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A FIXED POINT THEOREM FOR MULTI-VALUED
WEAKLY PICARD OPERATORS IN -METRIC SPACE

Abstract. In this paper, we establish a fixed point theorem for multi-valued operators
in a complete b-metric space using the concept of Berinde and Berinde [9] on multi-valued
weak contractions for the Picard iteration in a metric space. OQur main result generalizes,
extends and improves some of the recent results of Berinde and Berinde [9] as well as those
of Daffer and Kaneko [17] and also unifies several classical results pertainning to single
and multi-valued contractive mappings in the literature.

1. Introduction

The notion of the b-metric space will be introduced in the sequel. Pre-
sently, let (X, d) be a complete metric space and CB(X) denote the family
of all nonempty closed and bounded subsets of X. For A, B C X, define
the distance betweeen A and B by D(A, B) = inf {d(a,b) | a € A, b€ B},
the diameter of A and B by §(A, B) = sup{d(a,b) | a € A, b€ B}, and
the Hausdorff-Pompeiu metric on CB(X) by H(A, B) = max{sup{d(a, B) |
a € A}, sup{d(b,A) | b€ B}}. H(A, B) is induced by d.

Let P(X) be the family of all nonempty subsets of X and T': X — P(X)
a multi-valued mapping. Then, an element z € X such that z € T(z) is
called a fized point of T. Denote the set of all the fixed points of T by Fix (T'),
that is,

Fix(T)={ze X |zeT(z)}.

Markins [27] and Nadler [29] initiated the study of fixed point theorems

for multi-valued operators. The celebrated Banach'’s fixed point theorem is

extended to the following result of Nadler [29] from the single-valued maps
to the multi-valued contractive maps.

THEOREM 1.1. (Nadler [29]) Let (X,d) be a complete metric space and
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T : X — CB(X) a set-valued a-contraction, that is, a mapping for which
there ezists a constant o € (0,1), such that

(1) H(Tz,Ty) < ad(z,y), Vz, y € X.
Then T has at least one fized point.

EXAMPLE 1.2. Let X = [0,1] C R with the usual metric. Define g(z) :
X — X by
1., 5 1
sx+3z, T€[0,%
sa)={ 78 TN
—3Z +1l,z¢€ [Z’ 1]

Define F : X — 2X by F(z) = {0} U {g(z)} V = € X. Then, F is
a multi-valued contraction operator and the fixed point set of F' = {O, %} .

For the Banach’s fixed point theorem and its various generalizations in
single-valued case, we refer to Agarwal et al. [1], Banach [2], Berinde [3]-[7]
and some other references in the reference section of this paper.

Apart from Markins [27] and Nadler [29], several other papers have been
devoted to the treatment of multi-valued operators and these include Berinde
and Berinde [9], Ciric [14], Ciric and Ume [15, 16], Daffer and Kaneko [17],
Itoh [20], Kaneko [22, 23], Kubiaczyk and Ali [25], Lim [26], Mizoguchi [28]
and some others in the reference section.

In Berinde and Berinde [9], the following contractive condition was em-
ployed:

DEFINITION 1.3. Let (X,d) be a metric space and T : X — P(X) a
multi-valued operator. T is said to be a multi-valued weak contraction or
a multi-valued (6, L)-contraction if and only if there exist two constants
6 € (0,1) and L > 0 such that

(2) H(Tz,Ty) < 6d(z,y) + LD(y, Tx), V z, y € X.

The following notion of b-metric space shall be employed in the sequel.
DEFINITION 1.4. (Czerwik [12, 13]) Let X be a (nonempty) set and s > 1
a real number. A function d : X x X — RT is said to be a b-metric if
Ve,y,z € X,

(i) d(z,y) =0iff z =y;
(i) d(z,y) = d(y, z);
(iii) d(z,z) < s[d(z,y) + d(y, 2)]-
The pair (X, d) is called a b-metric space.

In fact, the class of b-metric spaces is effectively larger than that of metric
spaces, since a b-metric is a metric when s = 1.

DEFINITION 1.5. (Berinde and Berinde {9]) Let (X, d) be a metric space
and T : X — P(X) a multi-valued operator. T is said to be a multi-valued
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weakly Picard (MWP) Operator if and only if for each £ € X and any

y € T(x), there exists a sequence {y, },- ; such that

(i) zo =z, 21 =1y;
(ii) Tpt1 € T(zyn) for all n =0,1,...;
(iii) the sequence {z,},. , is convergent and its limit is a fixed point of T.

REMARK 1.6. A sequence {z,},., satisfying conditions (i) and (ii) in
Definition 1.4 will be called a sequence of successive approximations of T,
starting from (z,y) or a Picard iteration associated to T or a (Picard) orbit
of T' at the initial point xg.

EXAMPLES 1.7. (MWP Operators) Several examples including Examples
1.7 (a) and (b) are contained in Rus et al [39)]:

(a) (Nadler [29]) Let (X, d) be a complete metric space and T' : X — CB(X)
a multi-valued a-contraction (0 < a < 1). Then T is a MWP operator.

(b) (Rus [37]) Let (X, d) be a complete metric space and T : X — CB(X)
a multi-valued operator for which there exist a, 3 € RT, o+ 3 < 1 such that

(i) H(Tz,Ty) < ad(z,y) + BD(y,Ty), Vz € X and Vy € Tx;
(ii) T is a closed multi-valued operator.

Then T is a MWP operator.

(c) (Berinde and Berinde [9]) Let (X,d) be a complete metric space and
T : X — CB(X) a multi-valued operator for which there exist two constants
6 € (0,1) and L > 0 such that

H(Tz,Ty) < 0d(z,y) + LD(y, Tz), Vz,y € X.

Then T is a MWP operator.

(d) (Berinde and Berinde [9]) Let (X,d) be a complete metric space and
T : X — CB(X) a multi-valued operator for which there exist a constant
L > 0 and a function « : [0,00) — [0,1) satisfying lim,_,;+ supa(r) < 1, for
every t € [0,00), such that

H(Tz,Ty) < o(d(z,y))d(z,y) + LD(y, Tz), Vz,y € X.
Then T is a MWP operator.

A more general class of MWP operators will be presented as our main
result in this paper.

In this paper, we obtain a more general result than one of the results of
Berinde and Berinde [9] using the following general contractive definition:

DEFINITION 1.8. Let (X,d) be a b-metric space and T : X — P(X)
a multi-valued operator. Then, T will be called a multi-valued (8, ¢)-weak
contraction if and only if there exist a sequence {6,},- , C (0,1) and a con-
tinuous monotone increasing function ¢ : Rt — R* with ¢(0) = 0 such
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that
(x) H(Tz,Ty) < Opd(z,y) + ¢(D(y,Tz)), Vr,y€ X, n=0,1,2,....

REMARK 1.9. If in condition (%), 6, = 8, 0 < 6 < 1 and ¢(u) = Lu,
L >0,V u € R, then we obtain the (4, L)-weak contraction condition in
the multi-valued setting employed by Berinde and Berinde [9] defined in (2).
The condition (x) is also a generalization and extension of several others in
the literature.

However, we shall require the following Lemma in the sequel.

LEMMA 1.10. Let (X,d) be a metric space. Let A, B C X and ¢ > 1.
Then, for every a € A, there exists b € B such that

d(a,b) < qH(A, B).

Lemma 1.10 is contained in Berinde and Berinde [9], Ciric [14] and Rus
[35] in a metric space setting.

2. Main result
The following main result shows that any multi-valued weak contraction
is a MWP operator.

THEOREM 2.1. Let (X,d) be a complete b-metric space with continuous b-
metric and T : X — CB(X) multi-valued (8,,, ¢)-weak contraction. Suppose
that ¢ : R™ — R is a continuous monotone increasing function such that
#(0) = 0. Then,

(i) Fiz (T) # ¢

(ii) for any zo € X, there erists an orbit {zn}52y of T at the point xo that

converges to a fized point =* of T}
(iii) the a priori and the a posteriori error estimates are respectively given

by

(5) d(zp,z*) < sMid(zg, 1), s>1, n=1,2,---,
where My = 322, HZ:S—lhk; and

(6) d(xn,z*) < sMad(zp-1,2), s>1, n=1,2,...,
M,y = Z?io HZ:Z;llhk, for a certain sequence {hn},. o C (0,1).

Proof. Let ¢ > 1 and h, = ¢6, € (0,1), n =0,1,2,--- . Let zp € X and
z1 € Txo. If H(Txo,Tx1) = 0, then Tzog = Ty, that is, z; € Tz, which
implies that Fix (T') # ¢.
Let H(Tzo,Txz1) # 0. Then, we have by Lemma 1.10 that there exists
z9 € Tz such that
d(zy,z2) < gH(Tx9,T11),
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so that by (x) we have
d(z1,22) < qlbod(z0, 1) + ¢(D(x1, Tx0))]
= gbod(zo, z1) = hod(zo, 1),

where we take hg = gy < 1. If H(Tz1,Tx2) = 0, then Tz; = Txo, that is,
zo € Txo.

Let H(Txz1,Tz2) # 0. Again, by Lemma 1.10, there exists z3 € T'z3 such
that

(7) d(z2,z3) < qH(Tz1,Txs),

< q[61d(z1, x2) + $(D(x2, Tx1))]
= gb1d(x1,22) = hid(z1, z2) < hoh1d(zo, z1).

By induction, we obtain

(8) d(Zp, Tny1) < Hz;éhkd(wo, z1).

Therefore, we have by (8) and the property (iii) of the Definition 1.4 that

(9) d(zn, Zntp) < s[d(@n, Tnt1) + d(Tni1, Tni2) + -+ + d(Tntp—1, Tntp)]
< S[R3 hy + TR _ohy + - - + T2 2 hy ) d (20, 21)

n+p—2 _
(10) = S( Z chzohk)d(mo,ml).
Jj=n—1
From (10), we have
n+p—2 )
(11) d(Tn, Tntp) < s( 3 H{czohk)d(xo,xl)
j=n-1
n+p-—-2 ) n—2 ]
=s[ Y TH_ohx— Y _TH_iheld(zo,z1) — 0 as n — co.
j=0 j=0

We therefore have from (11), that for any zo € X, {z,}3, is a Cauchy
sequence in X. Since (X, d) is a complete b-metric space, then {z,}%°, con-
verges to some z* € X. That is,

(12) lim z, = z*.
n—00

Therefore, by (x), we have that
(13)  D(z%,Tz") < s[d(z", Zn41) + d(@nt1, Tz")]
< sld(z*, znt1) + H(Tzp, Tz*)]
< sd(z*, zny1) + 8[0nd(zn, z*) + (D(z*, T1y))]-
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By using (12), the continuity of the function ¢ and the fact that z,+1 € Tz,
then ¢(D(z*,Txy,)) — 0 as n — oo and also d(z,z*) — 0 as n — oo. It
follows from (13) that, as n — oo, D(z*,Tz*) = 0. Since Tz* is closed, then
z* € Tz*.
To prove the a priori error estimate in (5), we have from (10) that
p—1
8(@n1p,2n) < (DT i) d(mo, 1),

7=0

from which it follows by the continuity of the b-metric that

o0
d(zn,z*) = d(z*, z,) = plllgo d(Zntpy Tn) < s(z% HZ:é-lhk)d(azo,ml),
J:
giving the result in (5).
We now prove the a posteriori estimate in (6): Let g6, = h, € (0,1),
n=0,1,---, we get by condition (x) and Lemma 1.10 that
d(mnamn+1) < qH(T-Tn—l,Txn) < qwn—ld(mn—l,mn) + ¢(D(mmen—1))]
= qgn—ld(xn—l,xn) = hn—ld(xn—hxn)-
Also, we have
d($n+1a$n+2) < hnd(wna -Tn+1) < hnhn—ld(xn—la xn)a

so that in general, we obtain
(14) d(wn+j,$n+j+1) < HZ:g;:llhkd($n—lymn), j=0, '17 Tt
Using (14) in (9) yields

nt+p—2 )
(15) d(Zp, Trnyp) < s( Z Hizn_lhk)d(xn_l,xn)

j=n—1

p—1 )

= s(Y - E 7 ) d(@n-1, 2n).

§=0
Again, by taking limits in (15) as p — oo and using the continuity of the
b-metric, we have

oo

. i1
d(n, %) = d(z*, z,) = pll’rgo d(Znp, Tn) < S(Z HZ:;_lhk) d(zp-1,Tn),
J=0
giving the required a posteriori error estimate.
REMARK 2.2. Theorem 2.1 is a generalization and extension of Theorem 3

of Berinde and Berinde [9]. It is also a generalization and extension of
Theorem 1.1 (which is Theorem 5 of Nadler [29]). Indeed, Theorem 2.1
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is a generalization and extension of a multitude of results in the literature
pertainning to the single-valued and multi-valued cases. In particular, the
error estimates of Theorem 2.1 indeed extend those of Berinde [8].
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