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A FIXED POINT THEOREM FOR MULTI-VALUED 
WEAKLY PICARD OPERATORS IN &-METRIC SPACE 

Abstract . In this paper, we establish a fixed point theorem for multi-valued operators 
in a complete 6-metric space using the concept of Berinde and Berinde [9] on multi-valued 
weak contractions for the Picard iteration in a metric space. Our main result generalizes, 
extends and improves some of the recent results of Berinde and Berinde [9] as well as those 
of Daffer and Kaneko [17] and also unifies several classical results pertainning to single 
and multi-valued contractive mappings in the literature. 

1. Introduction 
The notion of the 6-metric space will be introduced in the sequel. Pre-

sently, let (X, d) be a complete metric space and CB(X) denote the family 
of all nonempty closed and bounded subsets of X. For A, B C X, define 
the distance betweeen A and B by D(A, B) = inf {d(a, b) \ a 6 A, b 6 B} , 
the diameter of A and B by S(A, B) = sup {d(a, b) \ a G A, b e B} , and 
the Hausdorff-Pompeiu metric on CB(X) by H(A, B) — max{sup{d(a, B) \ 
a e A}, sup{d(6,yl) | b € B}}. H(A,B) is induced by d. 

Let P(X) be the family of all nonempty subsets of X and T : X P(X) 
a multi-valued mapping. Then, an element x 6 X such that x E T(x) is 
called a fixed point of T. Denote the set of all the fixed points of T by Fix (T), 
that is, 

Fix (T) = {xeX | x 6 T(x)} . 

Markins [27] and Nadler [29] initiated the study of fixed point theorems 
for multi-valued operators. The celebrated Banach's fixed point theorem is 
extended to the following result of Nadler [29] from the single-valued maps 
to the multi-valued contractive maps. 

T H E O R E M 1.1. (Nadler [29]) Let (X,d) be a complete metric space and 
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T : X —> CB(X) a set-valued, a-contraction, that is, a mapping for which 
there exists a constant a € (0,1), such that 

Then T has at least one fixed point. 
E X A M P L E 1 . 2 . Let X = [0,1] C M with the usual metric. Define g{x) : 
X ^X by 

Define F : X 2X by F(x) = {0} U {5(x)} V x G X. Then, F is 
a multi-valued contraction operator and the fixed point set of F = {0, . 

For the Banach's fixed point theorem and its various generalizations in 
single-valued case, we refer to Agarwal et al. [1], Banach [2], Berinde [3]-[7] 
and some other references in the reference section of this paper. 

Apart from Markins [27] and Nadler [29], several other papers have been 
devoted to the treatment of multi-valued operators and these include Berinde 
and Berinde [9], Ciric [14], Ciric and Ume [15, 16], Daffer and Kaneko [17], 
Itoh [20], Kaneko [22, 23], Kubiaczyk and Ali [25], Lim [26], Mizoguchi [28] 
and some others in the reference section. 

In Berinde and Berinde [9], the following contractive condition was em-
ployed: 
D E F I N I T I O N 1 . 3 . Let (X,d) be a metric space and T : X —> P(X) a 
multi-valued operator. T is said to be a multi-valued weak contraction or 
a multi-valued (0, L)-contraction if and only if there exist two constants 
9 e (0,1) and L > 0 such that 

The following notion of 6-metric space shall be employed in the sequel. 
D E F I N I T I O N 1.4. (Czerwik [12, 13]) Let X be a (nonempty) set and s > 1 
a real number. A function d : X x X —> R + is said to be a b-metric if 
Vx, y,z<EX, 

(i) d(x,y) = 0 iff x = y-
(ii) d(x,y) = d{y,x)-

(iii) d(x, z) < s[d(x, y) + d(y, z)}. 
The pair (X, d) is called a 6-metric space. 
In fact, the class of b-metric spaces is effectively larger than that of metric 

spaces, since a b-metric is a metric when s = 1. 
D E F I N I T I O N 1.5. (Berinde and Berinde [9]) Let (X, d) be a metric space 
and T : X —> P(X) a multi-valued operator. T is said to be a multi-valued 

( 1 ) H(Tx,Ty)<ad(x,y), V x, y £ X. 

(2) H(Tx, Ty) < 9d(x, y) + LD{y, Tx), V x, y G X. 
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weakly Picard (MWP) Operator if and only if for each x € X and any 
y G T(x), there exists a sequence {xn}^=0 such that 

(i) xq = x, x\ = y; 
(ii) xn+i € T(xn) for all n = 0 , 1 , . . . ; 

(iii) the sequence is convergent and its limit is a fixed point of T. 

R E M A R K 1 . 6 . A sequence satisfying conditions (i) and (ii) in 
Definition 1.4 will be called a sequence of successive approximations of T, 
starting from (x, y) or a Picard iteration associated to T or a (Picard) orbit 
of T at the initial point xo-

E X A M P L E S 1 . 7 . (MWP Operators) Several examples including Examples 
1.7 (a) and (b) are contained in Rus et al [39]: 
(a) (Nadler [29]) Let (X , d) be a complete metric space and T : X —> CB(X) 
a multi-valued a-contraction (0 < a < 1). Then T is a MWP operator. 
(b) (Rus [37]) Let (X, d) be a complete metric space and T : X —> CB(X) 
a multi-valued operator for which there exist a, (5 G R + , a + /3 < 1 such that 

(i) H(Tx, Ty) < ad(x,y) + ¡3D(y,Ty), Vx <E X and Vy € Tx; 
(ii) T is a closed multi-valued operator. 

Then T is a MWP operator. 
(c) (Berinde and Berinde [9]) Let (X,d) be a complete metric space and 
T : X —> CB(X) a multi-valued operator for which there exist two constants 
6 € (0,1) and L > 0 such that 

H(Tx,Ty) < 9d(x,y) + LD(y,Tx), Vx, y e X. 

Then T is a MWP operator. 
(d) (Berinde and Berinde [9]) Let (X, d) be a complete metric space and 
T : X —> CB(X) a multi-valued operator for which there exist a constant 
L > 0 and a function a : [0, oo) —> [0,1) satisfying lim r^ t+ sup a(r) < 1, for 
every t G [0, oo), such that 

H(Tx, Ty) < a(d{x, y))d(x, y) + LD(y, Tx), Vx, y e X. 

Then T is a MWP operator. 

A more general class of MWP operators will be presented as our main 
result in this paper. 

In this paper, we obtain a more general result than one of the results of 
Berinde and Berinde [9] using the following general contractive definition: 

D E F I N I T I O N 1 . 8 . Let (X,d) be a 6-metric space and T : X —> P{X) 
a multi-valued operator. Then, T will be called a multi-valued (6n,4>)-weak 
contraction if and only if there exist a sequence c 1) and a con-
tinuous monotone increasing function <f> : —> R+ with (f>(0) = 0 such 
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that 

(*) H(Tx, Ty) < 9nd(x, y) + <p{D{y, Tx)), Vx, y £ X, n = 0,1,2,.... 
REMARK 1 .9 . If in condition (*), 0n = 9, 0 < 9 < 1 and <fi{u) = Lu, 
L > 0, V u G R + , then we obtain the (5, L)-weak contraction condition in 
the multi-valued setting employed by Berinde and Berinde [9] defined in (2). 
The condition (•) is also a generalization and extension of several others in 
the literature. 

However, we shall require the following Lemma in the sequel. 

LEMMA 1 . 1 0 . Let (X,d) be a metric space. Let A, B c X and q > 1. 
Then, for every a G A, there exists b G B such that 

d{a,b)<qH(A,B). 

Lemma 1.10 is contained in Berinde and Berinde [9], Ciric [14] and Rus 
[35] in a metric space setting. 

2. Main result 
The following main result shows that any multi-valued weak contraction 

is a MWP operator. 
THEOREM 2 . 1 . Let (X,d) be a complete b-metric space with continuous b-
metric andT : X —CB(X) multi-valued (9n, 4>)-weak contraction. Suppose 
that <fi : R+ —> is a continuous monotone increasing function such that 
0(0) = 0. Then, 

(i) Fix (T) + 4>-, 
(ii) for any XQ G X, there exists an orbit ofT at the point xo that 

converges to a fixed point x* of T; 
(iii) the a priori and the a posteriori error estimates are respectively given 

by 
(5) d(xn, x*) < sM\d{xo, x\), s > 1, n = 1,2, • • •, 

where Mi = Y,JLo ^kto ^1^ and 
(6) d(xn,x*) < sM2d(xn-i,xn), s > 1, n = 1,2,..., 

= for a certain sequence {/in}^L0
 c (°>1)-

Proof. Let q > 1 and hn = q9n G (0,1), re = 0,1, 2, • • • . Let XQ G X and 
x\ G Txo- If H(Txo,Txi) = 0, then Txo = Tx\, that is, x\ G Txi, which 
implies that Fix (T) ^ 

Let H{TXQ,TX\) 0. Then, we have by Lemma 1.10 that there exists 
X2 G TXi such that 

d(xi,x2) <qH(Tx0,TXl), 
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so that by (*) we have 

d{xi,x2) < q[6od(xo,xi) + <l>(D(xi,Txo))] 

= q0od(x o,xi) = hod(xQ,xi), 

where we take ho = qdo < 1. If H{Tx\,Tx2) = 0, then Tx\ — Tx2, tha t is, 
x2 € Tx2. 

Let H(Txi,Tx2) i1 0. Again, by Lemma 1.10, there exists € Txi such 
that 

(7) d(x2,x3)<qH(Tx1,Tx2), 
<q[91d{x1,x2) + <l){D{x2,Tx1))} 

— q6\d(x\,x2) = hid(xi,x2) < hohid(xo,xi). 

By induction, we obtain 

(8) d(xn, x n + i ) < I I l Z l h k d ( x 0 , xi). 

Therefore, we have by (8) and the property (iii) of the Definition 1.4 that 

(9) d(xn, xn+p) < s[d(xn, xn+i) + d(xn+i, xn+2) H h d(xn+p-i,xn+p)} 

< s[Ii^hk + Un
k=0hk + • • • + Un

kX2hk]d(x0,xi) 
n+p-2 

(10) = s ( nJ
fe=0/ifc)d(x0,xi). 

j=n-1 

From (10), we have 

(11) d(xn,xn+p) < ^ fii=0hk)d(xo,xi) 
j=n-1 

n+p-2 n—2 
= s [ X ] n i = c A - ^ , I i k = o h k ] d ( x O i x i ) 0 as n 00. 

j=0 j=0 

We therefore have from (11), tha t for any xq G X, is a Cauchy 
sequence in X. Since (X, d) is a complete 6-metric space, then {xnj^Lo con-
verges to some x* G X. That is, 

(12) lim xn = x*. 
n—>00 

Therefore, by (*), we have that 

(13) D{x*, Tx*) < a[d{xm, xn+1) + d{xn+1,Tx*)] 

< s[d(x*, Xn+l) + H(Txn, Tx*)} 
< sd(x*, xn+i) + s[6nd(xn, x*) + <j>(D(x*, Txn))]. 

n+p-2 



604 M. O. Olatinwo 

By using (12), the continuity of the function <f> and the fact that xn+1 E Txn, 
then <f>(D(x*,Txn)) —> 0 as n oo and also d(xn,x*) —> 0 as n —• oo. It 
follows from (13) that, as n —> oo, D(x*,Tx*) = 0. Since Tx* is closed, then 
x* G Tx*. 

To prove the a priori error estimate in (5), we have from (10) that 
p - i 

d{xn-\-p, xn 

j=o 
from which it follows by the continuity of the 6-metric that 

oo 
d(xn,x*) = d(x*,xn) = lim^d(xn+p,xn) < s(^2ll^i~1hkjd(xo,x1), 

giving the result in (5). 
We now prove the a posteriori estimate in (6): Let q0n = hn £ (0,1), 

n = 0,1, • • •, we get by condition (*) and Lemma 1.10 that 

d(xn,xn+1) < qH(Tx n— 1 > Txn ) < q[6n-\d{xn-\,xn) + cf)(D(xn,Txn-1))] 

3=0 

Again, by taking limits in (15) as p —* oo and using the continuity of the 
6-metric, we have 

j=U 
giving the required a posteriori error estimate. 

R E M A R K 2 . 2 . Theorem 2.1 is a generalization and extension of Theorem 3 
of Berinde and Berinde [9]. It is also a generalization and extension of 
Theorem 1.1 (which is Theorem 5 of Nadler [29]). Indeed, Theorem 2.1 

j=o 

J=n-1 
p-1 
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is a generalization and extension of a multitude of results in the literature 
pertainning to the single-valued and multi-valued cases. In particular, the 
error estimates of Theorem 2.1 indeed extend those of Berinde [8]. 
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