator defined by

$$C_\varphi f = f \circ \varphi \quad (f \in H(\mathbb{D})).$$

For $z \in \mathbb{D}$ and $f \in H(\mathbb{D})$, we can define a linear operator $J_{g,\varphi}$ induced by g and φ as

$$J_{g,\varphi} f(z) = \int_0^z (f \circ \varphi)(\zeta) (g \circ \varphi)'(\zeta) d\zeta.$$

The operator $J_{g,\varphi}$ can be viewed as a generalization of the Riemann-Stieltjes operator J_g induced by g , defined by

$$J_g f(z) = \int_0^z f(\zeta) dg(\zeta) = \int_0^1 f(tz) zg'(tz) dt, \quad z \in \mathbb{D}.$$

Ch. Pommerenke [8] initiated the study of Riemann-Stieltjes operator on H^2 , where he showed that J_g is bounded on H^2 if and only if g is in $BMOA$. This was extended to other Hardy spaces H^p , $1 \leq p < \infty$, in [1] and [2] where compactness of J_g on H^p and Schatten class membership of J_g on H^2 was also completely characterized in terms of the symbol g . Similar questions on weighted Bergman spaces were considered by A. Aleman and A. G. Siskakis in [3]. We also consider another integral operator $I_{g,\varphi}$ induced by g and φ and defined as

$$I_{g,\varphi} f(z) = \int_0^z (f \circ \varphi)'(\zeta) (g \circ \varphi)(\zeta) d\zeta.$$

The operator $I_{g,\varphi}$ is the generalization of the operator I_g , recently defined by Yoneda in [13] as

$$I_g f(z) = \int_0^z f'(\zeta) g(\zeta) d\zeta, \quad z \in \mathbb{D}.$$

Recently, several authors have studied these operators on different spaces of analytic functions. For example, one can refer to ([6], [9], [10], [12], [13]) and

related references therein for the study of these operators on different spaces of analytic functions.

In fact, when $\varphi(z) = z$, we have $J_{g,\varphi} = J_g$ and $I_{g,\varphi} = I_g$, whereas when $g \equiv 1$, then $I_{g,\varphi} = C_\varphi$. Let X be an F -space of analytic functions and Y is a Banach space of analytic functions. Then one may ask, for what symbols g and φ , $J_{g,\varphi} : X \rightarrow Y$ and $I_{g,\varphi} : X \rightarrow Y$ are bounded operators, are compact operators? Furthermore, for what X and Y , $J_{g,\varphi} : X \rightarrow Y$ and $I_{g,\varphi} : X \rightarrow Y$ are compact if and only if they are bounded? If $X = \mathcal{A}_\beta^p$ and $Y = \mathcal{B}^\alpha$ or \mathcal{B}_0^α , then by Theorem 1, Theorem 2, Theorem 3, and Theorem 4 of [6], there do exist p , α and β such that $J_{g,\varphi} : X \rightarrow Y$ and $I_{g,\varphi} : X \rightarrow Y$ are bounded but not compact.

In this paper, we note that $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α) and $I_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α) are compact if and only if they are bounded.

2. Boundedness and compactness of $J_{g,\varphi}$ and $I_{g,\varphi}$

In this section, we characterize the boundedness and compactness of $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α) and $I_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ (or \mathcal{B}_0^α).

A subset E of \mathcal{A}_N^β is bounded if it is bounded for the defining F -norm $\| \cdot \|_{\mathcal{A}_N^\beta}$.

Given a Banach space \mathcal{Y} , we say that a linear map $T : \mathcal{A}_N^\beta \rightarrow \mathcal{Y}$ is bounded if $T(E) \subset \mathcal{Y}$ is bounded for every bounded subset E of \mathcal{A}_N^β . In addition, we say that T is compact if $T(E) \subset \mathcal{Y}$ is relatively compact for every bounded set $E \subset \mathcal{A}_N^\beta$.

The following criterion for compactness is a useful tool to us and it follows from standard arguments, for example, to those outlined in Proposition 3.11 of [4]. For completeness, we include its proof.

LEMMA 2.1. *Let $\alpha \in (0, \infty)$, $\beta \in (-1, \infty)$, $g \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then $J_{g,\varphi}$ (or $I_{g,\varphi}$) : $\mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact if and only if for any sequence $\{f_n\}$ in \mathcal{A}_N^β with $\sup_n \|f_n\|_{\mathcal{A}_N^\beta} = M < \infty$ and which converges to zero locally uniformly on \mathbb{D} , we have*

$$\lim_{n \rightarrow \infty} \|J_{g,\varphi} f_n\|_{\mathcal{B}^\alpha} = 0 \quad \left(\text{or} \lim_{n \rightarrow \infty} \|I_{g,\varphi} f_n\|_{\mathcal{B}^\alpha} = 0 \right).$$

Proof. We prove the result for $J_{g,\varphi}$ only. Suppose that $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact and $\{f_n\}$ is in \mathcal{A}_N^β with $\sup_n \|f_n\|_{\mathcal{A}_N^\beta} = M < \infty$ and which converges to zero locally uniformly on \mathbb{D} as $n \rightarrow \infty$. Then $\{J_{g,\varphi} f_n\}$ has a subsequence $\{J_{g,\varphi} f_{n_k}\}$ that converges to $h \in \mathcal{B}^\alpha$. Thus by (1.2) for all compact subsets $K \subset \mathbb{D}$, there is a positive constant C_K independent of f_n such that

$$|J_{g,\varphi} f_{n_k}(z) - h(z)| \leq C_K \|J_{g,\varphi} f_{n_k} - h\|_{\mathcal{B}^\alpha}$$

for all $z \in \mathbb{D}$. Therefore, $\{J_{g,\varphi}f_{n_k}(z) - h(z)\}$ converges to zero uniformly on K . Notice that, there is a constant $C > 0$ such that $|(g \circ \varphi)(z)| < C$ for all $z \in K$. Also $\varphi(K)$ is compact in \mathbb{D} and so we have $f_{n_k}(\varphi(z))$ converges to zero for each $z \in \mathbb{D}$. Therefore, $|J_{g,\varphi}f_{n_k}(\varphi(z))| \rightarrow 0$ uniformly on K . Thus for the arbitrariness of K , we have $h \equiv 0$. Since it is true for arbitrary subsequence of f_n , we see that $J_{g,\varphi}f_{n_k}(\varphi(z)) \rightarrow 0$ in \mathcal{B}^α , when $n \rightarrow \infty$.

Conversely, let $\{h_k\}$ be a bounded sequence in \mathcal{A}_N^β . Since $\sup_n \|f_n\|_{\mathcal{A}_N^\beta} = M < \infty$, the sequence $\{h_k\}$ is uniformly bounded on compact subsets of \mathbb{D} and hence a normal family by Montel's Theorem. Hence we may extract a subsequence $\{h_{k_j}\}$ which converges uniformly on compact subsets of \mathbb{D} to some $h \in H(\mathbb{D})$. Moreover, $h \in \mathcal{A}_N^\beta$ and $\|h\|_{\mathcal{A}_N^\beta} \leq M$. Thus the sequence $\{(h_{k_j} - h)\}$ is such that $\|h_{k_j} - h\|_{\mathcal{A}_N^\beta} \leq M$ and converges to zero on compact subsets of \mathbb{D} . By hypothesis, we have $J_{g,\varphi}h_{k_j} \rightarrow J_{g,\varphi}h$ in \mathcal{B}^α . Thus $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact as desired.

LEMMA 2.2. [7] *Let $K \subset \mathcal{B}_0^\alpha$. Then K is compact if and only if K is closed, bounded and satisfies*

$$\lim_{|z| \rightarrow 1^-} \sup_{f \in K} (1 - |z|^2)^\alpha |f'(z)| = 0.$$

THEOREM 2.3. *Let $\alpha > 0$, $\beta > -1$, $g \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded.
- (ii) $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact.
- (iii) For all $c > 0$,

$$\lim_{|\varphi(z)| \rightarrow 1} \left(1 - |z|^2\right)^\alpha |g'(\varphi(z))| |\varphi'(z)| \exp\left[\frac{c}{\left(1 - |\varphi(z)|^2\right)^{\beta+2}}\right] = 0$$

and

$$N = \sup_{z \in \mathbb{D}} \left(1 - |z|^2\right)^\alpha |g'(\varphi(z)) \varphi'(z)| < \infty.$$

Proof. It suffices to show only two implications: (i) \Rightarrow (iii) and (iii) \Rightarrow (ii).

(i) \Rightarrow (iii). Suppose (i) holds. Let $\lambda \in \mathbb{D}$ be fixed. For $w = \varphi(\lambda)$ and $c > 0$, consider the function

$$f_w(z) = \left(\frac{1 - |w|^2}{(1 - \bar{w}z)^2}\right)^{\beta+2} \exp\left\{\frac{c(1 - |w|^2)^{\beta+2}}{(1 - \bar{w}z)^{2(\beta+2)}}\right\}.$$

Using the inequalities

$$\log(1 + xy) \leq \log(1 + x) + \log(1 + y); \quad x, y \geq 0$$

and

$$\log(1+x) \leq 1 + \log^+ x; \quad x \geq 0,$$

we have

$$\begin{aligned} \log(1 + |f_w(z)|) &\leq \log \left[1 + \left(\frac{1 - |w|^2}{(1 - \bar{w}z)^2} \right)^{\beta+2} \right] + 1 + \left\{ \frac{c(1 - |w|^2)^{\beta+2}}{|1 - \bar{w}z|^{2(\beta+2)}} \right\} \\ &\leq 1 + (1+c) \frac{(1 - |w|^2)^{\beta+2}}{|1 - \bar{w}z|^{2(\beta+2)}} \end{aligned}$$

and so

$$\|f_w\|_{\mathcal{A}_N^\beta} \leq 1 + (1+c) \int_{\mathbb{D}} \left(\frac{1 - |w|^2}{|1 - \bar{w}z|^2} \right)^{\beta+2} dv_\beta(z) \leq 2 + c.$$

Since $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded, we can find a constant $M > 0$ such that

$$\begin{aligned} M &\geq (1 - |\lambda|^2)^\beta |g'(\varphi(\lambda)) \varphi'(\lambda)| |f(\varphi(\lambda))| \\ &= \frac{(1 - |\lambda|^2)^\beta |g'(\varphi(\lambda))| |\varphi'(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{\beta+2}} \exp \left[\frac{c}{(1 - |\varphi(\lambda)|^2)^{\beta+2}} \right]. \end{aligned}$$

That is,

$$(1 - |\lambda|^2)^\beta |g'(\varphi(\lambda)) \varphi'(\lambda)| \exp \left[\frac{c}{(1 - |\varphi(\lambda)|^2)^{\beta+2}} \right] \leq M (1 - |\varphi(\lambda)|^2)^{\beta+2}.$$

Taking limit as $|\varphi(\lambda)| \rightarrow 1$ on both sides of above inequality, we have

$$\lim_{|\varphi(\lambda)| \rightarrow 1} (1 - |\lambda|^2)^\beta |g'(\varphi(\lambda)) \varphi'(\lambda)| \exp \left[\frac{c}{(1 - |\varphi(\lambda)|^2)^{\beta+2}} \right] = 0.$$

(iii) \Rightarrow (ii). Assume that (iii) is valid for all $c > 0$. Using (1.1) we have for all $f \in \mathcal{A}_N^\beta$,

$$|f_n(z)| \leq \exp \left\{ \frac{M_0 \|f_n\|_{\mathcal{A}_N^\beta}}{(1 - |z|^2)^{\beta+2}} \right\}.$$

Choose a sequence $\{f_n\}$ in \mathcal{A}_N^β such that $\sup_n \|f_n\|_{\mathcal{A}_N^\beta} = M < \infty$ and $f_n \rightarrow 0$ locally uniformly on \mathbb{D} . By Lemma 2.1, it is sufficient to show that $\|J_{g,\varphi} f_n\|_{\mathcal{B}^\alpha} \rightarrow 0$ as $n \rightarrow \infty$. For $r \in (0, 1)$

$$\begin{aligned} \sup_{|\varphi(z)| \leq r} (1 - |z|^2)^\alpha |(J_{g,\varphi} f_n)'(z)| &= \sup_{|\varphi(z)| \leq r} (1 - |z|^2)^\alpha |g'(\varphi(z)) \varphi'(z)| |f_n(\varphi(z))| \\ &\leq \sup_{|\varphi(z)| \leq r} (1 - |z|^2)^\alpha |g'(\varphi(z)) \varphi'(z)| \sup_{|\varphi(z)| \leq r} |f_n(\varphi(z))| \\ &\leq N \sup_{|\varphi(z)| \leq r} |f_n(\varphi(z))| \rightarrow 0 \quad \text{as } n \rightarrow \infty. \end{aligned}$$

On the other hand, whenever $r \rightarrow 1$, we have

$$\begin{aligned} & \sup_{|\varphi(z)|>r} (1-|z|^2)^\alpha |(J_{g,\varphi}f_n)'(z)| \\ &= \sup_{|\varphi(z)|>r} (1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{M_0 M}{(1-|\varphi(z)|^2)^{\beta+2}} \right] \rightarrow 0. \end{aligned}$$

Combining the above estimates we see that $\|J_{g,\varphi}f_n\|_{\mathcal{A}_N^\beta} \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

THEOREM 2.4. *Let $\alpha > 0$, $\beta > -1$, $g \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is bounded.
- (ii) $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is compact.
- (iii) For all $c > 0$,

$$\lim_{|z| \rightarrow 1} (1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1-|\varphi(z)|^2)^{\beta+2}} \right] = 0.$$

Proof. Once again we only need to prove two implications: (i) \Rightarrow (iii) and (iii) \Rightarrow (i).

(i) \Rightarrow (iii). By taking $f(z) = c$, a constant function in \mathcal{A}_N^β , we get

$$(2.1) \quad \lim_{|z| \rightarrow 1} (1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| = 0.$$

Again using the same test functions as in Theorem 2.3, we get

$$(2.2) \quad \lim_{|\varphi(z)| \rightarrow 1} (1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1-|\varphi(z)|^2)^{\beta+2}} \right] = 0.$$

By (2.2), for every $\epsilon > 0$, there exists $r_1 \in (0, 1)$ such that

$$(1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1-|\varphi(z)|^2)^{\beta+2}} \right] < \epsilon$$

whenever $r_1 < |\varphi(z)| < 1$. By (2.1), there exists $r_2 \in (0, 1)$ such that

$$(1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| < \left(\exp \left[\frac{c}{(1-r_1^2)^{\beta+2}} \right] \right)^{-1} < \epsilon$$

for all $c > 0$, whenever $r_2 < |z| < 1$.

Thus, whenever $r_2 < |z| < 1$ and $r_1 < |\varphi(z)| < 1$, we have

$$(2.3) \quad (1-|z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1-|\varphi(z)|^2)^{\beta+2}} \right] < \epsilon.$$

If $r_2 < |z| < 1$ and $|\varphi(z)| \leq r_1$, then we have

$$(2.4) \quad (1 - |z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] \\ \leq (1 - |z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{c}{(1 - r_1^2)^{\beta+2}} \right] < \epsilon.$$

Combining (2.3) and (2.4), we get (iii).

(iii) \Rightarrow (i) Assume that (iii) holds. It follows from Lemma 2.2 that $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact if and only if

$$(2.5) \quad \lim_{|z| \rightarrow 1} \sup_{\|f\|_{\mathcal{A}_N^\beta} \leq 1} (1 - |z|^2)^\alpha |(J_{g,\varphi} f)'(z)| = 0.$$

By (1.1), we have

$$(1 - |z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| |f(\varphi(z))| \\ \leq (1 - |z|^2)^\alpha |g'(\varphi(z))\varphi'(z)| \exp \left[\frac{M_0 \|f\|_{\mathcal{A}_N^\beta}}{(1 - |\varphi(z)|^2)^{\beta+2}} \right].$$

By (iii), the above inequality implies (2.5). Thus $J_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is compact.

COROLLARY 2.5. *Let $\alpha > 0$, $\beta > -1$ and $g \in H(\mathbb{D})$. Then the following are equivalent:*

- (i) $J_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded.
- (ii) $J_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact.
- (iii) $J_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is bounded.
- (iv) $J_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is compact.
- (v) g is constant.

Proof. The equivalence of first four conditions follows by Theorem 2.3 and Theorem 2.4. That (i) – (iv) are equivalent to (v) follows by the maximum modulus principle.

THEOREM 2.6. *Let $\alpha > 0$, $\beta > -1$, $g \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $I_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded.
- (ii) $I_{g,\varphi} : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact.
- (iii) For all $c > 0$,

$$(2.6) \quad \lim_{|\varphi(z)| \rightarrow 1} \frac{(1 - |z|^2)^\alpha |g(\varphi(z))| |\varphi'(z)|}{(1 - |\varphi(z)|^2)} \exp \left[\frac{c}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] = 0$$

and

$$M = \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)| < \infty.$$

Proof. Once again we only need to prove two implications: (i) \Rightarrow (iii) and (iii) \Rightarrow (ii).

(i) \Rightarrow (iii). Suppose (i) holds. By taking $f(z) = z$ in \mathcal{A}_N^β , we get $\sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)| < \infty$. Fix $z_0 \in \mathbb{D}$. For $c > 0$ and $w = \varphi(z_0)$, consider the function

$$f_w(z) = \exp \left\{ \frac{c(1 - |w|^2)^{\beta+2}}{(1 - \bar{w}z)^{2(\beta+2)}} \right\}.$$

Using the obvious inequality, $\log(1 + x) \leq 1 + \log^+ x$ for $x \geq 0$, we have

$$\|f_w\|_{\mathcal{A}_N^\beta} \leq 1 + c \int_{\mathbb{D}} \frac{(1 - |w|^2)^{\beta+2}}{|1 - \bar{w}z|^{2(\beta+2)}} d\nu_\beta(z) \leq 1 + c.$$

Since $I_{g,\varphi}$ maps \mathcal{A}_N^β boundedly into \mathcal{B}^α and

$$f'_w(z) = \frac{2(\beta+2)c\bar{w}(1 - |w|^2)^{\beta+2}}{(1 - \bar{w}z)^{2(\beta+2)+1}} \exp \left\{ \frac{c(1 - |w|^2)^{\beta+2}}{(1 - \bar{w}z)^{2(\beta+2)}} \right\},$$

there is a constant $N > 0$ depending only on c and β such that

$$\begin{aligned} N &\geq (1 - |z_0|^2)^\alpha |g(\varphi(z_0)) \varphi'(z_0)| |f'_w(\varphi(z_0))| \\ &= (1 - |z_0|^2)^\alpha \frac{2(\beta+2)c|\varphi(z_0)||\psi(z_0)|}{(1 - |\varphi(z_0)|^2)^{\beta+3}} \exp \left\{ \frac{c(1 - |w|^2)^{\beta+2}}{(1 - |\varphi(z_0)|^2)^{2(\beta+2)}} \right\}, \end{aligned}$$

where $|\psi(z_0)| = |g(\varphi(z_0)) \varphi'(z_0)|$. That is,

$$\frac{(1 - |z_0|^2)^\alpha |\psi(z_0)|}{(1 - |\varphi(z_0)|^2)} \exp \left[\frac{c}{(1 - |\varphi(z_0)|^2)^{\beta+2}} \right] \leq \frac{M(1 - |\varphi(z_0)|^2)^{\beta+1}}{2(\beta+2)c|\varphi(z_0)|}.$$

Taking $\lim_{|\varphi(z_0)| \rightarrow 1}$ on both sides of above inequality, we get (2.6).

(iii) \Rightarrow (ii). Assume that (iii) is valid for all $c > 0$. Note that if $f \in \mathcal{A}_N^\beta$, then by (1.1) and Cauchy's integral formula for derivatives

$$\begin{aligned}
(1 - |z|^2) |f'(z)| &\leq \frac{2}{\pi} \int_{\partial\mathbb{D}} \left| f\left(z + \frac{1}{2}(1 - |z|)\zeta\right) \right| |d\zeta| \\
&\leq \exp \left[\frac{4^{2+\beta} M_0 \|f_w\|_{\mathcal{A}_N^\beta}}{(1 - |\varphi(z)|^2)^{\beta+2}} \right].
\end{aligned}$$

Choose any sequence f_n in \mathcal{A}_N^β such that $\|f_n\|_{\mathcal{A}_N^\beta} \leq M$ and $f_n \rightarrow 0$ locally uniformly on \mathbb{D} . By Lemma 2.1, it is sufficient to show that $I_{g,\varphi} f_n \rightarrow 0$ as $n \rightarrow \infty$. For $r \in (0, 1)$

$$\begin{aligned}
\sup_{|\varphi(z)| \leq r} (1 - |z|^2)^\alpha |I_{g,\varphi} f_n(z)| &= \sup_{|\varphi(z)| \leq r} (1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)| |f'_n(\varphi(z))| \\
&\leq A \sup_{|\varphi(z)| \leq r} |f'_n(\varphi(z))| \rightarrow 0
\end{aligned}$$

as $n \rightarrow \infty$, where $A = \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)| < \infty$. On the other hand, whenever $r \rightarrow 1$, we have

$$\begin{aligned}
\sup_{|\varphi(z)| > r} (1 - |z|^2)^\alpha |I_{g,\varphi} f_n(z)| &\leq \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)|}{(1 - |\varphi(z)|^2)} \exp \left[\frac{4^{2+\beta} M_0 M}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] \rightarrow 0.
\end{aligned}$$

Combining the above estimates, we see that $\|I_{g,\varphi} f_n\|_{\mathcal{A}^{-\alpha}} \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

THEOREM 2.7. *Let $\alpha > 0$, $\beta > -1$, $\psi \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $I_{g,\varphi}$ maps \mathcal{A}_N^β boundedly into \mathcal{B}_0^α .
- (ii) $I_{g,\varphi}$ maps \mathcal{A}_N^β compactly into \mathcal{B}_0^α .
- (iii) For all $c > 0$,

$$\lim_{|z| \rightarrow 1} \frac{(1 - |z|^2)^\alpha |g(\varphi(z)) \varphi'(z)|}{(1 - |\varphi(z)|^2)} \exp \left[\frac{c}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] = 0.$$

Proof. The proof follows on same lines as the proof of Theorem 2.4. So we omit the details.

COROLLARY 2.8. *Let $\alpha > 0$, $\beta > -1$ and $g \in H(\mathbb{D})$. Then the following are equivalent:*

- (i) $I_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded.
- (ii) $I_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact.
- (iii) $I_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is bounded.
- (iv) $I_g : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is compact.
- (v) $g \equiv 0$.

Finally, we have the following two corollaries, the first of which is a recent result of Jie Xiao [11].

COROLLARY 2.9. *Let $\alpha > 0$, $\beta > -1$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $C_\varphi : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is bounded.
- (ii) $C_\varphi : \mathcal{A}_N^\beta \rightarrow \mathcal{B}^\alpha$ is compact.
- (iii) For all $c > 0$,

$$\lim_{|\varphi(z)| \rightarrow 1} \frac{(1 - |z|^2)^\alpha |\varphi'(z)|}{(1 - |\varphi(z)|^2)} \exp \left[\frac{c}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] = 0.$$

COROLLARY 2.10. *Let $\alpha > 0$, $\beta > -1$ and $\varphi \in S(\mathbb{D})$. Then the following are equivalent:*

- (i) $C_\varphi : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is bounded.
- (ii) $C_\varphi : \mathcal{A}_N^\beta \rightarrow \mathcal{B}_0^\alpha$ is compact.
- (iii) For all $c > 0$,

$$\lim_{|z| \rightarrow 1} \frac{(1 - |z|^2)^\alpha |\varphi'(z)|}{(1 - |\varphi(z)|^2)} \exp \left[\frac{c}{(1 - |\varphi(z)|^2)^{\beta+2}} \right] = 0.$$

References

- [1] A. Aleman, J. A. Cima, *An integral operator on H^p and Hardy inequality*, J. Anal. Math. 85 (2001), 157–176.
- [2] A. Aleman, A. G. Siskakis, *An integral operator on H^p* , Complex Variables 28 (1995), 149–158.
- [3] A. Aleman, A. G. Siskakis, *Integration operators on Bergman spaces*, Indiana Univ. Math. J. 46 (1997), 337–356.
- [4] C. C. Cowen, B. D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press Boca Raton, New York, 1995.
- [5] H. Hedenmalm, B. Korenblum, K. Zhu, *Theory of Bergman Spaces*, Springer, New York, Berlin, 2000.
- [6] S. Li, *Volterra composition operators between weighted Bergman spaces and Bloch type spaces*, J. Korean Math. Soc. 45 (1999), 229–248.
- [7] S. Ohno, K. Stroethoff, R. Zhao, *Weighted composition operators between Bloch-type spaces*, Rocky Mountain J. Math. 33 (2003), 191–215.
- [8] Ch. Pommerenke, *Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation*, Comment. Math. Helv. 52 (1977), 591–602.
- [9] A. G. Siskakis, R. Zhao, *A Volterra type operator on spaces of analytic functions*, Contemp. Math. 232 (1999), 299–311.
- [10] J. Xiao, *Cesaro operators on Hardy, BMOA and Bloch spaces*, Arch. Math. 68 (1997), 398–406.
- [11] J. Xiao, *Composition operators: \mathcal{N}_α to the Bloch space to \mathcal{Q}_β* , Studia Math. 139 (2000), 245–260.

- [12] J. Xiao, *Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball*, J. London Math. Soc. 70 (2004), 199–214.
- [13] R. Yoneda, *Pointwise multipliers from $BMOA^\alpha$ to $BMOA^\beta$* , Complex Variables Theory Appl. 49 (2004), 1045–1061.

SCHOOL OF APPLIED PHYSICS AND MATHEMATICS
SHRI MATA VAISHNO DEVI UNIVERSITY,
KAKRYAL, KATRA- 182301
JAMMU AND KASHMIR - INDIA
E-mail: aksju_76@yahoo.com

Received September 22, 2008; revised version December 9, 2008.