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DIRECT THEOREMS FOR MODIFIED B A S K A K O V 
OPERATORS IN Lp-SPACES 

Abstract. In the year 1993, Gupta and Srivastava [3] introduced the integral mod-
ification of the well known Baskakov operators by taking the weight functions of Szasz 
basis function, so called Baskakov-Szasz operators. In this paper, we obtain some direct 
theorems for the linear combination of these Baskakov Szasz type operators. To prove 
our one of the direct theorems, we use the technique of a mathematical tool which is the 
linear approximating method and is known as the Steklov means. 

1. Introduction 
For / e Lp[0, oo), p > 1, Gupta and Srivastava [3] introduced an interest-

ing sequence of linear positive operators to modify the well-known Baskakov 
operators by considering the weights of Szasz basis functions. The modified 
Baskakov-Szasz operators, introduced in [3] are defined by 

OO o o 

(1.1) sn(f,x) =nJ2Pn,v(x) \ Qn,v{u)f(u)dui x e [0, oo), 
t)=0 o 

where 

(1.2) pn,v(x)=(n + V~1)xv(l + xrn-v and qn>v(u) = ^ ^ , 
V V J vl 

In [3], the authors have estimated asymptotic formula and an error esti-
mates in simultaneous approximation. It is observed from [3] that the rate 
of convergence for these operators Sn(f,x) is of O (n^1) . To improve the 
order of approximation, we consider the linear combination of these opera-
tors Sn(f, k, x) of the operators Sdjn(f,x), where djti, j = 0 , 1 ,2 , . . . , k are 
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arbitrary distinct positive integers, the linear combinations are defined as 
k 

(1-3) Sn(f,k,x) = ^2C(j,k)Sdin(f,x), 

3=0 

where 

(1.4) c ( j , k ) = n 
_ dj - di' 

k ^ 0 and C(0,0) = 1. 
i = 0 

i + j 

We may rewrite the operators (1.1) as 

(1.5) sn(f,x) = 5 V(n,x,u)f(u)du, 

where V(n, x,u) = n £ pn<v(x) qn,v(u)-
v=Q 

Alternately the A;-th linear combinations Sn(f,k,x) of the operators 
Sdjn{f,x) are defined by 

(1.6) Sn(f, k,x) = 

1 do1 . • ao Sd0n(f > x ) ¿01- • • "o 
1 d f 1 . .dTfc Sdmif, x) d^1. .dr* 

1 dk1- A * Sdkn(f,X) dI1 . . . d - k * 

where do,di, (¿2, • • • are (k+1) arbitrary but fixed distinct natural num-
bers. Combinations of this type were considered by May [4], to improve the 
order of approximation of exponential type operators. 

Throughout this paper let 0 < ai < ai < 03 < 63 < 62 < < 00, 
0 < a < b < 00 and Ii = [a», 6»], i = 1,2,3. We denote by C, the positive 
constant not necessarily the same at each occurrence. 

For / £ Lp[0,00), 1 < p < 0 0 , the Steklov mean frj,m of m-th order 
corresponding to / is defined by 
(1.7) 

f)/2 1 7 / 2 r ? / 2 

fv,m(t) = v ~ m s i • • • ! [ m + (-i)m-i&zmdt1,dt2,...,dtm\, 
-tj/2 -rj/2 -r,/2 

where u = YliLi h
 a n ( i A™f(t) is the m-th order forward difference of the 

function / with step length h, which is defined as 

Aff(t) = A r X / W = A r X [ / ( i + h ) - /(*)]. 

It follows from [2, 5] that: 
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(i) fr),m has derivative up to order € AC(h), and f{n. m exists 
a.e. and belong to LP{I\)\ 

(ii) f H , < Cri~ru)T(f,r),p,h), r = 1,2,.., m; 
LP( H) 

(iii) | | / m | l <Cum{f,T],p,Ii); 

( iv) l l / ^ l l M / 2 ) < ^ l l / l l M i l ) ; 

(v) fi% <Cri-m\\f\\^h),r = l,2,...,m-, 

where ur(f,r],p,Ii), r = 1 , 2 , . . . , m is the modulus of continuity of order r 
on the interval I\. Also AC [a, b] stands for the class of absolutely continuous 
function on [a, b] and C are certain constants which are independent of / 
and n. Let BV [a, 6] denotes the set of all functions of bounded variation 
on [a, b]. The semi-norm ||/||£V[a,fc] is defined by the total variation of / on 
[a, 6]. For / € Lp[a, b], 1 < p < oo, the Hardy-Littlewood majorant of / is 
defined as: ^ 

hf(x) = s u p \ f { t ) d t , [a < £ <b). 

In the present article we establish some direct results on Lp-norm for the 
linear combinations of the modified Baskakov operators. 

2. Auxiliary results 
This section deals with certain basic lemmas, which are necessary to 

prove the direct theorem. 

L E M M A 2 . 1 . [3] Let the m-th order moment be defined by 
oo oo 

(2.1) Tntm(x) = n^2pn,v(x) \ qn,v(u)(u - x)mdu. 
u=0 0 

Then 
nn / \ , T , , 1 rp 2 + nx(2 + x) 
Tnfi[x) = 1, Tni(x) = - , T n , 2 = o ' 

n n£ 

and there holds a recurrence relation 

(2.2) nTn,m+l{x) = x(l + 

m — l e N . 
Consequently for x >0, 

(2.3) Tntm(x) = 0 ( n - U m + 1 » \ 
where [a] denotes the integral part of a. 

Also by Holder's inequality we conclude from (2.3), for every fixed x 6 
[0, oo) 

(2.4) Sn(\u-x\r ,x)=0(n~r/2), V r > 0 . 
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LEMMA 2.2. For p G N and n sufficiently large there holds 

Sn {(t - x)P, k, x] = {Q(p, k, x) + o( l ) } , t G [0, oo) 

where Q(p, k, x) are certain polynomials in x of degree p/2. 

Proof. From Lemma 2.1, for sufficiently large n we can write, 

P1(x) + + P\p/ 2](®) 
n[(p+1)/2] nt(P+1)/2]+1 ' nP 

where P[s are certain polynomials in x of degree at most p. Thus 

1 d^1. 
• "o 

sn[(t-xy,k,x] = 
1 d f 1 . 

1 d~k1. •d-kk 

Po(x) + Pi(x) + • • + 

P(P/2) M + . •do1 • V (don)l(p+i)/2] + (d0n)i(P+1)/21+1 + • • + (d0n)P + . •do1 • V 
Po(x) + + • • + 

P(p/2)(x) + • A 1 . 
( d 1 n ) K P + 1 ) / 2 l 

+ (dm)((p+1)/2l+1 + • • + (dm)P + • A 1 . 

Po(x) + Pl(x) + • • + 

p(P/2)(X) + • •A" 1 - d~k ••ak (dkn)l(P+V/2l + (dfcn)[(P+1)/2]+1 + • • + (dkn)P + • •A" 1 - d~k ••ak 

= n~^{Q(p,k,x) + o( 1)}. 

L E M M A 2 .3 . [1] Let 1 < p < oo, / G Lp[a,b], /<*> G AC[a,b] and / f c + 1 ) G 
Lp[a,b], then 

Wfij)hp[aM < C(\\fik+1)\\Lp[aM + l|/||Lp[a,6]) 

j = 1,2,..., k, where C are certain constants depending only on j, k,p, a, b. 

3. M a i n results 

T H E O R E M 3 .1 . Let f G Lp[0, O O ) ; p > 1. If f has (2k+ 2) derivatives 
on Ii, with Jr(2fc+1) g AC(h) then for n sufficiently large 

I I • ) - /IILp[(/2) < C n - ^ W \ f ^ \ \ L p [ { l 2 ) + ||/||Lp[0)oc)), 

where the constant C is independent of n and f . 
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Proof. By the hypothesis, for x € I2 and u £ h 

2fc+l / \j 1 u 
(3-1) / ( « ) = £ ^ j r - f ^ H x ) + 7 ^ 7 S (ti - ™ ) 2 f c + 1 / ( 2 f c + 2 ) M dw 

3=0 
(2k +1)! 

where <E>(u) denotes the characteristic function on I\. 

2fc+l [U 

j! 
F(u, x) = /(«)- £ ^ - T - f ^ i x ) , 

j=0 

for all u E [0,00) and x £ I2. Using (3.1) in (1.3), we have 

fU)(x) 
Sn(f,k,x) - f(x) — 

j = l 
+ 

^ l ^ s ^ t i ) J ((u - ™ ) 2 f c + 1 / ( 2 f e + 2 ) M dw, k, x) 

+ Sn(F{u, x ) ( l - $ ( « ) , k, x) = A i + A 2 + A 3 . 

In view of Lemma 2.2 and [1] 

2fc+l 

i= i 

To estimate 12, let hf be the Hardy-Littlewood majorant [6] of y(2fc+2) on 
/1, using Holder's inequality (2.4), we obtain 

Ji = 

< 

< 

Sn{*(u)) J ((U - w)2k+1f^2k+2\w)dw, *) | 
x 

Sn($(u)) \ |(u - ™)2*+1| |/<2fe+2)(u,)| \dw\ ,x) 

Sn{*{v) |(« - x)|2fc+1 J |/(2fc+2>(W)| \dw\,x) 
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<Sn($(u)(u-x)2k+2\hf(u)\,x) 

<{sn(\u-xf2k+2^^(u),x}1/".{sn(\hf(u)\p^(u),x}1/p 

< Cn"(fc+1> {Sn(\hf(u)\p$(u),x}1/p 

M x x/p 
V(n,x,u)\hf(u)\p duj . 

ai 

Fubini's theorem and [7, chapter 2] imply that 

| | J i | l i p ( i 2 ) < C n ' ^ ] J V(n,x,u) \hf(u)\p dudx 
Q2 a i 
bi 

< Cn-(k+Vp J 
ai 
bi 

h 
j V(n,x,u)dx 

J* 2 
\hf(u)\p du 

< Cn-(fc+1)p J \hf(u)\pdu < Cn~(k+Vp \\hf(u)\\l Lp(Ii) 
ai 

<Cn _ ( f c + 1 ) p /(2fc+2) 
V 

Lv(h) 

Therefore, 

Consequently, 

l|A2||Lp (/2 )<Cn-(^||/^2 )||L p ( i l ) . 

For u G [0, oo)\[ai, fox], x G I2, there exists a 6 > 0 such that |it — x\ > S. 
Thus 

|Sn(F(u,x)(l - $ ( « ) ,x )| < (u - x)2k+2,x) 
2fc+l 1 _ | j 

< 5-(2k+Vsn(\f(u)\ + £ |/^ ( * )| (u- * ) 2 f c + 2 , * ) 
j=0 

< ¿"(2fe+2) [sn(\f(u)\ ( « - + £ - x\2k+2+i,x) 
j=1 J' 

= J2 + Ja-

il sing Holder's inequality and (2.4), we get 

| J3\ < 6~^Sn(\f(x)\p, x)l'pSn{\u - xfk+V\ x 

<Cn~^Sn{\f{u)\p ,xf'p. 
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Again applying Fubini's theorem, we get 
i>2 0 0 

S |J2 |pdi < Cn-(fc+1)p S S V(n,x,u) | /(u)|p dudx 
a2 02 0 

< ll/ILp[0,oo)) • 
Thus 

II^2|ILp(/2) < ll/llipQo.oo) • 
Moreover using (2.4) and [1], we get 

2k+l 

H ^ l l L P ( / 2 ) < ^ ( f c + 1 ) E l l / ( i ) l l M / 2 ) 
3=0 

< C n - ^ ) ( | | / W | | L p ( / 2 ) + ||/(2fc+2)||Lp(72)). 
Combining the estimates of J2 and J\, we are led to 

||A2 | |Lp(i2) < Cn-(fc+1)(||/||Lp([o)0o)) + ||/(2fc+2)|Up(/2)). 
Hence we obtain the desired result. 

T H E O R E M 3 . 2 . Let f e L i [0 , oo) . If f has (2k + 1) derivatives in I\ urith 
y(2fc) e AC(Ii) and /(2fe+1) e BV(h), then for all n sufficiently large we 
have 

I I s n ( f , k , • ) - / I L i [ ( / 2 ) 

LI(/2) + II/IIlp[0,oo))) 
where C is a constant independent of f and n. 

Proof. By the given assumption on / , for almost all x 6 I2 and for all 
u £ 11, we have 

2fc+l ( \i 1 u 
/ ( « ) = £ + T^TlV S((U - w)2k+1df(2k+1\w)). 

i = 0 ' '' x 
We can write 

2fc+l , u /(«> = E W ( I ) 

t = 0 

Where 3>(it) denotes the characteristic function of I\ and 
2fc+l , _ w 

¿=0 
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For almost all x € I2 and for all u € [0,00). Hence we obtain 

S n ( f , k , x ) - f ( x ) = J — ^ S n d u - x ) \ k , X ) 

1=0 

+ 

V. 

5 n ( \ ( u - w ) 2 k + l d f ( 2 k + 1 \ w m u ) , k , 
( 2 k + l ) \ 

+ S n ( F ( u , x ) ( 1 - k , x ) = J i + J 2 + J 3 -

Applying Lemma 2.1 and [1] we get 

I N I l i ( / 2 ) ^ ^ " ( F C + 1 ) O I / L K ( / 2 ) + l l / ( 2 f c + 1 ) l l i l ( / 2 ) ) -

Further, we have 
u 

i f = | | s n ( j ( u - w ) 2 k + 1 d f ( 2 k + 1 \ w ) $ ( u ) , x ^ 

L i i h ) 

b 2 61 
< J J V { n , x , u ) \ u - x \ 2 k + l j d f V k + l \ w ) d u d x . 

a2 ai 

For each n there exists a nonnegative integer r = r(n) such that 

r n ' 1 / 2 < max(6i - a2, b 2 - ai) < (r + 1) n" 1 / 2 . 

Then we have 

r 62 z + ^ + l J n " 1 / 2 

^ - E i i I $ { u ) V { n , x , u ) \ u -

1=0 0.2 x+(l)n-!/2 

x+O+l)«-1^ 

X 2fc+l 

I d/(2fc+1)( d u 

X 

x-ln"1/2 

+ j $(«) F(n, |u — x|2fc+1 

j • \ d f { 2 k + 1 \ w ) U d u } d x . 

x-H+^n'1/2 

Let $ x , c , d { w ) denotes the characteristic function of the interval 

[ x — c n T 1 ! 2 , x + d n - 1 / 2 ] , 
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where c, d are nonnegative integers. Then we have: 

r b2 x+(l+l)n~1/2 

K - S 5 { ! ${u)V{n,x,u)rAn2 \u-x 

1=1 a,2 x+i^n-1/2 

x+a+i)«-1/2 

2fc+5 

• | df^2k+l\w) du 

x-(l) n - ! / 2 

+ J $ (u)V r (n ,x ,u ) r 4 n 2 \u-x\2k+5 

x-{l+l)n~V2 

x 
\ $H$x>m.oM • df(2k+1\w) du \dx 

x-O+l)«-1/2 

b2 ai+n"1/12 

+ J J V(n,x,u) \u - \2k+l 

a2 -„-1/2 
x+n-1/2 

• ( i • \df{2k+1)(w)\) dudx 
x—n -1/2 

r fe2 x+Ci+l)«-1/2 

< £ ( r V j { S |u -
«2 i+(i)n-'/2 

X 
2fc+5 

¿=1 

/bl IX x 
( J ^ , 0 , , + i M # ( 2 f c + 1 ) M|)<fo ) 
ai 

x-(l)n-1/2 

+ J $(u)K(n,x ,u) - x|2fe+5 

x—(!+l)n-1/2 

bl 

ai 
b2 ai+n-Vl2 

+ J j V(n,x,u) \u — x 
a2 -n-!/2 
bi 

• ( j $Xil>1(ti;)|d/(2fc+1)(«;)|d«dx). 
ai 

2fc+l 

In the next step, using Lemma 2.1 and Fubini's theorem, we obtain 
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62 bi 

1=1 a,2 ai< 
dx 

&2 f>l 
+ S 5 *xHlfi(w)\dfW+l\w) 

a2 oi' 
62 61 

+ 
a2 ai 

r 61 62 

dx 

! 5 *x,ltl(w) |<#(2fc+1)M| dx) 
a2 oi' 

= C n - ^ y * ( j r , r 4 ( \ J W « ) d x \ d f ^ H \ ) 
1=1 ai 0,2 

+ f ( \ $x,o,i+iWdx)\df{2k+1)W\) 
a, 1 02 

+ 6f ( t ^ , i , i H t t e ) | d / ( 2 f c + 1 ) ( t i 
ai a2 

< C n - ( 2 f c + 1 ) / 2 ( ^ Z " 4 ( j ] dx) \df(-2k+l\w) 
1 = 1 0,2 u; —(i+i)n-1/2 

+ S ( 5 dx) \df(2k+l\w)\) 
a\ w 
i>i iu+n-1/2 

+ S ( ( S dr) I ^ ^ H l ) 
ai w-n-1 /2 

< Cn-{k+l)\\f{2k+1)\\BV{h). 

Hence, ||J2||£l(/2) < Cn~( fc+1) | | / ( 2 f c + 1 ) | | B V ( / l ) , where the constant on the 
right side depends on k. 

For all u € [0, oo)\[ai, 61], x € h, we choose a 6 > 0 such that \u — x\ > 8. 
Then 

62 00 
| | 5 n ( F ( « , s ) ( l - $(«)) , x\\Li{h) < J j V(n,x,u) \f(u)\(l - <S>(u))dudx 

0,2 0 
2k+l b2 00 

+ 1 1 \ v ( n , x , u ) \u-x\i{l-$(u))dudx = J4 + J5. 
¿=0 ^ "2 0 

For sufficiently large u, there exist positive constants Mo and C such that 
/ \ 2 f c + 2 

„2fc+2+i > C) for all u > Mq, x & Also by Fubini's theorem 



Baskakov operators in Lp-spaces 563 

M0 62 0 62 
J4=0 \ \)V{n,x,u)\f(u)\(l-$(u))dxdu = J6 + J7. 

0 a2 MQ <12 

Now, using Lemma 2.1, we have 

Mo 62 
|/(it)| (u - X 

0 a2 

.Mo 

And 

1 00 62 (11 — -r\2k+2 ^ /00 \ 
= £ i S 1 |/(u)|cfaAi < Cn-(fc+1)( j \f(u)\du). 

Mo «2 Mo 

Combining the estimates of Jq and J7, we get 

J4 < ||/||̂ [0,00) • 

Further, using (2.4) and [1], we get 

2fc+i 1 62 00 
J5 < 2fc+2) £ i V{n,x,u) / « ( a ) (u - x)2k+i+2dudx 

i=0 02 0 

2fc+l 
< C n - ( f e + 1 ) f V I I / « ) 

^ ^ - ^ ( l l / l l ^ ^ + l l / ^ l l ^ z , ) ) . 

Prom above estimates of J4 and J5, we get 

||S,(F(u,s)(l - $(n) ) ,x|| i l ( i 2 ) < Cn-(fc+1)(||/||Ll[o!00) + ||/(2fe+1)||Ll (/,))• 

Consequently we obtain 

||J3||il(/2) < Cn-(fe+1)(||/||Ll[o)0o) + ||/(2fc+1)|kl(/2)). 

Finally combining the estimates of Jj, J2 and J3, we obtain the required 
result. 

THEOREM 3.3. Let f E Lp[0, oo), p > 1, then for n sufficiently large 

IISn(f,k, •) - f\\Lp{h) < C{w2k+2{f,n-l'2,P,h) + n-(fc+1)||/||ip[0)oo)), 

where C is a constant independent of f and n. 

Proo f . Let /7/,2fe+2(u) be the Steklov mean of (2fc+2)-th order corresponding 
to f(u) where r] > 0 is sufficiently small and f(u) is defined as zero out-
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side [0, oo). Then we have 

\\Sn(f,k, •) - /||ip(/2) < | | 5 „ ( / - fv,2k+2,k, . ) | | M / 2 ) + | | 5 „ ( / - fr),2k+2,k, •) 

- / i j ,2fc+2| |z ,p(/ 2 ) + l|/ j?,2fe+2 - / I U p ( / 2 ) 

= A i + A 2 + A 3 (Say). 

To est imate A i , let be the characteristic function of 13; then 

Sn({f ~ fv,2k+2)(u),x) = S „ ( $ ( u ) ( / - fn,2k+2)(u),x) = A 4 + A 5 . 

The following is t rue for p = 1, and it is also same for p > l follows from 
Holder's inequality 

j |A 4 | pdu< j \ V(n,x,u)\U - fvtk+2){u)\pdudx. 
a,2 0-2 as 

On applying Fubini 's theorem, we get 

\\A4fdu< f j V(n,x,u) l(f - f^2k+2)(u)\pdxdu 

a.2 a2 as 

< \\f ~ fv,2k+2\\P
Lp{hy 

Hence 
l | A 4 | L p ( i 2 ) < | | / - / , , 2 f e + 2 | I I p ( i 3 ) . 

Using Holder's inequality, (2.4) and Fubini's theorem, we get the following 
for p > 1 

H A 5 | | L p ( i 2 ) < C n - M | | / - / 7 ? ! 2 f c + 2 | | L p [ 0 o o ) . 

By using Jenson's inequality and Fubini's theorem, we obtain 

ll/i7,2fc+2||Lp[0ioo) ^ CWfhp[0,oo) • 
Hence 

l|A5||Lp[0,oo) < C n - ^ | | / | |L P [ 0 ) 0 0 ) • 
Now using third property of Steklov means, we get 

A i < C(w2k+2(f,n, p, h) + n"( fc+1> ||/||Lp[0)OO)). 

And we know tha t , 
f(2fc+l) 
Jri,2k+2 

A2k+2) 
Jr),2k+2 Li{h) BV(h) 

Hence by virtue of Theorem 3.1 ( p > l ) , Theorem 3.2 ( p = l ) and Lemma 2.3, 
we have 

A 2 < C n - < f c + 1 > ( | | / ^ | | M / a ) + ||/^,2fc+2||Lp[0,oo)) 

< P, h ) + n - ( f c + 1 ) l l / l l^o .« , ) ) , 

in view of the properties of Steklov means. 



Baskakov operators in Lp-spaces 565 

To estimate A3, we use the Steklov means property third, and obtain 
that 

A3 < Cu2k+2(f,n, P, h)-
Hence the required result follows. This completes the proof of Theorem 3.3. 
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