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DIRECT THEOREMS FOR MODIFIED BASKAKOV
OPERATORS IN Lp-SPACES

Abstract. In the year 1993, Gupta and Srivastava [3] introduced the integral mod-
ification of the well known Baskakov operators by taking the weight functions of Szasz
basis function, so called Baskakov-Szasz operators. In this paper, we obtain some direct
theorems for the linear combination of these Baskakov Szasz type operators. To prove
our one of the direct theorems, we use the technique of a mathematical tool which is the
linear approximating method and is known as the Steklov means.

1. Introduction

For f € L,[0,00), p > 1, Gupta and Srivastava [3] introduced an interest-
ing sequence of linear positive operators to modify the well-known Baskakov
operators by considering the weights of Szasz basis functions. The modified
Baskakov-Szasz operators, introduced in [3] are defined by

(11 Salfi2) =nD_ pas(@) | quu(w)f(w)du, = € [0,00),
v=0 0
where
02 pu@) = ("7 )b and g =

In [3], the authors have estimated asymptotic formula and an error esti-
mates in simultaneous approximation. It is observed from [3] that the rate
of convergence for these operators Sy(f,z) is of O (n™!). To improve the
order of approximation, we consider the linear combination of these opera-
tors Su(f, k,x) of the operators Sy,(f,z), where d;n, j =0,1,2,...,k are
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arbitrary distinct positive integers, the linear combinations are defined as

(1.3) (oK z) = }:cmw&ﬂu,%
j=0
where
. k d;
(1.4) C@,k)= 1 I k#0and C(0,0)=1.
i=0 %%
i Fj

We may rewrite the operators (1.1) as

(1.5) Se(f,z) = S V(n,z,u) f(u)du,

where V(n,z,u) =n Z Pnp(T) gno(u).
=
Alternately the k-th linear combinations S,(f,k,z) of the operators
Sa;n(f, ) are defined by

-1

1dgt...dg* Saon(f, ) dyt...d3*
1drt...d* n Tlodrk

16)  Salfikmy=| T A Sam(Fro) it dr* |
1 d;l,..d;k Sdkn(f,J?) d;l...d,:k

where do,dy,ds,...,d; are (k+1) arbitrary but fixed distinct natural num-
bers. Combinations of this type were considered by May [4], to improve the
order of approximation of exponential type operators.

" Throughout this paper let 0 < a; < a3 < a3z < b3 < by < by < o0,
0<a<b<ooand I; = [a;,bi], i =1,2,3. We denote by C, the positive
constant not necessarily the same at each occurrence.

For f € Lpy[0,00), 1 < p < oo, the Steklov mean f,, of m-th order
corresponding tof is defined by

(1.7)
n/2 n/2 n/2
fn,m(t) = ﬂ“m S S T S [f(t) + (_l)m_lAZLf(t)dtladtQa s 7dtm]a
-n/2-1/2  -n/2
where v = ) 7, t; and AP’ f(t) is the m-th order forward difference of the

function f with step length h, which is defined as
AT f(t) = ARTIALF(E) = APTHf(E+R) — f@)].
It follows from 2, 5] that:
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(i) fnm has derivative up to order m, f(m Ve AC(I), and f,(lfnm_l) exists
a.e. and belong to Ly(I1);

(ii) ”f(r) L) <Cn"we(f,mp, ), r=12,..,m
(iii) [If - fn,m“L (1 y = Cwm(f,n,p,ll),
(%) Wl < CIA,
) |55,y S O M Ny T =120
where wr(f, n,p,11), 7 =1,2,...,m is the modulus of continuity of order r

on the interval I;. Also AC [a, b] stands for the class of absolutely continuous
function on [a, b} and C are certain constants which are independent of f
and n. Let BV [a, b] denotes the set of all functions of bounded variation
on [a, b]. The semi-norm || f||gy/(a, is defined by the total variation of f on
la, b]. For f € Ly[a,b], 1 < p < oo, the Hardy-Littlewood majorant of f is
defined as:

h¢(x) = sup Sft)dt (a <E€<D).

5—»2:6_

In the present article we establish some direct results on Lp-norm for the
linear combinations of the modified Baskakov operators.

2. Auxiliary results
This section deals with certain basic lemmas, which are necessary to
prove the direct theorem.

LEMMA 2.1. [3] Let the m-th order moment be defined by

(2.1) Tam(z) = annv(g;) S o (u)(u — 7)™ du.
v=0
Then
1 24+ nx(2+2x
Too(o) =1, To(e) = 7, Toa = 2222 ED)

and there holds a recurrence relation
(2.2) nTpmi1(z) = o(1+2)T (2) +(MA1) T (@) +mz(242) T m—1 (),
m-—1¢€N.
Consequently for x > 0,
(2.3) Tom(z) = O(n~n+1/2]y
where [a] denotes the integral part of .

Also by Holder’s inequality we conclude from (2.3), for every fized z €
[0, 00)

(2.4) Sn(lu—z|",2) = O(n~""?), Vr > 0.
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LEMMA 2.2. For p € N and n sufficiently large there holds
Snl(t = z)P, k, 2} = n~*{Q(p, k,z) + 0(1)}, t € [0,00)
where Q(p, k,x) are certain polynomials in x of degree p/2.

Proof. From Lemma 2.1, for sufficiently large n we can write,

Po(x) Py(z)
ple+1)/2] 7 plp+1)/2+1 nP

Su{(t — z)P, z] =

where P/s are certain polynomials in z of degree at most p. Thus

-1

1dyt...dy"
1d7t...d7*
Sn[(t —z)P  k,z] = 1 1
1d;t.. . dg*
P P Plp/2) (@) -1 —k
(don)ﬂgﬁn/zl + (don)[(;(+ai))/2]+1 teot e+ dg

Py(z) Pi(z) P2 (@) -1 —k
(dln)?(51+1)/2] + @zt e T d - dy

P Py (z) Plpy2)(2) -1 —k
(dkn)?(gﬁ-)l)/z] + (dkn)[(zla+zl>/2l+1 Tt 4(551)% todydy

= n~®DLQ(p, k, z) + o(1)}.

LEMMA 2.3. [1} Let 1 < p < o0, f € Lpla,b], f® € AC[a,b] and f*+1) ¢
Lyla,b], then

1F ULt < CUFS L ae + 1L a)

j=1,2,...,k, where C are certain constants depending only on j,k,p,a,b.

3. Main results

THEOREM 3.1. Let f € Ly[0,00), p > 1. If f has (2k + 2) derivatives
on I, with f@5+1) € AC(I)) then for n sufficiently large

1Sa (s ks ) = Fllz gy < Cr~ FDAFF Dl i1z + 11z 0,000):

where the constant C' is independent of n and f.
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Proof. By the hypothesis, for x € I and v € I

1§ u ’U) 2k+1f(2k+2)(,w) dw
z

4L () oy
31 flw)=) “——J!—f(J)(

Pt (2k 1)

+ F(“v .’L‘)(]. - @(’U,)),
where ®(u) denotes the characteristic function on I.

2k+1

P -3 w2 ),

for all u € [0,00) and z € I5. Using (3.1) in (1.3), we have

2k+1

Salf k,2) ~ f(@) = Zf (w2, k,2)

1 u
+ = Sn®(u) S u — w) L fCR42) () du, k, z)
(2k + 1)' e

+ Sn(F(u, )(1 — ®(u), k,z) = A1 + Ag + As.

In view of Lemma 2.2 and [1]

2k+1 )
”A].“LP(IQ) < Cn_(k+1)(z “f(J) Lp(I2))
j=1

< Cn S D F DN Ly + 1F PN 1))

To estimate I, let h; be the Hardy-Littlewood majorant [6] of f(2%+2) on
I, using Holder’s inequality (2.4), we obtain

Jy =

500 | (1 = )+ D wha, )|
5a(®(w) | (u = w)2+1] [+ w)| 1w 2)

< Sa(®@(w) [(u— ) §| 124D (w)| |duw], 2)
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< Sn(@(u)(u — )**2|hy(u)|, z)
< A{Sn(lu — 2|29 @(u), 2}/9. {Sy(|hs(w) P B(u), )P
< Cn~® (8, (|hy ()P @(w), z}'P
b1
< Cn~W+1) (S V(n,z,u) |he(uw)P du) e

a1
Fubini’s theorem and [7, chapter 2] imply that

ba b1
I 1y < Cr=® 0P § § V(0,2 u) |hs (u)P duda

as a1
b1 [b2

< Cn~ k)P b1 V(n,:c,u)dw} |hy(u)? du
al La2
]

< On~ P s (u)P du < Cn~ PR ()} )

ai

< Cn~(k+Dp || £(2k+2) P _
- Lp(I1)
Therefore,
1l L, (2) < Cn-(kﬂ)p“f(2k+2)||L,,(11)-
Consequently,

182]l L) < O EFIPY FERED) L g,

For u € [0,00)\[a1,b1], z € I2, there exists a § > 0 such that |u — z| > 6.
Thus

1S (F(u,2)(1 — ®(u),2)| < 5+, (|F(u, z)| (u — 2)**2, 2)
2k+1 w— g '
< §~FHIG (1f(uw)] + j;o _ITwl_ ‘f(J)(I)l(u _ 2)2+2 g

< 67 S, (1f (W) (u - )% 2) + Y

J=1

Snlju—a*2%,3)]

= Jy + Js.
Using Holder’s inequality and (2.4), we get
|J2l < 5~ CHDS, (1 @), 2)'/PSn(u — 2| B2, 7)1/
< Cn~ G (f ()P, 2)P.
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Again applying Fubini’s theorem, we get

bo ba oo

{ |J2lP dt < Cn~ (k1P | § Vin,z,u) | f ()P dudz

a2 a2 0

—(k+1
< Cn D £l 10,00 -
Thus
19201,y < Cn™ VN fll L, 10,00 -
Moreover using (2.4) and [1], we get
2%+1

1Tl ryy < €D S F D L)
7=0

< Cn (D Ly + 1FE 2 L 1)

Combining the estimates of J2 and J;, we are led to

18201, (1) < Cr™F (1 Fll (0,000 + I1F P2 L, (12))-
Hence we obtain the desired result.
THEOREM 3.2. Let f € L1[0,00). If f has (2k + 1) derivatives in I} with
f@R) e AC(I) and fZ*+1D) e BV(Iy), then for all n sufficiently large we
have

1Sa(f, ks ) = Flli,m)
< On (PR gy + 1P L) + 11|z, 10,0005

where C is a constant independent of f and n.

Proof. By the given assumption on f, for almost all z € I, and for all
u € I, we have

2k+1 ( .’L‘) 1 u
fw) =Y == f0(z) + = | ((u — w)*+1df P+ (w)).

|
P (2k + 1)!
We can write
2k+1 (u — )i
flu) = Z p FO(z)
i=0
_ 1 7 2k+1 gp(2k+1)
BT i(("““’) df ) (w))@(u) + F(u, z)(1 = ®(w)).
Where ®(u) denotes the characteristic function of I; and

2k+1

Flu, Z 19 (@).
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For almost all z € I and for all u € [0, 00). Hence we obtain

2k+1
Snlf b 2) = fl2) = Zf a)g Su((u— z)', k, x)
=0
(2k-11-1)' (5 (1 — w)+1af D (w)D(w), k, 7)

+ Sn(F('U,,.T)(l - @(u), , T ) =J1 +Jo+ Js.
Applying Lemma 2.1 and [1] we get
111l ) < Cn~ D (£l oy + 1 FZ DN Ly er)-

Further, we have

K = |[sa(§ (u - w* gD w)e),2) |
T 142
be by u
< | | V(n,z,u) u — 2|2+ |§ ]df<2k+1>(w)H dudz.
az ai T

For each n there exists a nonnegative integer r = r(n) such that
/2 < max(by —ag, bo —a1) < (r+ l)n_1/2.

Then we have

r by z+(+1)n~1/2
S { S ®(u) V(n,z,u) [u— x|
I=0a2 z4(l)n—1/2
z+(l+1)n"1/2

: [ | ow)- jdf@“l)(w)}] du

T
z—In—1/2
+ S ®(u) V(n,z,u) ju— g/
z—(+1)n—1/2
x

| o) ‘df(zk“)(w)‘ }du}dw.

z—(4+1)n=1/2
Let ®, . 4(w) denotes the characteristic function of the interval

[z —cn Y2, &+ dn~Y/?),
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where ¢, d are nonnegative integers. Then we have:

r by z+(+1)n"1/2
K < Z S { S ®(u) V(n, z, u)l"*n? |u — |2+
I=1a2 g4 (l)n-1/2
z+(I4+1)n~1/2
| e)@apiw) - [¢f®*H (w)|] du

z—()n=1/2
+ S ®(v) V(n,z,u)l"*n? [u — z|***°
z—(l+1)n—1/2
T
J (W) Py 41.0(w Idf(2k+1) w)“ du}
z—(1+1)n~1/2
by ag+n—1/12
+§ | o) Vn,z,u)lu- |21
ag _p-1/2
1:+n_1/2
S O (w)Pgy 1(w) - |df(2k+1)(w)|) dudz
r—n—1/2
r by z+(I+1)n-1/2
< (l—4 2 { S &) V(n,z,u) ju— |+
1=1 az = zi(ln-1/2
b1
(1 @roua(w) [ (w)| ) du)
a1
z—()n~1/2
+ S ®(u) V(n,z,u) [u— >
z—(+1)n—1/2
b1
: (S B, 1410(w) )df@k“)(w)’)du)dax
ay
by ag+n—1/12
+1 | vz -z
a2 _p—1/2
by

(§ @ () [ O+ )| du ).

a1

In the next step, using Lemma 2.1 and Fubini’s theorem, we obtain

561
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K < Cn~@D/2 (il_4 (bsz bsl ®:0,041(w) ’df (%H)(w)‘ dz
=1 a2 ay:
ba by
+§ | ®op10(w) ,df(2k+1)(w)’ dz
as ays
b2 b1
+§ § @apr(w) [df D (w)] da)
az ays
— O n—(2k+1)/2 (Zl 4(171 b2 (I)z,o,z+1(w)d"’ 'df(2k+1)(w)’)
=1 ai az
+ bS (bf @y 0011(w)dz ) |4 (w)))
b b
5 (oustoe) fgeeoo
< Cn~(2k+1)/2 (il_‘l ("S2 1{ d:z:) ’df(2k+1)(w)~
=1 a2 w—(l+1)n—1/2
e (2k+1)
+
+a§1 ( 5} d:v) ldf (w)’)
by wtn~1/?

#1(C T ) laei))

al w_n—1/2

< O D p @D by gy

Hence, || 12|z, (1) < Cn~(k+1) ”f(zkH)HBV(II), where the constant on the
right side depends on k.

For all u € [0, 00)\[a1, b1], € Iz, we choose a § > 0 such that |u — z| > 6.
Then

[1Sn(F(u, 2)(1 = 2(u), 2|, (1,) < S J Vn,z,u) [f (w)|(1 - ®(u))duds
az 0

2k+1 bg oo )
+ Z | V(n,z,u) 'f@) (z)] lu — 21 — ®(u))dudz = Jy + Js.
! a2 0

For sufﬁc1ent1y large u, there exist positive constants My and C such that
2k+2

gz-;;c—ﬁ% > C, for all u > My, x € I;. Also by Fubini’s theorem
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Mg b2 0 b
J4=(§ i+ § g)V(n,z,u)|f(u)[(1—<1>(u))dzdu=J6+J7.

0 a2 Mpaz

Now, using Lemma 2.1, we have

My by
Jo =6~ | [ V(n,z,u) |f(u)| (v — z)**dz du

0 a2

My
< On~ (| f(w)|du).
0

And
oo b2 2k+2
Jr= = {9 V(n,x,u)(ﬁ%i)— |f(u)ldzdu < Cn~ k+l)( J |f(u)|dU)
CMoa2 My

Combining the estimates of Jg and J7, we get
Jy < Cn~k+D) 1121 0,00) -

Further, using (2.4) and [1], we get

2k+1 b2 o)
Js < §—(2k+2) Z S Vn,z,u) 'f(’) a:)| u— ) 2y d

=0 a2 0

2k+
<o (320, )

< O~ (£, gy + 17y ry)-
From above estimates of Jy and Js5, we get

I18n(F(u, z)(1 — ®(u)), 2/l ;1) < C~® (I fll 110,000 + I1FEE V£ (22))-

Consequently we obtain
8]l (1) < O~ D (£l Lyo,00) + 1F D Ly (1))-

Finally combining the estimates of J;, Jo and J3, we obtain the required
result.

THEOREM 3.3. Let f € Lp[0,00), p > 1, then for n sufficiently large
Sn (£, ks ) = FllL, (1) < Clwarsa(f,n 2,0, 1) + n~* D[ £l 10,009,
where C is a constant independent of f and n.

Proof. Let f; or+2(u) be the Steklov mean of (2k+2)-th order corresponding
to f(u) where n > 0 is sufficiently small and f(u) is defined as zero out-
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side [0, 00). Then we have

WSn(f ks ) = FllLy(ra) < 1Sn(f ~ Fozke2, ks Wiy + 1Sa(f = froks2, b, )
— fnkrellny i) + 1 fn2k2 — Fllz, )
= Aj + Az + Ag (Say).
To estimate Aj, let ®(u) be the characteristic function of I3; then
Sul(F = Fras2) (), ©) = Sn(@)(f — fy 202)(w), 2) = Ag + A,

The following is true for p = 1, and it is also same for p>1 follows from
Holder’s inequality

b2 b2 b3
flagPdu < § [ V(n,2,9) [(f = froere)@)Pdude.
az az ag
On applying Fubini’s theorem, we get
b bz b3
[ 1AdPdu < § § V(n,2,u)|(f - foarse)(w)[Pdz du
az az a3

<|f- fn,2k+2||lz,p(13) .
Hence
||A4||Lp(12) <|f- fn,2k+2“?i,p(13)-
Using Holder’s inequality, (2.4) and Fubini’s theorem, we get the following
forp>1
||A5||L,,(12) < Cn~(+1) If- fn,2k+2||Lp[0,oo) :

By using Jenson’s inequality and Fubini’s theorem, we obtain

Fn.2e+2ll 110,000 < C N FllL,0,00) -
Hence
145l 1, (0,00) < Cn~(+1) 11z, 0,00 -
Now using third property of Steklov means, we get
A1 < Clwakya(f,m, py 1) + 1 V(£ 0,.00)-
And we know that,

(2k+1) | p2k+2)
Fo2k+2 BV(I) Fo2kt2

Ly(I3)
Hence by virtue of Theorem 3.1 (p>1), Theorem 3.2 (p=1) and Lemma 2.3,
we have

_ k
Ag < O~ ®D(IFEADN L 1y + I fnansallzyf0.00)

< Cr *Pwya(£,m, p, In) + 17 F V[ £l 10.00))s
in view of the properties of Steklov means.
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To estimate Az, we use the Steklov means property third, and obtain
that

A3 < Cwakta(fim, p, ).
Hence the required result follows. This completes the proof of Theorem 3.3.
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