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BOUNDED SOLUTIONS OF A GENERALIZED
GOLAB-SCHINZEL EQUATION

Abstract. Let X be a linear space over the field K of real or complex numbers. We
characterize solutions f : X — K and M : K — K of the equation

flz+M(f(2))y) = f()f(y)

in the case where the set {x € X : f(z) # 0} has an algebraically interior point. As
a consequence we give solutions of the equation such that f is bounded on this set.

1. Introduction

Let N, R and C denote the sets of positive integers, reals and complex
numbers, respectively, and let X be a linear space over a field K. The
following two classical functional equations, the exponential one

(1) fz+y) = f2)f(y)
and the Golab—Schinzel equation
(2) fz+ f(@)y) = f(=)f(y),

(for f: X — K) seem to be of a quite different nature. However, it is easily
seen that the both equations are particular cases of the following general
equation

®3) flz+M(f(z))y) = f(2)f(y)
(for f: X > Kand M : K — K); with M =1 and M = idk, respectively.
So we may say that equation (3) connects equations (1) and (2).

Equation (1) is very well known; for results and further references see e.g.
the monograph [1, pp. 25-33, 52-57]. Equation (2) has been first studied
by S. Golab and A. Schinzel in [8]. For further information on (2) we refer
to a survey paper [6].
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J. Brzdek has considered in [4] the generalized Golab~Schinzel equation

(4) flz+ f(2)*) = f(2)f (),

where k € N, X is a linear space over the field K € {R,C} and f: X — K.
He has assumed that supp f has an algebraically interior point. An analogous
result for equation (3) in the case when K = R has been proved in author’s
papers [10] and [11]. In Section 3 we consider the more complicated case
K = C. In Section 4 we characterize solutions of (3) under the assumption
that f is bounded on a set having an algebraically interior point; our main

theorem corresponds also to results found in the papers by J. Brzdek [5] and
by the author [9].

Throughout the paper we assume that
X is a linear space over K € {R,C}
(unless explicitly stated otherwise).

DEFINITION 1. A point £ € B C X, B # 0, is said to be an algebraically
interior point (a.i.p.) of B provided, for each y € X, thereisac€ R, ¢ > 0,
such that z+ay € Bfor a € K, |a| < c.

In the whole paper, for f: X — K, we shall use the notations:

A=F71({1), W=fX)\{0}, F:={zeX:f(z)#0}

2. Preliminary lemmas
First we recall some lemmas which will be useful in the sequel.

LEMMA 1. (cf. [4, Theorem 3]) A function f: X — K satisfies (2) and the
set F has an a.i.p. if and only if the following two conditions hold:

(i) if f(X) C R, then there exists an R-linear functional g : X — R such
that either
flz)=g(x)+1 for ze X

or
f(z) = max{g(z) + 1,0} for z € X;
(ii) if f(X) ¢ R, then there exists a C-linear functional g : X — C such
that f(z) = g(z) + 1 for z € X.

LEMMA 2. ([10, Lemma 2, Lemma 3]) Let f : X - K, M : K- K, f#1
and f #0. If f, M satisfy equation (3), then the following properties hold:

(i) F(M(f(x)" (2~ 1)) = f(2)f(a)~" forz,z € X, f(z) #0;
(i) (Mo £)7({0}) = f1({0});
(i) M(a)A=A forae W;
(iv) A is a subgroup of (X, +);
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(v) A\ {0} is the set of periods of f (i.e. f(x+ 2) = f(z) for everyz € X
and z € A\ {0});
(vi) W is a subgroup of (K\ {0},-);
(vil) y —x € A for every x,y € X with f(z) = f(y) #0.

From Proposition 1 and Proposition 2, all in [10], we have the following

LEMMA 3. Let f: X - K, M: K-> K, f#1and f #0. If f, M satisfy
equation (3), then:

(i) there ezists a function w : W — X such that z € (w(f(z)) + A) for

each z € F;
(ii) f and M satisfy (3), where
~ _ M(a) :
(5) M(a) = M) for each a € K;

(iii) if, moreover, M(1) =1 and M o f # 1, then 0 € f(X).

Proof. From {10, Proposition 1 and Proposition 2] we have conditions (i)
and (iii), respectively. To prove condition (ii), in the same way as in the proof
of [10, Corollary 1], we put £ = 0 in (3). Then, in view of Lemma 2 (iv), we
obtain f(M(1)y) = f(y)f(0) = f(y) for each y € X. By Lemma 2 (ii) we
have M (1) # 0. Whence, replacing y by M—z(157 we obtain f (T/I'z(i)”) = f(z) for
z € X. Consequently, for every z,z € X,

fla+ M(f(2))2) = (:v+M(f(w))M(1)) f@)f(

what ends the proof. »

LEMMA 4. (cf. [10, Lemma 4}]) Let f : X — K and M : K — K satisfy
equation (3), f #0, M(1) =1 and M(W) \ {1} # 0. Then there ezists an
xo € X such that

) = f@I),

(6) F cC(M(W)—-1)zo+ Ao,

where Ap denotes the linear subspace of X spanned by A over the field
R, i M(W)CR;

7 Ko = {
C, otherwise.

Furthermore, if Ao = A, then xo ¢ A,
(8) z € (M(f(x))—1)xzo+ A for each x € F
and the function M|s x) is injective and multiplicative.

Proof. Because of Lemma 4 in [10] only the multiplicativity of M|y (x) re-
quires a proof.
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By Lemma 2 (ii), (vi), it is easy to see that

M(f(z)f(y)) = 0= M(f(z))M(f(y))
for x,y € X with f(z)f(y) =0.
Now, take z,y € X such that f(z)f(y) # 0. Then, by (8),
z = (M(f(z)) - zo+ 2 and y=(M(f(y))—1)zo + 2

for some 21, 22 € A. According to equation (3)

f@)f(y) = flz+ M(f(2))y)
= f(M(f(z)) — Dzo + 21 + M(f(2)) (M (f(y)) — 1)ao + 22))

= F((M(f(2))M(f(y)) — D)oo + 21 + M(f(x))z2).
Since A is a linear subspace of X over Ko, 21 + M(f(x))2z2 € A. Thus, in
view of Lemma 2 (v),
F@)f(y) = fF((M(f(2))M(f(y)) — 1)zo) # 0.
Next, by (8),

(M(f(z))M(f(y)) — Dzo € (M(f(2)f(y)) — 1)zo + A
and hence

[M(f(z))M(f(y)) — M(f(2)f(y))]zo € A.

Consequently, since zop € A and A = Ag is a linear subspace of X,

M(f(2))M(f(y)) = M(f(z)f(y)),

what completes the proof. u

3. An algebraically interior point in F

Here we will prove a theorem generalizing Theorem 1 in [11] and Theo-
rem 3 in [5].

To prove the main result we need two lemmas.

LEMMA 5. Let X be a linear space over C, f : X — C, M : C - C,
M{)=1and Mo f#1. If f, M satisfy (3) and 0 is an a.i.p. of F, then
M(W) contains a point which is not a root of unity.

Proof. For the proof by contradiction suppose that
9) for every b € W there exists a k € N such that (M(b))* = 1.

As in the proof of [10, Lemma 6] we obtain that M(W)\ {—1,1} # 0. Thus
k> 3;ie M(f(y))* =1 for some y € X and k € N (the smallest possible).
Using (3) we can prove by mathematical induction that for every n € N\ {1}
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andz € X
n—1

(10) (F@)" = £(o(1+ 1 MFE)F)),
k=1

and hence, for each z € X with M(f(z)) # 1,

o (L= MG@)"
(1) (o =1 (s =)
By Lemma 2 (iv) we know that 0 € A, whence f(0) = 1. Thus, in view
of (9), (11), we obtain that for each b € W with M(b) # 1 there exists
a k € N fulfilling b* = 1. Hence card{a € W : M(a) # 1} < R.
Now we show that card{a € W : M(a) = 1} < Xg. Let £ € X be such
that M(f(z)) =1. In view of (3)

fly+M(f(y))x) = f(2)f(y) = fz + M(f(z))y) = f(z+y).

Since M(f(y))* = 1 for some k > 3 and M(f(z)) = 1, by Lemma 2 (ii),
f(z)f(y) # 0. Hence, according to Lemma 2 (vii), we obtain that

(12) z - M(f(y))z € A.
Now we prove by mathematical induction that
(13) z— M(f(y))"z € Afor eachn € {1,2,... k- 1}.

For n =1 (13) coincides with (12). Assume that
z— M(f(y))"z € Afor somen € {2,...,k—2}.
Using Lemma 2 (ii), (iii) we have

M(f(y)z — M(f()""'z € M(f(y)A= A.
Now, in view of (12) and Lemma 2 (iv),

z-M(f(y)"Mzc A+ A=A

This ends the proof of condition (13).
By (13) and Lemma 2 (iv) we obtain

ABZ:U— —k:l:—$ZM

as M(f(y))F = 1. But M(f(z)) = 1. Thus, in view of (10), 1 = f(kz) =
f(z)*. Hence, by Lemma 2 (ii), for each b € W such that M(b) = 1, there
exists a k € N fulfilling b* = 1. So we have proved that card{a € W :
M(a) = 1} < Np.

In this way we obtain that card W < Rg. Now, fix a 2 € X \ A and put
F, = {a € C: az € F}. Then the functions f, : C — C, f.(a) = f(az),
and M satisfy (3), f, # const and F, = f,;}(C\ {0}). Note that 0 € int F},
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because 0 is an a.i.p. of F. Put W, = f,(F,) and A, = f;}({1}). Then, by
Lemma 3 (i),
F.= J (w(a) +4,)
acW,

for a function w : W, — C. Since W, C W (i.e. card W, < Ny), the set
A, is of second category. This implies, in view of Theorem of S. Piccard
(see [12, Theorem 1, p. 48)), that 0 € int(cl A, — cl A,) and consequently,
by Lemma 2 (iv), intcl A, = C. Hence, A, is dense in C and, according to
Lemma 2 (v), we have C = F, + A, = F,. Consequently 0 ¢ f,(C). Now,
by Lemma 3 (iii), we obtain that M o f, = 1 (because M (1) = 1). Clearly,
for 2€ A, Mo f, =1, too. Lemma 2 (iv) f(0) =1. Hence M o f = 1. This
contradiction ends the proof. =

LEMMA 6. Let X be a linear space over C, f : X - C, M : C — C,
M@Q)=1and Mof #1. If f and M satisfy (3) and the set F has an a.i.p.,
then M| 7(x) 18 injective and multiplicative and the following conditions hold:

(i) if M(f(X)) C R, then there exists an R-linear functional g : X — R,
g # 0, such that either

(14) M(f(x))=g(x)+1 for ze X
(15) M(f(z)) = max{0,g(z) + 1} for z € X,

(1) of M(f(X)) ¢ R, then there ezists a C-linear functional g : X — C,
g # 0, such that f, M fulfill (14).

Proof. Suppose that f and M satisfy equation (3) and z¢ is an a.i.p. of F.
By Lemma 2 (i), M(f(zo)) *(F — o) C F. Thus 0 is an a.i.p. of F.

First we prove that A is a linear subspace of X over the field Ky given
by (7). Let Ag denote the linear subspace of X spanned by A over Ky. Fix
c € Kgand w € A\{0}. On account of Lemma 2 (iii), aA = A fora € M(W),
whence also for a € W), where W) is the multiplicative group generated by
M(W). According to Lemma 5, Wy is the infinite subgroup of (Ko \ {0}, )
and hence, by [4, Lemma 2 and Lemma 3], the set A, = {a € Ko : aw € A}
is dense in Kg. Since 0 is an a.i.p. of F, there is a d > 0 such that aw € F
for |a] < d. Fix a b€ A, with [b+ ¢| < d. Then (c+ b)w € F and we get

0 # f((b+ cJw) = f(bw + M(f(bw))cw) = f(bw) f(cw).
So we have proved that f(cw) # 0 for w € A\ {0} and c € Ky. Since, by
Lemma 2 (iv), f(0) = 1, the condition f(cw) # 0 holds for every w € A
and ¢ € Ko. Moreover, for each w € A, the functions f|k,, and M satisfy
equation (3) for z,y € Kow. Hence, by Lemma 3 (iii), M o f|kyw = 1 for
weE A
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To prove that Ag is a proper subspace of X, suppose that Ao = X. Then
A must contain a basis for X. Thus each = € X is given by z = ZLI 0z
for some n € N, a; € Kg and z; € A. But (M o f)(e;%) = 1 for each
i € {1,...,n}. Hence, according to (3), we obtain

= f(i aizi) = f(alzl + M(f(a121)) i aizi)
i i=2
flaaz) (E azzz) = f(alzl)f(agzg + M(f(a2z22)) i aizi)
i=3

= f(a121)f(agz2) f (Z azzz) =...= Hf(aizi) #0,
i=1

what contradicts Lemma 3 (iii). This proves that Ag # X.
Now, by Lemma 4, there exists an o € X such that

(16) F C (M(W) — 1)zo + Ao.

We show that (16) implies z¢o ¢ Ag. Otherwise, by linearity of Ap and con-
dition (16), F' C Ap and hence we would obtain that 0 is an a.i.p. of Ag.
Consequently (by linearity of Ay once again) X = Ag, which leads to a con-
tradiction. Thus z¢ & Ag.

Moreover, since 0 is an a.i.p. of F, there exists a ¢g > 0 such that
azg € F for a € C, |a| < ¢p. Thus, in view of (16), for each a € C, |a| < ¢,
there exists a w € W fulfilling condition (@ — M(w) + 1)zo € Ap. Since Ay
is a linear space and z¢ ¢ A, we obtain a — M(w) + 1 = 0. In this way we
have proved that

MW)-1>{a€Kp:|a| < cp}-

But M(W) C Wy. Hence, if M(W) C R, then Wy D (0,00); in the other
case Wy = C\ {0}. Finally, WpA = A so, in view of Lemma 2 (iv), KgA C A
and we obtain that Ay = A.

Now, according to Lemma 4, there is an z¢ ¢ A such that f is of form (8)
and M|sx) is injective and multiplicative. From the multiplicativity of
M]|¢(x) and in view of (3) we have that the function M o f : X — C satis-
fies (2) and, by Lemma 2 (ii), {z € X : (M o f)(z) # 0} = F. Thus, accord-
ing to Lemma 1, if M(f(X)) C R, then there exists an R-linear functional
g : X — R such that M(f(z)) = g(z)+1 or M(f(z)) = max{0, g(z)+ 1} for
z € X, if M(f(X)) ¢ R, then there exists a C-linear functional g : X — C
such that M(f(z)) = g(z) + 1 for z € X. Since Mo f # 1, g # 0. This
completes the proof. m

Now we can prove the announced theorem.
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THEOREM 1. Functions f : X — K, M : K — K satisfy equation (3) and
the set ' has an a.i.p. if and only if one of the following conditions holds:

W) f=1
(i) f: X — K\ {0} is a nontrivial exponential function and M is any
function such that M o f = 1;
(i) K =R and there exist a multiplicative injection H : R — R and a non-
trivial R-linear functional g : X — R such that either

f(z)=H(g(z)+1) for z € X,

(17)
M(y) = H ' (y) for y € H(R)

or
f(z) = H(max{0,9(z) + 1}) for z € X,

M(y) = H ' (y) for y € H([0,00));

(iv) K = C and one of the following two conditions holds:

(18)

(1) there exist a multiplicative injection H : C — C and a nontrivial
C-linear functional g : X — C such that

f(z)=H(g(z)+1) for z € X,

(19)
M(y) = H™(y) for y € H(C);

(2) there exist a multiplicative function H : R — C and a nontrivial
R-linear functional g : X — R such that either f and M are given
by (17) and H is injective, or f and M are given by (18) and
Hljg o0 is injective.

Proof. First assume that functions f and M satisfy the equation (3) and
the set F' has an a.i.p. The constant function f = 1 obviously satisfies (3),
so assume that f # 1. If M o f = ¢, then, by Lemma 3 (ii), f and M (given
by (5)) fulfill (3) and Mo f = 1. Hence, by equation (3), f is an exponential
function. Since f # const, f : X — K\ {0} and, putting z = 0 in (3), we
have f((c—1)y) =1 for each y € X. Thus ¢ = 1.

Now suppose that M o f is not constant. If K = R, then condition (iii)
holds by Theorem 1 in [11]. Now, let K = C. Then, by Lemma 3 (ii),
Mo f#1, M(l) = 1 and, in view of Lemma 6, M|f(x) is injective and
multiplicative and conditions (i)-(ii) of Lemma 6 holds with function M
instead of M. Consequently, from (5), M|s(x) is injective,

(20)  M(1)M(ab) = M(1)>M(ab) = M(1)2M (a)M (b) = M(a)M(b)
for a,b € f(X) and the following conditions hold:
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(a) if M}Mﬂ(%n C R, then there exists a nontrivial R-linear functional
g: X — R such that

(21) M(f(z)) = M) (g(z)+1) for z€ X
or

(22) M(f(z)) = M(1) max{0, g(z) + 1} for z € X;

(b) if %ﬁ ¢ R, then there exists a nontrivial C-linear functional
g : X — C such that f and M fulfill (21).

Then, by Lemma 2 (ii), F = {x € X : g(z) > —1}, when M o f is given
by (22), and F = {z € X : g(z) # —1} in the other cases. From (20) we
obtain that for every z,y € F

M@ ) = LD — (900 + 19t + MO,

On the other hand, in view of (3) and Lemma 2 (ii), M(f(z+M(f(z))y)) # 0
for z,y € F and hence

M(f(z + M(§(@))y)) = M(1)(g(= + M(f(z))y) +1)
= M(1)(9(2) + 9(M(f(@))y) +1) = M() (9(=) + 1+ 2T g(M(1)y))

= M(1)(g(x) +1)(g(M(1)y) + 1).
Now, from (3), we obtain g(y) = g(M(1)y) for each y € F. Thus
(23) 9((1—M(1))y) =0 for ye F.

Suppose that M(1) # 1. Since M o f # const, there exists z € X such
that g(z) # 0. Let w = (1 — M(1))"'z. Then, in view of (23) and the
homogeneity of g, w ¢ F. Hence g(w) < -1, if (21) holds, and g(w) = -1
in the other cases. Now, by R-homogeneity of g, there exists an r € R\ {0}
such that rw € F. It means that

0=g((1-M(1))rw) = g(rz) =rg(z) #0.
This contradiction proves that M(1) = 1. Consequently M|y x is injective
and multiplicative and conditions (i), (ii) of Lemma 6 hold. Hence we obtain
that if M(f(X)) = L € {R,C}, then the function H = (M|sx))~" is
multiplicative and injective on L. In the case when M(f(X)) = [0,00) the
function H : R — C given by

(Mx)) "} (2), z€[0,00)
_(le(X))_l(_z)a z€ (—'0010)

is multiplicative on R and injective on [0, 00). Hence condition (iv) holds.

H(z) = {
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It remains to prove the converse statement. If f, M are given by the
condition (i) or (ii) of this theorem, one checks that f, M satisfy (3) and
F = X has an a.i.p. So consider the case when f, M are given by (iii)
or (iv). Then,

(Mo f)(z)=(H o f)(z) =g(z)+1 for z€ X
or
(Mo f)(z) = (H ' o f)(x) = max{g(x) + 1,0} for z € X

and hence, according to Lemma 1, M o f satisfies equation (2). Since
f(X) € {H(C),H(R),H([0,00))}, Mlsx)y = H'|sx) and thus M|zx)
is multiplicative and injective. Consequently, functions f and M fulfill (3).
Hence, according to Lemma 2 (ii), F = {z € X : g(z) > —1}, when f, M are
given by (22), and F = {z € X : g(z) # —1} in the other cases. It is easy to
see that 0 is an a.i.p. of F', when g : X — K is K-linear. To complete the

proof we consider the case when K = C and g : X — R is R-linear. Take
z € X\ {0} and a = a1 + azi € C\ {0}. We have

lg(az)| = la19(z) + azg(iz)|

< Vi +a3y/g(z)? + g(iz)? = |aly/g(2)® + g(iz)?.
If g(z) = g(iz) = 0, then g(az) =0, f(ax) =1 and az € F for each a € C.

Otherwise |g(azx)| < 1 and az € F whenever a € C, |a| < m‘ In

this way we obtain that 0 is an a.i.p. of F', what ends the proof. =

In the case when K = C there exist solutions of (3) such that M(f(X)) C
R and f(X) Z R.

EXAMPLE 1. Let X be a linear space over C and g : X — R be a nontrivial
R-linear functional. Let f : X — C be given by

(9(a) + DM@, g(z) £ -1,
f(w)—{o, i

Then f(X)\ {0} = {te!® : ¢t € R\ {0}}. Now define M : f(X) — R as
follows:
M(0) =0 and M(te!™) =t for t e R\ {0}.

Note that such functions f, M fulfill (3) and 0 is an a.i.p. of F. Moreover
F(X) ¢ R, M(f(X)) =R and M(f(z)) = g(z) + 1 for each z € X.

4. Bounded solutions
In this section we characterize solutions of (3) under assumption that f
is bounded on a set having an a.z.p.
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Let argz € [—m,7) be an argument of z € C\ {0}. First we prove
a lemma on multiplicative functions.

LEMMA 7. If m : C — R is multiplicative and bounded on a set of positive
inner Lebesgue measure in C, then m is continuous on C\ {0}.

Proof. Assume that m # const. Let U be a set of positive inner Lebesgue
measure in C. Without loss of generality we may assume that 0 ¢ U and
1 € U. Consider a diffeomorphism d: C\ {z € C:argz = —mor z =0} —
(0,00) x (—m,7) given by d(te’®) = (t,a). Since Uy =U \ {z € C: argz =
—m or 2 = 0} is a set of positive inner Lebesgue measure in C and 1 € Uj,
the set d(Up) includes a subset V1 x Va of positive Lebesgue measure in R?
such that (1,0) € V; x Va.
Define a function s : (0,00) x [-m,7) — R by s(t,a) = m(te*®). Then

s(tite, a1 + ag) = s(t1,01)s(t2, a2)

for every (t1,1), (t2,22) € (0,00) X [—m,m) such that o3 + a2 € [—m, ).
The function s; : (0,00) — R given by si1(t) = s(¢,0) is multiplicative on
(0, 00) and bounded on the set V; of positive Lebesgue measure in R, hence
continuous, by [1, Corollary 7 and Corollary 8, pp. 30-31]. Now consider
8o : [-m,m) — R given by sg(a) = s(1, ). Then

32(051 + 012) = 32((11)32((12)

for every a1, as € [—7,m) such that oy + ag € [—m, 7). We prove that there
exists a unique exponential function 8 : R — R such that 83|(_r ) = s2.

First note that sa(e) = s2(2- §) = s2(%)*> > 0 for each a € (—m,m).
Moreover, we have that either s2 = 0 or sp(a) > 0 for each a € (—m, 7).
Indeed, if sg(ag) = 0 for an o € (—m, ), then

32(0) = Sz(ao - ao) = Sz(ao)SQ(—ao) =0

and, consequently, so(a) = sp(a+0) = so(a)s2(0) = 0 for each a € (—m, 7).

If s = 0, then s2 = 0. So consider the case when sa(a) > 0 for each
a € (—m,m). Then p : (—m,m) — R given by p(a) = Insz(a) is well
defined and p(ay + a2) = p(ay) + p(az) for every aj,as € (—w,w) with
a1 + ag € (—m, ). Hence, by [3, Lemma 1], p can be extended to a unique
additive function p: R — R. Thus 3 : R — R given by §3(a) = expp(a) is
the unique extension of s3|(_n r). Moreover, since —% € (—, ),

sm =5 () = ()" =5 () =t

Hence $3 is also the unique extension of s;.
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But s is bounded on the set V5 of positive Lebesgue measure in R. Thus,
by [1, Theorem 5, p. 29], §3 is continuous. Since

s(t,a) = s(t,0) - s(1, @) = s1(t) - s2(),

s is continuous on the domain and, consequently, m is continuous on C\ {0},
what ends the proof. =

Now, we are in a position to prove our main result.
THEOREM 2. Let B be a set having an a.i.p., f: X - K, M : K - K,

(24) If(B)| ={|f(2)|: z € B} C(0,a) for some a >0

and, moreover, in the case K = C,

(25) arg f(z1) < n for every z1,2z2 € B.
flz2)| 3

Functions f and M satisfy (3) if and only if one of the following conditions
holds:

(a) f=1;

(b) Mo f =1 and there ezists a nontrivial R-linear functional g : X — K
such that f(z) = exp g(x) for each z € X;

(c) K =R and there exist a multiplicative function H : R — R continuous
on R\ {0} and a nontrivial R-linear functional g : X — R such that
either (17) or (18) holds;

(d) K =C and one of the following conditions holds:

(d1) there exist a multiplicative injection H : C — C continuous on
C\ {0} and a nontrivial C—linear functional g : X — C such that
(19) holds;

(d2) there ezist a multiplicative function H : R — C continuous on
R\ {0} and a nontrivial R-linear functional g : X — R such that
either (17) or (18) holds.

Proof. Assume that f and M satisfy (3). Let zo be an a.i.p. of B and
|f(B)| C (0,a) for an @ > 0. Since B C F, this zg is also an a.i.p. of F.
Thus one of conditions (i)—(iv) of Theorem 1 holds.

Condition (a) coincides with (i). To get condition (b) we use (ii) and [12,
Theorem 1, p. 308], which says that for such an f there is an additive function
g: X — R, g#0, such that f = expg. The thing to show is R-homogeneity
of g. Since zp is an a.i.p. of B, for each z € X \ {0} there exists a ¢ > 0 such
that By = {zo+az:a €K, |a| < c} C B. Since |f(B)| C (0,a), g(y) <Ina
for every y € B,. For each z € X \ {0} define g; : K — K by g,(a) = g(azx)
for a € K. Obviously the function g, is additive and g;(a) < Ina— g(zo) for
each a € (—¢,c). Thus, according to [12, Lemma 1, p. 210], g, is continuous.
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Hence, in the case K = R, there is an m € R with g;(a) = ma and, in the
case K = C, g.(a) = mia + maa for some myi,me € C (see {12, pp. 121,
132]). Consequently, for every z € X \ {0}, g is R-homogenous and so does
g, as claimed in (b).

Next we prove that if one of conditions (iii), (iv) holds, then H is con-
tinuous on its domain except of 0. To this end define the field L as follows:
L {]R, if g is R — linear;

B C, if g is C — linear
and fix an z € X with g(z) # 0. Then, by Definition 1, we have
By={xo+ax:a€l, |a|<c}CB
for some ¢ > 0. Since functional g is L-linear,
9(Byp) = {g(xo) + ag(z) : a € L, |a| < c}.
Hence the set
I:=g(Bo)+1

is open in L. We show that H(I) = f(Bp). This equality is clear when
f(z) = H(g(x)+1). So consider the case when f(z) = H(max{0, g(z)+1}).
Then L = R and the set I is an open interval in R. Moreover I C (0, 00),
because otherwise 0 € {max{0, g(z) + 1} : € By} and, consequently,

0= H(0) € H({max{0,g(z) + 1} : z € Bo}) = f(Bo) C f(B),

what contradicts the assumption. Thus {max{0,g(z) + 1} :z € Bo} =I.
Hence the set [ is open in L. and
|H(I)| = |f(Bo)| C |f(B)| C (0,a).
Moreover, in the case K = C,
H(Zl) 2
H(z) < 3 for every 21,29 € I.

If H:L — R, then, by [1, Corollary 7 and Corollary 8, pp. 30-31] and
Lemma 7, we infer that H is continuous on L \ {0}.
If H:L — C, then

arg

H(z) = r(z)e*®,

where 7 : L — [0,00), ¢ : L — [-m,m) and ¢(z) = arg H(z). Since the
function H is multiplicative, so is r. Moreover, the boundedness of H on
the set of positive inner Lebesgue measure in IL implies the boundedness of
r on the same set. Hence, by [1, Corollary 7 and Corollary 8, pp. 30-31] and
Lemma 7, r is continuous on L \ {0}.
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It remains to prove that the function h : L'\ {0} — C given by h(z) =
%) is continuous. We know that h is a character on L\ {0} and

h

h§21§ < ? for every 21,29 € I,

because arg h(z) = arg H(z) for each z € L\ {0}. Since 0 = H(0) ¢ H(I),
we have 0 € I. Consequently I C L\{0} is a set of positive Lebesgue measure
in L and hence, by [7, Theorem 2], 1 € int(I=}-I), where I~! = {27! : z € I}.
Moreover,

h(22)
h(21)
and thus | arg h(w)| < % for each w € I“l - I. Hence

|h(w) — 1] < V3 for we I71-T

and, according to [2, Theorem 2|, h is continuous, what ends the proof of
the continuity of H on its domain without 0. »

2
< — forevery 21,20 €1

|arg h(z7122)| = |arg

REMARK 1. It is easy to see that if in Theorem 1 function f : X — C
satisfies (24) but not (25), then H : C — C need not be continuous on its
domain except of 0. To see this, take

2mia(ln |z|) .
exp ,z € C\{0};
H(z) = { \ {0}

0

where a : C — R is a discontinuous additive function.

? I:O,
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