

Prerna Maheshwari (Sharma)

DIRECT THEOREMS FOR MODIFIED BASKAKOV OPERATORS IN L_p -SPACES

Abstract. In the year 1993, Gupta and Srivastava [3] introduced the integral modification of the well known Baskakov operators by taking the weight functions of Szasz basis function, so called Baskakov-Szasz operators. In this paper, we obtain some direct theorems for the linear combination of these Baskakov Szasz type operators. To prove our one of the direct theorems, we use the technique of a mathematical tool which is the linear approximating method and is known as the Steklov means.

1. Introduction

For $f \in L_p[0, \infty)$, $p \geq 1$, Gupta and Srivastava [3] introduced an interesting sequence of linear positive operators to modify the well-known Baskakov operators by considering the weights of Szasz basis functions. The modified Baskakov-Szasz operators, introduced in [3] are defined by

$$(1.1) \quad S_n(f, x) = n \sum_{v=0}^{\infty} p_{n,v}(x) \int_0^{\infty} q_{n,v}(u) f(u) du, \quad x \in [0, \infty),$$

where

$$(1.2) \quad p_{n,v}(x) = \binom{n+v-1}{v} x^v (1+x)^{-n-v} \quad \text{and} \quad q_{n,v}(u) = \frac{e^{-nu} (nu)^v}{v!}.$$

In [3], the authors have estimated asymptotic formula and an error estimates in simultaneous approximation. It is observed from [3] that the rate of convergence for these operators $S_n(f, x)$ is of $O(n^{-1})$. To improve the order of approximation, we consider the linear combination of these operators $S_n(f, k, x)$ of the operators $S_{d_j n}(f, x)$, where $d_j n$, $j = 0, 1, 2, \dots, k$ are

Key words and phrases: Steklov mean, linear combination, linear positive operators, total variation.

1991 *Mathematics Subject Classification:* 41A25, 41A30.

arbitrary distinct positive integers, the linear combinations are defined as

$$(1.3) \quad S_n(f, k, x) = \sum_{j=0}^k C(j, k) S_{d_j n}(f, x),$$

where

$$(1.4) \quad C(j, k) = \prod_{\substack{i=0 \\ i \neq j}}^k \frac{d_j}{d_j - d_i}, \quad k \neq 0 \text{ and } C(0, 0) = 1.$$

We may rewrite the operators (1.1) as

$$(1.5) \quad S_n(f, x) = \int_0^\infty V(n, x, u) f(u) du,$$

where $V(n, x, u) = n \sum_{v=0}^\infty p_{n,v}(x) q_{n,v}(u)$.

Alternately the k -th linear combinations $S_n(f, k, x)$ of the operators $S_{d_j n}(f, x)$ are defined by

$$(1.6) \quad S_n(f, k, x) = \begin{vmatrix} 1 & d_0^{-1} \dots d_0^{-k} & & & \\ 1 & d_1^{-1} \dots d_1^{-k} & & & \\ \dots & \dots & & & \\ 1 & d_k^{-1} \dots d_k^{-k} & & & \end{vmatrix}^{-1} \begin{vmatrix} S_{d_0 n}(f, x) & d_0^{-1} \dots d_0^{-k} \\ S_{d_1 n}(f, x) & d_1^{-1} \dots d_1^{-k} \\ \dots & \dots \\ S_{d_k n}(f, x) & d_k^{-1} \dots d_k^{-k} \end{vmatrix},$$

where $d_0, d_1, d_2, \dots, d_k$ are $(k+1)$ arbitrary but fixed distinct natural numbers. Combinations of this type were considered by May [4], to improve the order of approximation of exponential type operators.

Throughout this paper let $0 < a_1 < a_2 < a_3 < b_3 < b_2 < b_1 < \infty$, $0 < a < b < \infty$ and $I_i = [a_i, b_i]$, $i = 1, 2, 3$. We denote by C , the positive constant not necessarily the same at each occurrence.

For $f \in L_p[0, \infty)$, $1 \leq p < \infty$, the Steklov mean $f_{\eta, m}$ of m -th order corresponding to f is defined by

(1.7)

$$f_{\eta, m}(t) = \eta^{-m} \int_{-\eta/2}^{\eta/2} \int_{-\eta/2}^{\eta/2} \dots \int_{-\eta/2}^{\eta/2} [f(t) + (-1)^{m-1} \Delta_u^m f(t) dt_1, dt_2, \dots, dt_m],$$

where $u = \sum_{i=1}^m t_i$ and $\Delta_h^m f(t)$ is the m -th order forward difference of the function f with step length h , which is defined as

$$\Delta_h^m f(t) = \Delta_h^{m-1} \Delta_h^1 f(t) = \Delta_h^{m-1} [f(t+h) - f(t)].$$

It follows from [2, 5] that:

- (i) $f_{\eta,m}$ has derivative up to order m , $f_{n,m}^{(m-1)} \in AC(I_1)$, and $f_{n,m}^{(m-1)}$ exists a.e. and belong to $L_p(I_1)$;
- (ii) $\left\| f_{\eta,m}^{(r)} \right\|_{L_p(I_2)} \leq C\eta^{-r}\omega_r(f, \eta, p, I_1)$, $r = 1, 2, \dots, m$;
- (iii) $\left\| f - f_{\eta,m} \right\|_{L_p(I_2)} \leq C\omega_m(f, \eta, p, I_1)$;
- (iv) $\left\| f_{\eta,m} \right\|_{L_p(I_2)} \leq C \left\| f \right\|_{L_p(I_1)}$;
- (v) $\left\| f_{\eta,m}^{(r)} \right\|_{L_p(I_2)} \leq C\eta^{-m} \left\| f \right\|_{L_p(I_1)}$, $r = 1, 2, \dots, m$;

where $\omega_r(f, \eta, p, I_1)$, $r = 1, 2, \dots, m$ is the modulus of continuity of order r on the interval I_1 . Also $AC[a, b]$ stands for the class of absolutely continuous function on $[a, b]$ and C are certain constants which are independent of f and n . Let $BV[a, b]$ denotes the set of all functions of bounded variation on $[a, b]$. The semi-norm $\|f\|_{BV[a,b]}$ is defined by the total variation of f on $[a, b]$. For $f \in L_p[a, b]$, $1 < p < \infty$, the Hardy-Littlewood majorant of f is defined as:

$$h_f(x) = \sup_{\xi \rightarrow x} \frac{1}{\xi - x} \int_x^\xi f(t) dt, \quad (a \leq \xi \leq b).$$

In the present article we establish some direct results on Lp -norm for the linear combinations of the modified Baskakov operators.

2. Auxiliary results

This section deals with certain basic lemmas, which are necessary to prove the direct theorem.

LEMMA 2.1. [3] *Let the m -th order moment be defined by*

$$(2.1) \quad T_{n,m}(x) = n \sum_{v=0}^{\infty} p_{n,v}(x) \int_0^\infty q_{n,v}(u)(u-x)^m du.$$

Then

$$T_{n,0}(x) = 1, \quad T_{n,1}(x) = \frac{1}{n}, \quad T_{n,2} = \frac{2+nx(2+x)}{n^2},$$

and there holds a recurrence relation

$$(2.2) \quad nT_{n,m+1}(x) = x(1+x)T_{n,m}^{(1)}(x) + (m+1)T_{n,m}(x) + mx(2+x)T_{n,m-1}(x),$$

$m - 1 \in N$.

Consequently for $x \geq 0$,

$$(2.3) \quad T_{n,m}(x) = O(n^{-[(m+1)/2]}),$$

where $[\alpha]$ denotes the integral part of α .

Also by Holder's inequality we conclude from (2.3), for every fixed $x \in [0, \infty)$

$$(2.4) \quad S_n(|u-x|^r, x) = O(n^{-r/2}), \quad \forall r > 0.$$

LEMMA 2.2. For $p \in N$ and n sufficiently large there holds

$$S_n[(t-x)^p, k, x] = n^{-(k+1)} \{Q(p, k, x) + o(1)\}, \quad t \in [0, \infty)$$

where $Q(p, k, x)$ are certain polynomials in x of degree $p/2$.

Proof. From Lemma 2.1, for sufficiently large n we can write,

$$S_n[(t-x)^p, x] = \frac{P_0(x)}{n^{[(p+1)/2]}} + \frac{P_1(x)}{n^{[(p+1)/2]+1}} + \dots + \frac{P_{[p/2]}(x)}{n^p},$$

where P_i 's are certain polynomials in x of degree at most p . Thus

$$S_n[(t-x)^p, k, x] = \left| \begin{array}{c} 1 \ d_0^{-1} \dots d_0^{-k} \\ 1 \ d_1^{-1} \dots d_1^{-k} \\ \dots \dots \dots \\ 1 \ d_k^{-1} \dots d_k^{-k} \end{array} \right|^{-1} \left| \begin{array}{c} \frac{P_0(x)}{(d_0 n)^{[(p+1)/2]}} + \frac{P_1(x)}{(d_0 n)^{[(p+1)/2]+1}} + \dots + \frac{P_{[p/2]}(x)}{(d_0 n)^p} + \dots d_0^{-1} \dots d_0^{-k} \\ \frac{P_0(x)}{(d_1 n)^{[(p+1)/2]}} + \frac{P_1(x)}{(d_1 n)^{[(p+1)/2]+1}} + \dots + \frac{P_{[p/2]}(x)}{(d_1 n)^p} + \dots d_1^{-1} \dots d_1^{-k} \\ \dots \dots \dots \\ \frac{P_0(x)}{(d_k n)^{[(p+1)/2]}} + \frac{P_1(x)}{(d_k n)^{[(p+1)/2]+1}} + \dots + \frac{P_{[p/2]}(x)}{(d_k n)^p} + \dots d_k^{-1} \dots d_k^{-k} \end{array} \right| \\ = n^{-(k+1)} \{Q(p, k, x) + o(1)\}.$$

LEMMA 2.3. [1] Let $1 \leq p \leq \infty$, $f \in L_p[a, b]$, $f^{(k)} \in AC[a, b]$ and $f^{(k+1)} \in L_p[a, b]$, then

$$\|f^{(j)}\|_{L_p[a, b]} \leq C(\|f^{(k+1)}\|_{L_p[a, b]} + \|f\|_{L_p[a, b]})$$

$j = 1, 2, \dots, k$, where C are certain constants depending only on j, k, p, a, b .

3. Main results

THEOREM 3.1. Let $f \in L_p[0, \infty)$, $p > 1$. If f has $(2k+2)$ derivatives on I_1 , with $f^{(2k+1)} \in AC(I_1)$ then for n sufficiently large

$$\|S_n(f, k, \cdot) - f\|_{L_p(I_2)} \leq C n^{-(k+1)} (\|f^{(k+1)}\|_{L_p(I_2)} + \|f\|_{L_p[0, \infty)}),$$

where the constant C is independent of n and f .

Proof. By the hypothesis, for $x \in I_2$ and $u \in I_1$

$$(3.1) \quad f(u) = \sum_{j=0}^{2k+1} \frac{(u-x)^j}{j!} f^{(j)}(x) + \frac{1}{(2k+1)!} \int_x^u (u-w)^{2k+1} f^{(2k+2)}(w) dw \\ + F(u, x)(1 - \Phi(u)),$$

where $\Phi(u)$ denotes the characteristic function on I_1 .

$$F(u, x) = f(u) - \sum_{j=0}^{2k+1} \frac{(u-x)^j}{j!} f^{(j)}(x),$$

for all $u \in [0, \infty)$ and $x \in I_2$. Using (3.1) in (1.3), we have

$$S_n(f, k, x) - f(x) = \sum_{j=1}^{2k+1} \frac{f^{(j)}(x)}{j!} S_n((u-x)^j, k, x) \\ + \frac{1}{(2k+1)!} S_n \Phi(u) \int_x^u (u-w)^{2k+1} f^{(2k+2)}(w) dw, k, x \\ + S_n(F(u, x)(1 - \Phi(u)), k, x) = \Delta_1 + \Delta_2 + \Delta_3.$$

In view of Lemma 2.2 and [1]

$$\|\Delta_1\|_{L_p(I_2)} \leq C n^{-(k+1)} \left(\sum_{j=1}^{2k+1} \left\| f^{(j)} \right\|_{L_p(I_2)} \right) \\ \leq C n^{-(k+1)} (\|f^{(j)}\|_{L_p(I_2)} + \|f^{(2k+2)}\|_{L_p(I_2)}).$$

To estimate I_2 , let h_f be the Hardy–Littlewood majorant [6] of $f^{(2k+2)}$ on I_1 , using Holder's inequality (2.4), we obtain

$$J_1 = \left| S_n(\Phi(u)) \int_x^u ((u-w)^{2k+1} f^{(2k+2)}(w) dw, x) \right| \\ \leq S_n(\Phi(u)) \int_t^x |(u-w)^{2k+1}| |f^{(2k+2)}(w)| |dw|, x \\ \leq S_n(\Phi(u)) |(u-x)|^{2k+1} \int_x^u |f^{(2k+2)}(w)| |dw|, x$$

$$\begin{aligned}
&\leq S_n(\Phi(u)(u-x)^{2k+2}|h_f(u)|, x) \\
&\leq \{S_n(|u-x|^{(2k+2)q}\Phi(u), x\}^{1/q} \cdot \{S_n(|h_f(u)|^p\Phi(u), x\}^{1/p} \\
&\leq Cn^{-(k+1)} \{S_n(|h_f(u)|^p\Phi(u), x\}^{1/p} \\
&\leq Cn^{-(k+1)} \left(\int_{a_1}^{b_1} V(n, x, u) |h_f(u)|^p du \right)^{1/p}.
\end{aligned}$$

Fubini's theorem and [7, chapter 2] imply that

$$\begin{aligned}
\|J_1\|_{L_p(I_2)}^p &\leq Cn^{-(k+1)p} \int_{a_2}^{b_2} \int_{a_1}^{b_1} V(n, x, u) |h_f(u)|^p du dx \\
&\leq Cn^{-(k+1)p} \int_{a_1}^{b_1} \left[\int_{a_2}^{b_2} V(n, x, u) dx \right] |h_f(u)|^p du \\
&\leq Cn^{-(k+1)p} \int_{a_1}^{b_1} |h_f(u)|^p du \leq Cn^{-(k+1)p} \|h_f(u)\|_{L_p(I_1)}^p \\
&\leq Cn^{-(k+1)p} \|f^{(2k+2)}\|_{L_p(I_1)}^p.
\end{aligned}$$

Therefore,

$$\|J_1\|_{L_p(I_2)} \leq Cn^{-(k+1)p} \|f^{(2k+2)}\|_{L_p(I_1)}.$$

Consequently,

$$\|\Delta_2\|_{L_p(I_2)} \leq Cn^{-(k+1)p} \|f^{(2k+2)}\|_{L_p(I_1)}.$$

For $u \in [0, \infty) \setminus [a_1, b_1]$, $x \in I_2$, there exists a $\delta > 0$ such that $|u-x| \geq \delta$.
Thus

$$\begin{aligned}
&|S_n(F(u, x)(1 - \Phi(u), x)| \leq \delta^{-(2k+2)} S_n(|F(u, x)| (u-x)^{2k+2}, x) \\
&\leq \delta^{-(2k+2)} S_n(|f(u)| + \sum_{j=0}^{2k+1} \frac{|u-x|^j}{j!} |f^{(j)}(x)| (u-x)^{2k+2}, x) \\
&\leq \delta^{-(2k+2)} \left[S_n(|f(u)| (u-x)^{2k+2}, x) + \sum_{j=1}^{2k+1} \frac{|f^{(j)}(x)|}{j!} S_n(|u-x|^{2k+2+j}, x) \right] \\
&= J_2 + J_3.
\end{aligned}$$

Using Holder's inequality and (2.4), we get

$$\begin{aligned}
|J_2| &\leq \delta^{-(2k+2)} S_n(|f(x)|^p, x)^{1/p} S_n(|u-x|^{(2k+2)q}, x)^{1/q} \\
&\leq Cn^{-(k+1)} S_n(|f(u)|^p, x)^{1/p}.
\end{aligned}$$

Again applying Fubini's theorem, we get

$$\begin{aligned} \int_{a_2}^{b_2} |J_2|^p dt &\leq C n^{-(k+1)p} \int_{a_2}^{b_2} \int_0^\infty V(n, x, u) |f(u)|^p du dx \\ &\leq C n^{-(k+1)} \|f\|_{L_p([0, \infty))}. \end{aligned}$$

Thus

$$\|J_2\|_{L_p(I_2)} \leq C n^{-(k+1)} \|f\|_{L_p([0, \infty))}.$$

Moreover using (2.4) and [1], we get

$$\begin{aligned} \|J_1\|_{L_p(I_2)} &\leq C n^{-(k+1)} \sum_{j=0}^{2k+1} \|f^{(j)}\|_{L_p(I_2)} \\ &\leq C n^{-(k+1)} (\|f^{(j)}\|_{L_p(I_2)} + \|f^{(2k+2)}\|_{L_p(I_2)}). \end{aligned}$$

Combining the estimates of J_2 and J_1 , we are led to

$$\|\Delta_2\|_{L_p(I_2)} \leq C n^{-(k+1)} (\|f\|_{L_p([0, \infty))} + \|f^{(2k+2)}\|_{L_p(I_2)}).$$

Hence we obtain the desired result.

THEOREM 3.2. *Let $f \in L_1[0, \infty)$. If f has $(2k+1)$ derivatives in I_1 with $f^{(2k)} \in AC(I_1)$ and $f^{(2k+1)} \in BV(I_1)$, then for all n sufficiently large we have*

$$\begin{aligned} \|S_n(f, k, \cdot) - f\|_{L_1([I_2])} \\ \leq C n^{-(k+1)} (\|f^{(2k+1)}\|_{BV(I_2)} + \|f^{(2k+1)}\|_{L_1(I_2)} + \|f\|_{L_p([0, \infty))}), \end{aligned}$$

where C is a constant independent of f and n .

Proof. By the given assumption on f , for almost all $x \in I_2$ and for all $u \in I_1$, we have

$$f(u) = \sum_{i=0}^{2k+1} \frac{(u-x)^i}{i!} f^{(i)}(x) + \frac{1}{(2k+1)!} \int_x^u ((u-w)^{2k+1} df^{(2k+1)}(w)).$$

We can write

$$\begin{aligned} f(u) &= \sum_{i=0}^{2k+1} \frac{(u-x)^i}{i!} f^{(i)}(x) \\ &\quad + \frac{1}{(2k+1)!} \int_x^u ((u-w)^{2k+1} df^{(2k+1)}(w)) \Phi(u) + F(u, x)(1 - \Phi(u)). \end{aligned}$$

Where $\Phi(u)$ denotes the characteristic function of I_1 and

$$F(u, x) = f(u) - \sum_{i=0}^{2k+1} \frac{(u-x)^i}{i!} f^{(i)}(x).$$

For almost all $x \in I_2$ and for all $u \in [0, \infty)$. Hence we obtain

$$\begin{aligned} S_n(f, k, x) - f(x) &= \sum_{i=0}^{2k+1} \frac{f^{(i)}(x)}{i!} S_n((u-x)^i, k, x) \\ &\quad + \frac{1}{(2k+1)!} S_n\left(\int_x^u (u-w)^{2k+1} df^{(2k+1)}(w) \Phi(u), k, x\right) \\ &\quad + S_n(F(u, x)(1 - \Phi(u)), k, x) = J_1 + J_2 + J_3. \end{aligned}$$

Applying Lemma 2.1 and [1] we get

$$\|J_1\|_{L_1(I_2)} \leq Cn^{-(k+1)} (\|f\|_{L_1(I_2)} + \|f^{(2k+1)}\|_{L_1(I_2)}).$$

Further, we have

$$\begin{aligned} K &= \left\| S_n\left(\int_x^u (u-w)^{2k+1} df^{(2k+1)}(w) \Phi(u), x\right) \right\|_{L_1(I_2)} \\ &\leq \int_{a_2}^{b_2} \int_{a_1}^{b_1} V(n, x, u) |u-x|^{2k+1} \left\| \int_x^u df^{(2k+1)}(w) \right\| du dx. \end{aligned}$$

For each n there exists a nonnegative integer $r = r(n)$ such that

$$rn^{-1/2} < \max(b_1 - a_2, b_2 - a_1) \leq (r+1)n^{-1/2}.$$

Then we have

$$\begin{aligned} K &\leq \sum_{l=0}^r \int_{a_2}^{b_2} \left\{ \int_{x+(l+1)n^{-1/2}}^{x+(l+1)n^{-1/2}} \Phi(u) V(n, x, u) |u-x|^{2k+1} \right. \\ &\quad \cdot \left[\int_x^{x+(l+1)n^{-1/2}} \Phi(w) \cdot \left| df^{(2k+1)}(w) \right| du \right] \\ &\quad + \int_{x-(l+1)n^{-1/2}}^{x-\ln^{-1/2}} \Phi(u) V(n, x, u) |u-x|^{2k+1} \\ &\quad \cdot \left. \left[\int_{x-(l+1)n^{-1/2}}^x \Phi(w) \cdot \left| df^{(2k+1)}(w) \right| du \right] \right\} dx. \end{aligned}$$

Let $\Phi_{x,c,d}(w)$ denotes the characteristic function of the interval

$$[x - cn^{-1/2}, x + dn^{-1/2}],$$

where c, d are nonnegative integers. Then we have:

$$\begin{aligned}
K &\leq \sum_{l=1}^r \int_{a_2}^{b_2} \left\{ \int_{x+(l)n^{-1/2}}^{x+(l+1)n^{-1/2}} \Phi(u) V(n, x, u) l^{-4} n^2 |u - x|^{2k+5} \right. \\
&\quad \cdot \left[\int_x^{x+(l+1)n^{-1/2}} \Phi(w) \Phi_{x,0,l+1}(w) \cdot |df^{(2k+1)}(w)| \right] du \\
&\quad + \int_{x-(l+1)n^{-1/2}}^{x-(l)n^{-1/2}} \Phi(u) V(n, x, u) l^{-4} n^2 |u - x|^{2k+5} \\
&\quad \cdot \left[\int_{x-(l+1)n^{-1/2}}^x \Phi(w) \Phi_{x,l+1,0}(w) \cdot |df^{(2k+1)}(w)| \right] du \Big\} dx \\
&\quad + \int_{a_2}^{b_2} \int_{-n^{-1/2}}^{a_1+n^{-1/12}} \Phi(u) V(n, x, u) |u - x|^{2k+1} \\
&\quad \cdot \left(\int_{x-n^{-1/2}}^{x+n^{-1/2}} \Phi(w) \Phi_{x,l,1}(w) \cdot |df^{(2k+1)}(w)| \right) du dx \\
&\leq \sum_{l=1}^r \left(l^{-4} n^2 \int_{a_2}^{b_2} \left\{ \int_{x+(l)n^{-1/2}}^{x+(l+1)n^{-1/2}} \Phi(u) V(n, x, u) |u - x|^{2k+5} \right. \right. \\
&\quad \cdot \left(\int_{a_1}^{b_1} \Phi_{x,0,l+1}(w) |df^{(2k+1)}(w)| du \right) \\
&\quad + \int_{x-(l+1)n^{-1/2}}^{x-(l)n^{-1/2}} \Phi(u) V(n, x, u) |u - x|^{2k+5} \\
&\quad \cdot \left(\int_{a_1}^{b_1} \Phi_{x,l+1,0}(w) |df^{(2k+1)}(w)| du \right) dx \\
&\quad + \int_{a_2}^{b_2} \int_{-n^{-1/2}}^{a_1+n^{-1/12}} \Phi(u) V(n, x, u) |u - x|^{2k+1} \\
&\quad \cdot \left. \left. \left(\int_{a_1}^{b_1} \Phi_{x,l,1}(w) |df^{(2k+1)}(w)| du \right) dx \right) \right).
\end{aligned}$$

In the next step, using Lemma 2.1 and Fubini's theorem, we obtain

$$\begin{aligned}
K &\leq Cn^{-(2k+1)/2} \left(\sum_{l=1}^r l^{-4} \left(\int_{a_2}^{b_2} \int_{a_1}^{b_1} \Phi_{x,0,l+1}(w) \left| df^{(2k+1)}(w) \right| dx \right. \right. \\
&\quad \left. \left. + \int_{a_2}^{b_2} \int_{a_1}^{b_1} \Phi_{x,l+1,0}(w) \left| df^{(2k+1)}(w) \right| dx \right. \right. \\
&\quad \left. \left. + \int_{a_2}^{b_2} \int_{a_1}^{b_1} \Phi_{x,l,1}(w) \left| df^{(2k+1)}(w) \right| dx \right) \right) \\
&= Cn^{-(2k+1)/2} \left(\sum_{l=1}^r l^{-4} \left(\int_{a_1}^{b_1} \int_{a_2}^{b_2} \Phi_{x,0,l+1}(w) dx \left| df^{(2k+1)}(w) \right| \right) \right. \\
&\quad \left. + \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \Phi_{x,0,l+1}(w) dx \right) \left| df^{(2k+1)}(w) \right| \right) \\
&\quad + \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \Phi_{x,l,1}(w) dx \right) \left| df^{(2k+1)}(w) \right| \\
&\leq Cn^{-(2k+1)/2} \left(\sum_{l=1}^r l^{-4} \left(\int_{a_2}^{b_2} \int_w^w dx \right) \left| df^{(2k+1)}(w) \right| \right. \\
&\quad \left. + \int_{a_1}^{b_1} \left(\int_w^{w+(l+1)n^{-1/2}} dx \right) \left| df^{(2k+1)}(w) \right| \right) \\
&\quad + \int_{a_1}^{b_1} \left(\left(\int_{w-n^{-1/2}}^{w+n^{-1/2}} dx \right) \left| df^{(2k+1)}(w) \right| \right) \\
&\leq Cn^{-(k+1)} \|f^{(2k+1)}\|_{BV(I_1)}.
\end{aligned}$$

Hence, $\|J_2\|_{L_1(I_2)} \leq Cn^{-(k+1)} \|f^{(2k+1)}\|_{BV(I_1)}$, where the constant on the right side depends on k .

For all $u \in [0, \infty) \setminus [a_1, b_1]$, $x \in I_2$, we choose a $\delta > 0$ such that $|u - x| \geq \delta$. Then

$$\begin{aligned}
\|S_n(F(u, x)(1 - \Phi(u)), x)\|_{L_1(I_2)} &\leq \int_{a_2}^{b_2} \int_0^\infty V(n, x, u) |f(u)|(1 - \Phi(u)) du dx \\
&\quad + \sum_{i=0}^{2k+1} \frac{1}{i!} \int_{a_2}^{b_2} \int_0^\infty V(n, x, u) \left| f^{(i)}(x) \right| |u - x|^i (1 - \Phi(u)) du dx = J_4 + J_5.
\end{aligned}$$

For sufficiently large u , there exist positive constants M_0 and C such that $\frac{(u-x)^{2k+2}}{u^{2k+2}+1} > C$, for all $u \geq M_0$, $x \in I_2$. Also by Fubini's theorem

$$J_4 = \left(\int_0^{M_0} \int_{a_2}^{b_2} + \int_{M_0}^0 \int_{a_2}^{b_2} \right) V(n, x, u) |f(u)| (1 - \Phi(u)) dx du = J_6 + J_7.$$

Now, using Lemma 2.1, we have

$$\begin{aligned} J_6 &= \delta^{-(2k+2)} \int_0^{M_0} \int_{a_2}^{b_2} V(n, x, u) |f(u)| (u - x)^{2k+2} dx du \\ &\leq Cn^{-(k+1)} \left(\int_0^{M_0} |f(u)| du \right). \end{aligned}$$

And

$$J_7 = \frac{1}{C} \int_{M_0}^{\infty} \int_{a_2}^{b_2} V(n, x, u) \frac{(u - x)^{2k+2}}{u^{2k+2} + 1} |f(u)| dx du \leq Cn^{-(k+1)} \left(\int_{M_0}^{\infty} |f(u)| du \right).$$

Combining the estimates of J_6 and J_7 , we get

$$J_4 \leq Cn^{-(k+1)} \|f\|_{L_1[0, \infty)}.$$

Further, using (2.4) and [1], we get

$$\begin{aligned} J_5 &\leq \delta^{-(2k+2)} \sum_{i=0}^{2k+1} \frac{1}{i!} \int_{a_2}^{b_2} \int_0^{\infty} V(n, x, u) |f^{(i)}(x)| (u - x)^{2k+i+2} du dx \\ &\leq Cn^{-(k+1)} \left(\sum_{i=0}^{2k+1} \|f^{(i)}\|_{L_1(I_2)} \right) \\ &\leq Cn^{-(k+1)} \left(\|f\|_{L_1(I_2)} + \|f^{(2k+1)}\|_{L_1(I_2)} \right). \end{aligned}$$

From above estimates of J_4 and J_5 , we get

$$\|S_n(F(u, x)(1 - \Phi(u)), x)\|_{L_1(I_2)} \leq Cn^{-(k+1)} (\|f\|_{L_1[0, \infty)} + \|f^{(2k+1)}\|_{L_1(I_2)}).$$

Consequently we obtain

$$\|J_3\|_{L_1(I_2)} \leq Cn^{-(k+1)} (\|f\|_{L_1[0, \infty)} + \|f^{(2k+1)}\|_{L_1(I_2)}).$$

Finally combining the estimates of J_1 , J_2 and J_3 , we obtain the required result.

THEOREM 3.3. *Let $f \in L_p[0, \infty)$, $p \geq 1$, then for n sufficiently large*

$$\|S_n(f, k, \cdot) - f\|_{L_p(I_2)} \leq C(w_{2k+2}(f, n^{-1/2}, p, I_1) + n^{-(k+1)} \|f\|_{L_p[0, \infty)}),$$

where C is a constant independent of f and n .

Proof. Let $f_{\eta, 2k+2}(u)$ be the Steklov mean of $(2k+2)$ -th order corresponding to $f(u)$ where $\eta > 0$ is sufficiently small and $f(u)$ is defined as zero out-

side $[0, \infty)$. Then we have

$$\begin{aligned} \|S_n(f, k, \cdot) - f\|_{L_p(I_2)} &\leq \|S_n(f - f_{\eta, 2k+2}, k, \cdot)\|_{L_p(I_2)} + \|S_n(f - f_{\eta, 2k+2}, k, \cdot) \\ &\quad - f_{\eta, 2k+2}\|_{L_p(I_2)} + \|f_{\eta, 2k+2} - f\|_{L_p(I_2)} \\ &= \Delta_1 + \Delta_2 + \Delta_3 \text{ (Say).} \end{aligned}$$

To estimate Δ_1 , let $\Phi(u)$ be the characteristic function of I_3 ; then

$$S_n((f - f_{\eta, 2k+2})(u), x) = S_n(\Phi(u)(f - f_{\eta, 2k+2})(u), x) = \Delta_4 + \Delta_5.$$

The following is true for $p = 1$, and it is also same for $p > 1$ follows from Holder's inequality

$$\int_{a_2}^{b_2} |\Delta_4|^p du \leq \int_{a_2}^{b_2} \int_{a_3}^{b_3} V(n, x, u) |(f - f_{\eta, 2k+2})(u)|^p du dx.$$

On applying Fubini's theorem, we get

$$\begin{aligned} \int_{a_2}^{b_2} |\Delta_4|^p du &\leq \int_{a_2}^{b_2} \int_{a_3}^{b_3} V(n, x, u) |(f - f_{\eta, 2k+2})(u)|^p dx du \\ &\leq \|f - f_{\eta, 2k+2}\|_{L_p(I_3)}^p. \end{aligned}$$

Hence

$$\|\Delta_4\|_{L_p(I_2)} \leq \|f - f_{\eta, 2k+2}\|_{L_p(I_3)}^p.$$

Using Holder's inequality, (2.4) and Fubini's theorem, we get the following for $p \geq 1$

$$\|\Delta_5\|_{L_p(I_2)} \leq C n^{-(k+1)} \|f - f_{\eta, 2k+2}\|_{L_p[0, \infty)}.$$

By using Jensen's inequality and Fubini's theorem, we obtain

$$\|f_{\eta, 2k+2}\|_{L_p[0, \infty)} \leq C \|f\|_{L_p[0, \infty)}.$$

Hence

$$\|\Delta_5\|_{L_p[0, \infty)} \leq C n^{-(k+1)} \|f\|_{L_p[0, \infty)}.$$

Now using third property of Steklov means, we get

$$\Delta_1 \leq C(w_{2k+2}(f, n, p, I_1) + n^{-(k+1)} \|f\|_{L_p[0, \infty)}).$$

And we know that,

$$\left\| f_{\eta, 2k+2}^{(2k+1)} \right\|_{BV(I_3)} = \left\| f_{\eta, 2k+2}^{(2k+2)} \right\|_{L_1(I_3)}.$$

Hence by virtue of Theorem 3.1 ($p > 1$), Theorem 3.2 ($p = 1$) and Lemma 2.3, we have

$$\begin{aligned} \Delta_2 &\leq C n^{-(k+1)} (\|f_{\eta, 2k+2}^{(2k+2)}\|_{L_p(I_3)} + \|f_{\eta, 2k+2}\|_{L_p[0, \infty)}) \\ &\leq C(\eta^{-(2k+2)} \omega_{2k+2}(f, n, p, I_1) + n^{-(k+1)} \|f\|_{L_p[0, \infty)}), \end{aligned}$$

in view of the properties of Steklov means.

To estimate Δ_3 , we use the Steklov means property third, and obtain that

$$\Delta_3 \leq C\omega_{2k+2}(f, n, p, I_1).$$

Hence the required result follows. This completes the proof of Theorem 3.3.

Acknowledgments. The author is thankful to the referee for critical review of the paper for overall improvement in the paper.

References

- [1] S. Goldberg, A. Meir, *Minimum moduli of ordinary differential operators*, Proc. London Math. Soc. 3 23 (1971), 1-15.
- [2] E. Hewitt, K. Stromberg, *Real and Abstract Analysis. A modern treatment of the theory of functions of a real variable*, Springer-Verlag, New York, 1965.
- [3] V. Gupta, G. S. Srivastava, *Simultaneous approximation by Baskakov Szasz type operators*, Bull. Math. Soc. Sci. Math. R.S. Roumanie 37 (85) nr. 3-4, 1993.
- [4] C. P. May, *Saturation and inverse theorem for the combinations of class exponential type operators*, Canad. J. Math. 28 (1976), 1224-1250.
- [5] A. F. Timan, *Theory of Approximation of Functions of a Real Variable*, International Series of Monographs in Pure and Applied Mathematics, vol. 34. A Pergamon Press book. The Macmillan, New York, 1963.
- [6] B. Wood, *Lp -approximation of linear combination of integral Bernstein type operators*, Anal. Numer. Theor. Approx. 13(1) (1984), 65-72.
- [7] A. Zygmund, *Trigonometrical Series*, Dover Publ. Inc. N.Y., 1995.

DEPARTMENT OF MATHEMATICS
 SRM-UNIVERSITY
 NCR CAMPUS MODINAGAR-201204, GHAZIABAD (U.P.)
 E-mail: mprerna_anand@yahoo.com

Received September 26, 2007; revised version March 26, 2009.

