DEMONSTRATIO MATHEMATICA
Vol. XLII No 3 2009

Ewa Iwaniec

CHARACTERIZATION OF ASYMPTOTICAL
EXPANSIONS OF COPULAS BY THE USE OF
HOMOGENEOUS FUNCTIONS

Abstract. The definition, terminology and possible forms of homogeneous expansion
of copulas are given. The methodology that provides homogeneous expansions with a
proof of their existence is presented. Numerous examples illustrating the usage of the
main theorem for valuation of the expansions are indicated.

Introduction

One of the most interesting new ideas which have entered finance in
recent years is the copula. It is a function that joins a multivariate probabil-
ity distribution to a collection of univariate marginal probability functions.
Copulas allow us to construct models which go beyond the standard ones at
the level of dependence. Both in insurance and finance, modeling of extreme
events is of great importance. A book of Embrechts et al [3] is the indispens-
able starting point for anyone interested in contemporary applications and
extensions of classical Extreme Value Theory (EVT). There are a number
of texts available on EVT. There are other interesting review papers on ex-
tremes in insurance and finance: Embrechts et al. (see [5], [2]). They present
one of the possible approach for modeling tail events in the multivariate case.
The concept of tail dependence describes the amount of dependence in the
lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribu-
tion. The paper which surveys various estimators for the tail-dependence
coefficient within a parametric, semiparametric, and nonparametric frame-
work is [7]. One of the ideas of the tail analysis is homogeneous tail ex-
pansion. The notion of copula tail expansion in the form presented in this
paper was introduced by P. Jaworski (see [8], [9]). He studied the behav-
ior of such expansions, but in contrast with this article he used one-degree
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homogeneous functions only. We extend results included in the mentioned
articles to much more general case by the use of homogeneous functions of
an arbitrary degree. Furthermore, we present and prove the theorem which
contains conditions responsible for existence of tail expansions.

In this paper we focus on lower and upper tail k-degree expansions of a
copula. We introduce the notion of such expansions and compile some basic
facts about them. Then, we investigate possible forms of tail expansions,
their existence and methods of computing. Theorem 2.1 and its proof provide
a natural and intrinsic characterization of homogeneous expansions. The
theorem states that the described expansions exist if and only if there exist
some finite limit dependent on the expansion degree.

The paper is structured as follows. Section 1 introduces homogeneous
expansions of copulas, some notation and terminology. It contains also a brief
exposition of their basic properties. In Section 2 our main result, Theorem
2.1 is stated and proved. Moreover it contains some relevant consequences
of mentioned theorem and the methodology of its proof. Section 3 contains
some statistical application.

For simplicity of notation, we will restrict ourselves to the bivariate
case only, however all results presented in this article holds true also for
n-dimensional copulas. For more details regarding the theory of copulas
and survival copulas we refer the reader to the monograph of Nelsen [11] or
Joe [10].

1. Notations, definitions and properties

Throughout this paper we denote by R* :=[0,+0c) and Rﬁ_ =
[0, +00]2 \ {(00,00)}. In this section, we introduce some basic properties
of copulas and homogeneous expansions that shall be useful in the sequel.

1.1. Definition and properties of copula function

A copula is a multivariate joint distribution defined on the unit cube
[0, 1)2 such that every marginal distribution is uniform on the interval [0, 1].
Formally, a copula is a function C of 2 variables on the unit cube [0, 1]? with
the following properties:

1. the range of C is the unit interval [0,1],

2. C(#@) = 0 whenever @ € [0, 1] has at least one coordinate equal to zero,

3. C(u,1) =C(1l,u) =ufor all u € [0, 1],

4. C is 2-increasing in the sense that for every uj, u2,v1,v2 € {0, 1], where
w1 < ug,v1 < vo the volume assigned by C to the box [ug, ug] X [v1, ve]
is nonnegative, that is C(ug, v2) — C(uz,v1) — C(u1, v2) +C(u1,v1) = 0.

It is obvious that if C is a copula, then it is continuous and non-decreasing
in each of its arguments. In addition, one can demonstrate the so-called
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Fréchet inequality, which states that each copula function is bounded by the
minimum and maximum one: max(u + v — 1,0) < C(u,v) < min(u,v) for
all u, v in [0, 1], which are commonly denoted by W and M in the literature.
We must say that in two dimensions, both of the Fréchet-Hoeffding bounds
are copulas themselves, but as soon as the dimension increases, the Fréchet-
Hoeffding lower bound is no longer n-increasing function. However, the
inequality on the left-hand side cannot be improved, since for any @ from the
unit cube, there exists a copula C,, such that W (%) = C,,(@) (see Nelsen [11],
Theorem 2.10.12).

Now let Fy and F5 be any two univariate distributions. It is easy to show
that F(z,y) = C(Fi(z), F2(y)) is a probability distribution, the margins of
which are exactly Fy and Fy. Conversely, Sklar [12] proved in 1959 that any
bivariate distribution F' admits such a representation and that the copula C
is unique provided the margins are continuous. The theorem proposed by
Sklar underlies most applications of the copula because it shows that much
of the study of joint distribution functions can be reduced to the study of
copulas. Furthermore, under a.s. strictly increasing transformations of X
and Y, the copula Cxy is invariant, while the margins may be changed at
will.

1.2. Definition of k-degree homogeneous expansion

We say that a copula C has a k-degree lower tail homogeneous expansion
if, for arguments in the neighborhood of zero, it can be uniformly approxi-
mated by a k-degree homogeneous function. Formally, we define it as follows:

DEFINITION 1.1. We say that a copula C has a k-degree homogeneous lower
tail expansion (k > 1) if there exists a positive, homogeneous function L of
degree k, that is:

L:R%2 - R suchthat: V¢>0 L(tu,tv) =t*L(u,v),
and a function R: [0,1]? — R, which fulfills two conditions:
1. |R(u, v)(u 4 v)* 71| < M, for some M > 0,

1.2.1 2. lm R(u,v)=0,
( ) (u,0)—(0,0) (:0)

such that the following equation holds:
(1.2.2)  V(u,v) €10,1)*: C(u,v) = L(u,v) + R(u,v)(u + v)*.

The function L will be called the leading part of the expansion. When
L = 0 we shall say that the expansion is trivial.

PROPOSITION 1.1. Let L be the leading part of k-degree lower tail homo-
geneous expansion of copula C. Then its value can be calculated as a limit
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along a ray:

C(tu,tv)

(1.2.3) L(u,v) = lim+ o

t—0

Proof. The proof of equality (1.2.3) is based on the definition of homoge-
neous expansion and the equality (1.2.1). It follows that:
k k k
lim C(tu,tv) — lim t*L(u,v) + t*R(tu, tv)(u + v)
t—0+ tk t—0+ tk

= L(u,v) + (u+v)* tlirg}F R(tu,tv) = L(u,v),

which completes the proof. »

Another important concept used in this article is that of survival cop-
ula. Given a copula C, the survival copula associated to C is defined as
C(u,v) = u+v—14C(1 —u,1 —v). For example, it can be shown that
for elliptical copulas C = C. It is also true for the Frank copula. The
same approach, as in Sklar’s theorem, can be applied to the survival cop-
ula. Using, as before, the notation F' for the joint survival function, and
Fy, F for the marginal survival functions, the survival copula is given by
C(u,v) = F(F'(u), F51(v).

From this relation between copula and the corresponding survival copula,
one can easily obtains the definition of upper tail expansions of any copula
C analogous to Definition 1.1.

DEFINITION 1.2. We say that a copula C has a k-degree upper tail ezpan-
ston (k > 1) if the corresponding survival copula C' has a k-degree lower tail
expansion.

1.3. Examples of the copulas leading parts

This subsection shows some of the most known families of copulas and
theirs leading parts of lower tail homogeneous expansions in relation to de-
gree of this expansion. Presented examples shows all possible situations of
existing and degree of lower tail homogeneous expansions in case of two-
dimensional copulas. All the copulas listed below are described in [11]. The
leading parts presented below can be obtained after long but straightforward
calculations.

1. Product copula: C(u,v) = uv
ke(1,2): Lu,v) =0, R(u,v)(u+v)* =C(u,v),
k=2: L(u,v) = C(u,v), R(u,v)(u+v)*=
This is an example of a bivariate copula function, which is homogeneous of

degree two. It implies that its k-degree lower tail homogeneous expansion
is trivial for k € [1,2) and nontrivial for k = 2. For k > 2 such expansion
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does not exist, because in this case limit given by the formula (1.2.3) is
infinite.
2. Lower Fréchet-Hoeffding Bound: C(u,v) = max(u + v —1,0)
k>1: Lu,v) =0, R(u,v)(u+v)* =C(u,v).
3. Upper Fréchet-Hoeffding Bound: C(u,v) = min(u,v)
k=1: L(u,v) = C(u,v), R(u,v)(u+v)=0.
This is an example of a bivariate copula function, which is homogeneous
of degree one, so it has nontrivial one-degree lower tail homogeneous
expansion. For k > 1 such expansion does not exist (from the same

reason as in case of product copula).
4. The FGM family (see [11], p. 68):

Co(u,v) = uv + fuv(l — u)(1 —v), 6 € [-1,1]

ke1,2): L(u,v) =0, R(u,v)(u+v)* = Cylu,v),

k=2: Lu,v) =w( +6), R(u,v)(u+v)% = Ouv(uv —u—v).
This copula has trivial k-degree lower tail homogeneous expansion for
k € [1,2) and nontrivial for k = 2. For k > 2 such expansion does not

exist (arguments as in example 1).
5 The Ali-Mikhail-Haq family (see [11}, p. 25):

uv
Co(u,v) = 1—6(1—w)(l—0)

k€[1,2): Lu,v) =0, R(u,v)(u+v)* = Cy(u,v),

S w B uwv(uv — u — v)
k=2: L{w,v) = 71—, Ruw,v)(u+v)" = (1-6)(1-6(1-u)(1-v))

, 0e[-1,1)

1-6’
As before, this copula has trivial k-degree lower tail homogeneous expan-

sion for k € [1,2) and nontrivial for k = 2. For k > 2 such expansion
does not exist (arguments as in example 1).

We will end this subsection by discussing the existence of homogeneous
copulas with degree of homogeneity higher than their dimension. From the
third property of the definition of a copula function we can get that 2-
dimensional copula which is homogeneous of degree k is of the form C(u,v) =
(max(u, v))*~! min(u, v), where k > 1. The main part of lower tail expansion
is equal to C. The function C defined above is not 2-increasing for k > 2.
To see this, let A = [a,1] x [a,1]. Then Vo(A4) = 1 — 2a + a* and for k& > 2
we can always choose such a, for which Vo (A) < 0. It means, that there are
no copulas which are homogeneous of order higher than their dimension (see
Theorem 3.4.2 in [11]).
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1.4. The properties of leading part

Many properties of the leading part of the copula homogeneous expansion
are closely related to copula properties, cf. [11]. For example, function L,
as the limit of nondecreasing functions, is also non-decreasing. The next
properties are given for the lower tail copula homogeneous expansion only
however, analogous properties hold for the upper tail expansion.

PRrRoOPOSITION 1.2. The leading part L of copula lower tail expansion of
order k has the following properties:

i) (Nonnegativity) ¥V u,v € [0,1] : L(u,v) > 0.
ii) (Groundedness) Yu,v € [0,1] : L(u,0) = 0= L(0,v).
ili) (Monotonicity) L(u,v) is 2-increasing and non-decreasing in each of its
arguments. Moreover for k = 1 function L is Lipschitz continuous.
iv) (Homogeneity) ¥V u,v € [0,1] V ¢t > 0: L(tu,tv) = t*L{u,v) > 0.
v) (Boundedness) Let M be such as in condition 2. of Definition 1.1. Then:

Vu,ve0,1]: L{u,v) < min(u,v) + 2M.

Furthermore, if function R is non-negative or k = 1 then the following
stronger inequality is satisfied:

L(u,v) < min(u,v).

Proof. Properties i)-iv) follow from basic properties of copulas and their
proofs are left to the reader. The proof of the fifth property for £ = 1 can be
found in [8]. The proof for k > 1 is based on the similar idea and we omit
the details. =

It is also worth to mention that in the case of one-degree homogeneous
expansion its leading part is concave (see [8]). However, in the case of
homogeneous expansion of higher degree it is not true. For example, the
leading part of 2-degree lower tail expansion for copula from FGM family is
of the form L(u,v) = (1480)uv (see subsection 1.3, example 4) for 8 € [—1, 1].
We have to check that for all (uj,us), (vi,v2) € [0,1)2 and for all a,b €
Ry, a+ b =1 the function L satisfies condition: L(au; + bvi,aus + bvg) >
aL(uy,u2)+bL(v1,v2). Last inequality is equivalent to ab(u; —v1)(ve—ug) >
0. It is easily seen that we can choose arguments in such way, that this
inequality is false. It implies that L is not a concave function.

One of the most useful dependence ordering is the concordance order. We
say that the copula C; is smaller than the copula C5 and we note C; < Co
if C1(u,v) < Ca(u,v) for any (u,v) in the unit square [0,1}2. It turns out
that also leading parts of lower tail homogeneous expansions of copulas can
be partially ordered. There is implication between the concordance order of
copulas and the order between leading parts of their lower tail homogeneous
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expansions (of course the degree of the compared copulas expansions must be
the same). Formulation of this result is stated formally in the next theorem.

THEOREM 1.3. Assume that C;, i = 1,2, has k-degree homogeneous ez-
pansion with decomposition C;(u,v) = Li(u,v) + Ri(u,v)(u +v)k, i = 1,2.
Then the following implication is true:

Vu,v € 0,1} : Ci{u,v) < Co(u,v) = Vu,v€|0,1]: Li(u,v) < La(u,v).
Proof. By assumption, for every u,v € [0,1] and for every t € Rt we have
Ci(tu, tv) < Ca(tu, tv). Therefore, it suffices to divide the both sides of the
last inequality by t* and apply formula (1.2.3). =

We conclude this subsection with the following theorem concerning the
partial derivatives of the leading part L with respect to its variables. The
word almost” is used in the sense of Lebesgue measure.

PROPOSITION 1.4. Let L be the leading part of the k-degree lower tail
homogeneous ezpansion of some copula C (k > 1). Than for every v € [0, 1]
(u € [0,1]) the partial derivative OL/0u (OL/BOv) exists almost everywhere
inu € [0,1} (v € [0,1]). Moreover, functions u — OL(u,v)/0v and v
OL(u,v)/du are almost everywhere defined and non-decreasing on [0,1].

Proof. The method of proving is similar to one used in case of copulas. The
details for copulas can be found in {11]. =

REMARK 1.1. If there exists at least one point (v/,v') € (0,1}? such that
L(u',v") = 0, than L = 0. It follows from property i) and iii) of function L
from Proposition 1.2 and from the following inequalities:

:0< ,V) = —, U —
Vu,v €[0,1}: 0 < L(u,v) L(u vv)

u v u v
< L(max (—,, —I)u',max (—,, —,>v')
u'’ v '’ v

2. Characterization of the leading part
2.1. The main result

In this section our main theorem which provides the method of computing
the leading part of copula homogeneous expansion of degree higher than one
(and the decomposition of the copula function into homogeneous part and
the rest) is stated and proved. We will start from the case k = 2. Next, we
will consider remaining possibilities. The case k = 1 was presented in [8] so
we will omit it.

THEOREM 2.1. A copula C: [0,1]2 — [0,1] has a nontrivial lower tail
expansion of degree k = 2 iff it has a trivial lower tail expansion of degree
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one and there ezists a positive, bounded on cube [0,1]? and homogeneous
function L: Ri — R of degree two, such that:

lC(’U,, U) _ L(’“’? ’U)l

214 im =0,
( ) (u,v)—(0,0)* || (u, ’l)) ”2
where |G| = Y, |u;|. Furthermore the value of L can be determined as a

limit along a ray.

Proof. “=” By the hypothesis, there exists a two-degree homogeneous ex-
pansion for copula C which implies that for every point (u,v) € [0, 1]? copula
can be expressed in the form (1.2.2). Then:

|C(u,v) — L{u,v)| . |R(u,v)(u + v)?|
m B = 2
(u,0)—(0,0)+ [ (u, v)|| wr)-00+  |[(u,v)]
= lim |R(u,v)|=0.
(u,0)—(0,0)F

It remains to prove that in this case one-degree lower tail homogeneous
expansion of copula C is trivial, which means that its limit along a ray is

equal to zero:
C(tu, tv) 9

lim ———— = lim (tL(u,v) + tR{tu,tv)(u +v)°) = 0.

Jim, S = i (1w, ) + R(tu, 1) (a4 0)?)

“«"” The procedure is to show that there exist functions L and R such
that the copula C can be expressed in the form (1.2.2). Let L be the function
which is nonnegative, homogeneous and satisfying limit (2.1.4). For R lets

take function R(u,v) = ﬂ%gﬂl Then:

|R(u,v)| =

= lim
@v—-00r  [l(u,v)|?
_ L(w,v) > _ L(u,v)
(u+v)~  max(u,v)

= —maxtu, ) L s i)

|C(u7v) — L(U,U)[ =0,

lim
(u,0)-(0,0)+

b. R(u,v)}(u+v) >

J/

bounded by ;ﬁe assumption
C(u,v) < min(u, v)
ut+v - u+v
which shows that copula C has 2-degree homogeneous expansion by the
Definition 1.1. =

R(u,v)(u+v) < <1,

For the case of one-degree homogeneous expansion we refer interested
readers to [8]. Inter alia it is stated that copula has one-degree homogeneous
expansion of lower tail iff there exists a homogeneous function L: Ri — R
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of degree one, such that:
|C(u,v) — L(u,v)|

=0.
(u,9)—(0,0)+ | (w, v)]]

PROPOSITION 2.2. If copula C has non-trivial m-degree homogeneous ez-
pansion of lower tail then homogeneous expansion of copula C of degree
k > m does not exist.

Proof. The statement is obvious from the Proposition 1.1, because:
. Cltu,tv) L(u,v) + R(tu,tv)(u + v)™
lim ———= = lim
ta0+  th oo+ th—m

=400. =

It turns out, that conditions from Theorem 2.1 provide not only the
possibility of checking when given copula C has 2-degree homogeneous ex-
pansion but also what is its form if some additional conditions about copula
are required.

THEOREM 2.3. Assume that a copula C' is twice continuously differentiable
on [0,1)2\ {(0,0)} and has 2-degree homogeneous expansion. Then the main
part L of this expansion is of the form:

i 1 ,0°C °C
(2.1.5) L(u,v) = £m+ [— —= (tu, tv) + UV B9 (tu,tv)
2
41 v2g_§(tu, tv)] ,

assuming, that given limit exists for all (u,v) € [0,1]?\ {(0,0)}.

Proof. Our proof starts with the observation that if a copula C has 2-
degree homogeneous expansion then by formula (1.2.3) its leading part can be
obtained from the formula L(u, v) = lim;_g+ K, 4)(t)/t?, where K, (u,0)(t) =
C(tu,tv). Notice that, using differentiation rule for composite functions, for
every fixed (u,v) € [0,1]2\ {(0,0)} we get:

. aK(u,v)(t)/at . ocC oC
(216) tl_l,%}% W— = thl& (Ug(tu, t’U) + va—y(tu, tv)) .

The limit given by formula “(2.1.6)” exists and is equal to the leading part
of one-degree homogeneous expansion of copula C, which is therefore trivial
by assumption and Theorem 2.1. Moreover:

d(udE (tu, tv) + v3< o < (tu, tv)) /0t I 2, 0°C
e ot ot/ot Pt [ Ox? a7 1)
820 2C
+2uv - 5y (tu, tv) + v° == (tu tv)]
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Using differentiation rule for composite functions we get:

Kuw)(t) 5 i 8(u%§(tu,tv)+v%§(tu, tv)) /0t
—2—= = lim

lim

tot 2 t—0+ 20t /ot
e[t 2020 2C 1 ,0%C
= t1—1>I(I)1+ 5% 57 (tu, tv) +uv8 ay(tu,t v) + v W(tu tv){,

where ”#” stands for the de L’Hospital theorem applied to calculation the
limit of indeterminate sign [J] (see [6]). This completes the proof of formula

(2.1.5). =

REMARK 2.1. Notice that, under assumptions of Theorem 2.3, triviality
of one-degree lower tail homogeneous expansion of copula implies existence
and triviality of its k-degree lower tail homogeneous expansion for k € (1,2).
It follows immediately from the proof of Theorem 2.3 and from the fact, that
for k € (1,2):

Kuw)(t) B 8(ugE (tu, tv) + ve< (tu tv)) /0t

S arc a(ktk- 1)/at
27k T ,0%C 0?
tgré# RE=D) [u 5 (tu, tv) + 2uv(9 9% (tu, tv)
2
+v g—g(tu,tv)] =0.

3. The coefficient of lower and upper tail dependence

For financial applications of homogeneous expansions of order one we
refer the reader to [8] and [9]. Here we present some examples in order to il-
lustrate applicability of our main theorem in case of homogeneous expansions
of order higher than one.

The tail-dependence coefficient is an asymptotic measure of dependence
specially focused on bivariate extreme values. For continuous marginal distri-
butions the notion of tail-dependence coefficient is in fact a copula property
and so we will follow here the definition in terms of copulas given by Joe [10].

Let X and Y be random variables with continuous distribution functions
F and G respectively. The coefficient of lower tail dependence of X and Y
is

A = lim P(Y < G (q)|X < F(q))

q—0
provided a limit exists, and the coefficient of upper tail dependence is
Ay = lim P(Y > G ()| X > F~'(g))
q—}

provided a limit exists.
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Thus, these coefficients are limiting conditional probabilities that both
margins exceed (in the case of coefficient of lower tail dependence) or are
less than or equal to (in the case of coefficient of upper tail dependence) a
certain quantile level given that one margin does.

If C is the copula of (X,Y), then

P(G(Y)<q, F(X)<q) Cu, u)

_y i Cww)
AL = i = FX) < q) bt w

and

\y = 1im PEW) > 4. FO) > )
¢—1 1-P(F(X)<yq)

_ 1= P(GY) > F(X) < q) - PO(Y) < 4, F(X) > )

q—1 1-P(F(X)<q)
-P(G(Y)< ¢, F(X)<q) I 1-2u+ C(u,u)
- u-l—gl— 1-—u )

We say that if the limit A;, (Ay) exists and belongs to (0, 1], then C has
lower (upper) tail dependence. If Ay = 0 (Ay = 0) we talk of asymptotic
independence in the lower (upper) tail.

Another representation of the upper tail dependence is given by the for-
mula Ay = lim,,_,q+ C(u, u)/u, where C' denotes the survival copula of C. It
follows from the fact, that:

Ay = lim 1-2u+ C(u,u) . C(l-u,1-wu) ~ im C(u,u).
u—1- 1—u u—1- 1—u u—0+ u
Thus, the upper tail dependence of C' equals the lower tail dependence of its
survival copula and, vice versa.
Let us now consider connection between the coeflicient Ay, and k-degree
lower tail homogeneous expansion.

PROPOSITION 3.1. If copula C has non-trivial k-degree lower tail homo-
geneous expansion then it is asymptotically dependent in the lower tail for
k =1 and asymptotically independent in the lower tail for k > 1.

Proof. It follows easily that:

Ar = lim Cluw) _ lim «*71L(1,1) + lim R(u, u)2Fu*~?
u—0 U w0 lim
L{1,1)i _
= L(la 1) lim ’u,k—1 — ( ) ) if k 1,

which is the desired conclusion. m

Similar conclusion can be drawn for upper tail dependence, but in this
case we must consider homogeneous expansion of the survival copula.
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PRrRoOPOSITION 3.2. If the survival copula of C has non-trivial k-degree
lower tail homogeneous expansion then copula C is asymptotically dependent
in the lower tail for k = 1 and asymptotically independent in the lower tail
for k> 1.

We are now in a position to show that if we know that copula is inde-
pendent in lower tail, than we can conclude about form of the main part
of its one-degree homogeneous expansion. We can explain it on a simple
example. For the Gaussian copula, the coefficients of lower tail and upper
tail dependence are

A L= )‘U =2 lim ®

T——00

(:v V1- p) =0
vi+p ’

where ® denotes standard Gaussian distribution function and p denotes cor-
relation coefficient (see [1]). It means, that the Gaussian copulas do not
exhibit tail dependence. Embrechts et al. [4] Remark: “Regardless of how
high a correlation we choose, if we go far enough into the tail, extreme events
appear to occur independently in each margin.”

By the proof of Proposition 3.1 we know that if copula has one-degree
homogeneous expansion, then A, = L(1,1). It means that for Gaussian
copula we have L(1,1) = 0. Additionally, from Remark 1.1 follows that
L(u,v) = 0 for all (u,v) € [0,1]?, which means that the Gaussian copulas
has trivial one degree homogeneous expansion.

The example above shows how we can deduce about copula homogeneous
expansion from its lower tail dependence coefficient. On the other side, we
can deduce about lower tail dependence coefficient from existence and form
of copula homogeneous expansion. For example, copulas from FGM and
Ali-Mikhail-Haq families are asymptotically independent in the lower tail.
It follows from the fact that their homogeneous expansions of degree higher
than one exists (see subsection 1.3, Example 4 and 5).
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