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BOUNDED SOLUTIONS OF A GENERALIZED 
GOL4B-SCHINZEL EQUATION 

Abstract. Let X be a linear space over the field K of real or complex numbers. We 
characterize solutions / : X —> K and M : K —> K of the equation 

f(x + M(f(x))y) = f(x)f{y) 

in the case where the set {x € X : f(x) ^ 0} has an algebraically interior point. As 
a consequence we give solutions of the equation such that / is bounded on this set. 

1. Introduction 
Let N, R and C denote the sets of positive integers, reals and complex 

numbers, respectively, and let X be a linear space over a field K. The 
following two classical functional equations, the exponential one 

(1) f{x + y) = f ( x ) f ( y ) 

and the Gol^b-Schinzel equation 
(2) f(x + f(x)y) = f ( x ) f ( y ) , 

(for / : X —• K) seem to be of a quite different nature. However, it is easily-
seen that the both equations are particular cases of the following general 
equation 

(3) f(x + M(f(x))y) = f ( x ) f ( y ) 

(for f : X —> K and M : K —> K); with M = 1 and M = id®, respectively. 
So we may say that equation (3) connects equations (1) and (2). 

Equation (1) is very well known; for results and further references see e.g. 
the monograph [1, pp. 25-33, 52-57]. Equation (2) has been first studied 
by S. Gol^b and A. Schinzel in [8]. For further information on (2) we refer 
to a survey paper [6]. 
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J. Brzd§k has considered in [4] the generalized Golqb-Schinzel equation 
(4) f(x + f(x)ky) = f(x)f(y), 
where k £ N, X is a linear space over the field K G {R, C} and / : X —> K. 
He has assumed that supp / has an algebraically interior point. An analogous 
result for equation (3) in the case when K = R has been proved in author's 
papers [10] and [11]. In Section 3 we consider the more complicated case 
K = C. In Section 4 we characterize solutions of (3) under the assumption 
that / is bounded on a set having an algebraically interior point; our main 
theorem corresponds also to results found in the papers by J. Brzd§k [5] and 
by the author [9]. 

Throughout the paper we assume that 

X is a linear space over K G {R, C} 
(unless explicitly stated otherwise). 
DEFINITION 1. A point x £ B C X, B / 0, is said to be an algebraically 
interior point (a.i.p.) of B provided, for each y £ X, there is a c G M, c > 0, 
such that x + ay £ B for a £ K, |a| < c. 

In the whole paper, for / : X —> K, we shall use the notations: 
A := f~\{ 1}), := / ( X ) \ {0}, F := {x E X : f(x) ± 0}. 

2. Preliminary lemmas 
First we recall some lemmas which will be useful in the sequel. 

LEMMA 1. (cf. [4, Theorem 3]) A function / : X —> K satisfies (2) and the 
set F has an a.i.p. if and only if the following two conditions hold: 
(i) if f ( X ) C R, then there exists an R-linear functional g : X —> R such 

that either 
f(x) = g(x) + 1 for x £ X 

or 
f(x) = max{g(x) + 1,0} for x £ X; 

(ii) if f ( X ) <f. R, then there exists a C-linear functional g : X —> C such 
that f {x) = g(x) + 1 for x G X. 

LEMMA 2. ([10, Lemma 2, Lemma 3]) Let f : X K, M : K -» K, / ^ 1 
and f 0. If f , M satisfy equation (3), then the following properties hold: 

(i) f(M(f(x))-\z - x)) = / ( ^ / ( x ) - 1 for x,zeX, f(x) ± 0; 
(ii) (Mo/ ) - i ( {0} ) = /"1({0}); 

(iii) M(a)A = A for a £ W; 
(iv) A is a subgroup of (X, +); 
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(v) ^4\{0} is the set of periods of f (i.e. f(x + z) = f(x) for every x G X 
and z E A \ {0}); 

(vi) W is a subgroup of (K \ {0}, •); 
(vii) y — x € A for every x, y G X with f(x) = f(y) ^ 0. 

Prom Proposition 1 and Proposition 2, all in [10], we have the following 

LEMMA 3. Let f : X K, M : K -» K, / 1 and f ± 0. If f , M satisfy 
equation (3), then: 

(i) there exists a function w : W —• X such that x G (w(f(x)) + A) for 
each x 

(ii) / and M satisfy (3), where 

(5) M(a) = for each a € K; 
M ( 1) 

(iii) if, moreover, M (I) = 1 and M o / / l , then 0 € f{X). 

Proof. Prom [10, Proposition 1 and Proposition 2] we have conditions (i) 
and (iii), respectively. To prove condition (ii), in the same way as in the proof 
of [10, Corollary 1], we put x = 0 in (3). Then, in view of Lemma 2 (iv), we 
obtain /(M(l)y) = f{y)f{0) = f(y) for each y G X. By Lemma 2 (ii) we 
have M( 1) ^ 0. Whence, replacing y by ' w e °btain f{Mz^) = f(z) for 
z E X. Consequently, for every x,z G X, 

f(x + M(f(x))z) = f{x + M(f{x))j^) = = f(x)f(z), 

what ends the proof. • 

LEMMA 4. (cf. [10, Lemma 4]) Let f : X —> K and M : K -* K satisfy 
equation (3), / ^ 0, M{ 1) = 1 and M(W) \ {1} ± 0. Then there exists an 
xo G X such that 

(6) F c (M(W) - l)x0 + Ao, 

where AQ denotes the linear subspace of X spanned by A over the field 

, if M(W) C R ; 
(7) Ko = . 

C, otherwise. 

Furthermore, if Ao = A, then xo A, 
(8) x € (M(f(x)) - l)x0 + A for each x € F 

and the function M\j(X) ls injective and multiplicative. 

Proof. Because of Lemma 4 in [10] only the multiplicativity of M\re" 
quires a proof. 
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By Lemma 2 (ii), (vi), it is easy to see that 

M(f(x)f(y)) = 0 = M(f(x))M(f(y)) 

for x,y E X with f ( x ) f ( y ) = 0. 

Now, take x,y G X such that f{x)f(y) # 0. Then, by (8), 

x = (M(f(x)) - l)x0 + and y = (M(/(y)) - l)s0 + 

for some Z\,Z2 G A. According to equation (3) 

f ( x ) f ( y ) = f(x + M(f(x))y) 
= f((M(f(x)) - l ) s 0 + + M(f(x))((M(f(y)) - l )x0 + z2)) 

= f((M(f(x))M(f(y)) - l)x0 + + M(f(x))z2). 

Since A is a linear subspace of X over Ko, z\ + M(f(x))z2 6 A. Thus, in 
view of Lemma 2 (v), 

f ( x ) f ( y ) = f((M(f(x))M(f(y)) - l)x0) ± 0. 

Next, by (8), 

(M(/ (x) )M(/ (y) ) - l)x0 € (M(f(x)f(y)) - 1 ) ^ + A 

and hence 

[M(f(x))M(f(y)) - M(f(x)f(y))]x0 € A. 

Consequently, since XQ A and A = AQ is a linear subspace of X, 

M(f(x))M(f(y)) = M(f(x)f(y)), 

what completes the proof. • 

3. An algebraically interior point in F 
Here we will prove a theorem generalizing Theorem 1 in [11] and Theo-

rem 3 in [5]. 
To prove the main result we need two lemmas. 

LEMMA 5. Let X be a linear space over C, f : X —> C, M : C —> C, 
M( 1) = 1 and M o / / l . If f , M satisfy (3) and 0 is an a.i.p. of F, then 
M{W) contains a point which is not a root of unity. 

Proof. For the proof by contradiction suppose that 

(9) for every b E W there exists a k G N such that (M{b)) k = 1. 

As in the proof of [10, Lemma 6] we obtain that M{W) \ {— 1,1} ^ 0 . Thus 
k >3; i.e. M(f(y))k = 1 for some y € X and k E N (the smallest possible). 
Using (3) we can prove by mathematical induction that for every n G N\{1} 
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and x £ X 
n—1 

(10) (/(*))» = / ( * ( l + ^ ( M ( / ( x ) ) ) f e ) ) , 
fc=i 

and hence, for each x E X with M ( f ( x ) ) / 1, 

(11) 

By Lemma 2 (iv) we know that 0 G A, whence /(0) = 1. Thus, in view 
of (9), (11), we obtain that for each b G W with M(b) / 1 there exists 
a k G N fulfilling bk = 1. Hence card{a e W : M(a) + 1} < 

Now we show that card{a € W : M(a) = 1} < No- Let x € I be such 
that M(/(x)) = 1. In view of (3) 

/ (y + M(/(y))x) = / (*) / (y) = f ( x + M ( f ( x ) ) y ) = f ( x + y). 

Since M ( f ( y ) ) k = 1 for some k > 3 and M ( f ( x ) ) = 1, by Lemma 2 (ii), 
f ( x ) f ( y ) / 0. Hence, according to Lemma 2 (vii), we obtain that 
( 1 2 ) x - M ( f ( y ) ) x € A. 

Now we prove by mathematical induction that 

(13) x - M ( f ( y ) ) n x e A for each n G { 1 , 2 , . . . , k - 1}. 
For n = 1 (13) coincides with (12). Assume that 

as M ( f ( y ) ) k = 1. But M(/(x)) = 1. Thus, in view of (10), 1 = f { k x ) = 
f ( x ) k . Hence, by Lemma 2 (ii), for each b € W such that M(b) = 1, there 
exists a k e N fulfilling bk = 1. So we have proved that card{a € W : 
M(a) = 1} < No-

In this way we obtain that card W < No- Now, fix a z G X \ A and put 
Fz = {a G C : az G F}. Then the functions fz : C -» C, fz(a) = f ( a z ) , 
and M satisfy (3), fz ^ const and Fz = / ^ ' ( C \ {0}). Note that 0 G intF2 , 

x - M ( f ( y ) ) n x G A for some n G {2, . . . , k - 2}. 
Using Lemma 2 (ii), (iii) we have 

M ( f ( y ) ) x - M(/(y))"+ 1x G M(/(y))vl = A. 

Now, in view of (12) and Lemma 2 (iv), 

x - M ( f ( y ) ) n + 1 x G A + A = A. 

This ends the proof of condition (13). 
By (13) and Lemma 2 (iv) we obtain 

k-1 fc-1 
A 3 ] T ( x - M ( f ( y ) ) n x ) = k x ~ x J 2 M ( f ( y ) ) n = kx 

71=1 n = 0 
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because 0 is an a.i.p. of F. Put Wz = fz{Fz) and Az = 1}). Then, by 
Lemma 3 (i), 

Fz= |J (w(a) + Az) 
aewz 

for a function w : Wz —> C. Since Wz C W (i.e. cardW z < No), the set 
Az is of second category. This implies, in view of Theorem of S. Piccard 
(see [12, Theorem 1, p. 48]), that 0 G int(cl Aj — c\AZ) and consequently, 
by Lemma 2 (iv), intcIAZ = C. Hence, Az is dense in C and, according to 
Lemma 2 (v), we have C = Fz + Az = Fz. Consequently 0 £ fz(C). Now, 
by Lemma 3 (iii), we obtain that M o fz = 1 (because M( 1) = 1). Clearly, 
for z E A, M o fz = 1, too. Lemma 2 (iv) /(0) = 1. Hence M o / = 1. This 
contradiction ends the proof. • 

L E M M A 6 . Let X be a linear space over C, f : X —• C, M : C C, 
M( 1) = 1 and Mo / ^ 1. If f and M satisfy (3) and the set F has an a.i.p., 
then M\f(x) is injective and multiplicative and the following conditions hold: 
(i) if M(f(X)) C R, then there exists an W-linear functional g : X —> R, 

g 0, such that either 
(14) M(f(x)) = g(x) + 1 for x^X 

or 
(15) M(f(x)) = max{0,(?(x) + 1} for x E X; 
(ii) if M(f(X)) (]L R, then there exists a C-linear functional g : X —» C, 

g 7^0, such that f , M fulfill (14). 
Proof. Suppose that / and M satisfy equation (3) and XQ is an a.i.p. of F. 
By Lemma 2 (i), M ( / ( x 0 ) ) _ 1 ( ^ - ®o) C F. Thus 0 is an a.i.p. of F. 

First we prove that A is a linear subspace of X over the field Ko given 
by (7). Let AQ denote the linear subspace of X spanned by A over Ko- Fix 
c € K0 and w € ^4\{0}. On account of Lemma 2 (iii), aA — A for a € M(W), 
whence also for a 6 Wo, where Wo is the multiplicative group generated by 
M(W). According to Lemma 5, Wo is the infinite subgroup of (Ko \ {0}, •) 
and hence, by [4, Lemma 2 and Lemma 3], the set Aw = {a € Ko : aw £ A} 
is dense in Ko- Since 0 is an a.i.p. of F, there is a d > 0 such that aw G F 
for |a| < d. Fix a b E Aw with |6 + c\ < d. Then (c + b)w € F and we get 

0 ^ f((b + c)w) = f(bw + M(f(bw))cw) = f(bw)f{cw). 
So we have proved that f(cw) ^ 0 for w €E A \ {0} and c € Ko. Since, by 
Lemma 2 (iv), /(0) = 1, the condition f(cw) ^ 0 holds for every w 6 A 
and c G Ko- Moreover, for each w € A, the functions /|k0w and M satisfy 
equation (3) for x, y G Kow. Hence, by Lemma 3 (iii), M o /|koU, = 1 for 
w E A. 
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To prove that AQ is a proper subspace of X, suppose that AQ = X. Then 
A must contain a basis for X. Thus each x G X is given by x = aizi 
for some n G N, ON G Ko and Z{ G A. But (M o F)(AIZI) = 1 for each 
i G {1, . . . , n}. Hence, according to (3), we obtain 

n n 

f ( x ) = f ( ^ 2 a i z i ) = f(<xizi + M(f(a1z1))]TaiZi') 
i=1 i=2 

n n 

= / ( a i * i ) / ( £ «i^i) = f ( a i Z i ) f ( a 2 z 2 + M{f{a2Z2))'Y^OLiz^j 
i=2 1=3 

n n 
= f(aizi)f(a2z2)f(^2aiZi^ = ... = JJ/("»^i) ^ 0, 

¿=3 ¿=1 
what contradicts Lemma 3 (iii). This proves that AQ ̂  X. 

Now, by Lemma 4, there exists an XQ G X such that 

(16) F C (M{W) - l ) x 0 + A0. 

We show that (16) implies XQ 0 AQ. Otherwise, by linearity of AQ and con-
dition (16), F C Ao and hence we would obtain that 0 is an a.i.p. of AQ. 
Consequently (by linearity of AQ once again) X = AO, which leads to a con-
tradiction. Thus XQ ̂  AQ. 

Moreover, since 0 is an a.i.p. of F, there exists a Co > 0 such that 
axo € F for a G C, |o| < CQ. Thus, in view of (16), for each a G C, |a| < CQ, 
there exists a W EW fulfilling condition (o — M(W) + l)xo G AQ. Since AQ 
is a linear space and XQ AQ, we obtain a — M(w) + 1 = 0. In this way we 
have proved that 

M(W) - 1 D {a G K0 : |a| < Co}. 
But M{W) C W0. Hence, if M(W) C R, then W0 D (0,oo); in the other 
case Wo = C\{0}. Finally, WQA = A so, in view of Lemma 2 (iv), KoA C A 
and we obtain that AQ = A. 

Now, according to Lemma 4, there is an xo £ A such that / is of form (8) 
and M|y(x) is injective and multiplicative. From the multiplicativity of 
M\f(x) and in view of (3) we have that the function M o / : I - » C satis-
fies (2) and, by Lemma 2 (ii), {x G X : (M o f)(x) ± 0} = F. Thus, accord-
ing to Lemma 1, if M(f(X)) C R, then there exists an R-linear functional 
g : X -» R such that M(f(x)) = g(x) + 1 or M(f(x)) = max{0, g{x) +1} for 
x G X, if M(f(X)) <f_ R, then there exists a C-linear functional g : X —> C 
such that M(f(x)) = g{x) + 1 for x G X. Since M o J / l j / O . This 
completes the proof. • 

Now we can prove the announced theorem. 
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THEOREM 1. Functions / : X —> K, M :K—> K satisfy equation (3) and 
the set F has an a.i.p. if and only if one of the following conditions holds: 

(i) / = i ; 
(ii) / : X —• K \ {0} is a nontrivial exponential function and M is any 

function such that M o / = 1; 
(iii) K = R and there exist a multiplicative injection H : R —* R and a non-

trivial R-linear functional g : X —• R such that either 

fix) = H(g(x) + 1) for x t X , 
(17) 

M(y) = H~\y) for y € H{R) 
or 

fix) = H(max{0,g(x) + 1}) for x G X, 
(18) 

M(y) = H-1(y) for y € H([0, oo)); 

(iv) K = C and one of the following two conditions holds: 

(1) there exist a multiplicative injection H : C —• C and a nontrivial 
C -linear functional g : X —* C such that 

f{x) = H(gix) + 1) for x G X, 
(19) 

M{y) — H~liy) for y £ HiC); 

(2) there exist a multiplicative function H : R —> C and a nontrivial 
R-linear functional g : X —> R such that either f and M are given 
by (17) and H is injective, or f and M are given by (18) and 
H |[0,oo) ls injective. 

Proof. First assume that functions / and M satisfy the equation (3) and 
the set F has an a.i.p. The constant function / = 1 obviously satisfies (3), 
so assume that / ^ 1. If M o / = c, then, by Lemma 3 (ii), / and M (given 
by (5)) fulfill (3) and Mo f = 1. Hence, by equation (3), / is an exponential 
function. Since / ^ const, / : X —* K \ {0} and, putting x = 0 in (3), we 
have / ( ( c — l)y) = 1 for each y & X. Thus c = 1. 

Now suppose that M o / is not constant. If K = R, then condition (iii) 
holds by Theorem 1 in [11]. Now, let K = C. Then, by Lemma 3 (ii), 
M o f ^ 1, M( 1) = 1 and, in view of Lemma 6, M\f(x) is injective and 
multiplicative and conditions (i)-(ii) of Lemma 6 holds with function M 
instead of M. Consequently, from (5), M\j(X) is injective, 

(20) Af(l)Af(a6) = M(l ) 2 M(a6) = M(l ) 2 M(a)M(6) = M(a)M(6) 

for a, b £ f i X ) and the following conditions hold: 
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(a) if q then there exists a nontrivial R-linear functional 
g : X —• R such that 

(21) M ( f ( x ) ) = M(l)(g(x) + 1) fo r x € X 

or 

(22) M ( f ( x ) ) = M( 1) max{0, g(x) + 1} for x € X; 

(b) if then there exists a nontrivial C-linear functional 
g : X -» C such that / and M fulfill (21). 

Then, by Lemma 2 (ii), F = {x € X : g(x) > —1}, when M o f is given 
by (22), and F = {x € X : g(x) ± - 1 } in the other cases. Prom (20) we 
obtain that for every x,y & F 

M ( / ( x > / W ) = W W W ) _ W x ) + 1 ) ( g { y ) + 1 ) M ( 1 ) . 

On the other hand, in view of (3) and Lemma 2 (ii), M ( f ( x + M ( f ( x ) ) y ) ) ^ 0 
for x,y € F and hence 

M ( f ( x + M ( f ( x ) ) y ) ) = M(l)(g(x + M ( f ( x ) ) y ) + 1) 

= M(l)foOr) + g(M(f(x))y) + 1) = M( 1) (ff(x) + 1 + Z j f f f i - g ( M ( l ) y ) ) 

= M(l)(g(x) + l)(g(M(l)y) + l ) . 

Now, from (3), we obtain g(y) = g{M{\)y) for each y € F. Thus 

(23) g((l - M{l))y) = 0 fo r y G F. 

Suppose that M(l ) / 1. Since M o / ^ const, there exists z € X such 
that g(z) ± 0. Let w = (1 - M{\))~lz. Then, in view of (23) and the 
homogeneity of g, w F. Hence g(w) < —1, if (21) holds, and g(w) = —1 
in the other cases. Now, by M-homogeneity of g, there exists an r € R \ {0} 
such that rw G F. It means that 

0 = g((l - M{\))rw) = g(rz) = rg(z) ? 0. 

This contradiction proves that M( 1) = 1. Consequently M\^ X ) injective 
and multiplicative and conditions (i), (ii) of Lemma 6 hold. Hence we obtain 
that if M ( f ( X ) ) = L e {R,C}, then the function H = ( M \ f { X ) ) ~ l is 
multiplicative and injective on L. In the case when M ( f ( X ) ) = [0, oo) the 
function H : R —> C given by 

^ f ^ l / w ) " 1 ^ ) . ^e [0 ,oo) 
H{z) = < 

{ - ( M \ f ( x ) ) - l ( - z ) , z e (~oo,0) 

is multiplicative on R and injective on [0, oo). Hence condition (iv) holds. 
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It remains to prove the converse statement. If / , M are given by the 
condition (i) or (ii) of this theorem, one checks that / , M satisfy (3) and 
F = X has an a.i.p. So consider the case when / , M are given by (iii) 
or (iv). Then, 

( M O f ) ( x ) = (.H~ l o f ) ( x ) = g(x) + 1 for x G X 

or 
( M o f ) ( x ) = (H~l o f ) ( x ) = m a x { f l ( i ) + 1 ,0} for x G X 

and hence, according to Lemma 1, M o / satisfies equation (2). Since 
f(X) G {H(C),H(R),H([0, oo))}, M\f{x) = i T 1 ^ ) and thus M | / ( x ) 

is multiplicative and injective. Consequently, functions / and M fulfill (3). 
Hence, according to Lemma 2 (ii), F — {x G X : g(x) > —1}, when / , M are 
given by (22), and F = {x G X : g(x) ^ —1} in the other cases. It is easy to 
see that 0 is an a.i.p. of F, when g : X —> K is K-linear. To complete the 
proof we consider the case when K = C and g : X —> R is R-linear. Take 
x G X \ {0} and a = a i + a 2 i e C \ {0}. We have 

|^(ax) | = \aig(x) + a2g{ix)\ 

< yja{ + a%y/g(x)2 + g(ix)2 = | o | y / g ( x ) 2 + g(ix)2. 

If g(x) = g(ix) = 0, then g(ax) = 0, f(ax) = 1 and ax G F for each a G C. 
Otherwise \q(ax)\ < 1 and ax G F whenever a G C, lal < , ,} =====. In 

this way we obtain that 0 is an a.i.p. of F, what ends the proof. • 

In the case when K = C there exist solutions of (3) such that M(f(X)) C 
R and f ( X ) <£ R. 

EXAMPLE 1. Let X be a linear space over C and g : X —> E be a nontrivial 
R-linear functional. Let / : X —> C be given by 

f (d(x) + l ) e i l n l 5 ^ + 1 ' , g(x) —1; 
f(x) = < 

U, 9{x) = -1. 

Then f(X) \ {0} = {teilnM : t G R \ {0}}. Now define M : f{X) —>• R as 
follows: 

M ( 0 ) = 0 and M{teiln^) = t for t G R \ {0}. 

Note that such functions / , M fulfill (3) and 0 is an a.i.p. of F. Moreover 
f ( X ) £ R, M(f(X)) = R and M(f(x)) = g(x) + 1 for each x G X . 

4. Bounded solutions 
In this section we characterize solutions of (3) under assumption that / 

is bounded on a set having an a.i.p. 
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Let arg z G [—7r,7r) be an argument of 2 G C \ {0}. First we prove 
a lemma on multiplicative functions. 

L E M M A 7. If m : C —> R is multiplicative and bounded on a set of positive 
inner Lebesgue measure in C, then m is continuous on C \ {0}. 

Proof. Assume that m / const. Let U be a set of positive inner Lebesgue 
measure in C. Without loss of generality we may assume that 0 ^ U and 
1 G U. Consider a diffeomorphism d : C \ {z G C : arg z = — ir or z = 0} —> 
(0,00) x (-7r, TT) given by d(teia) = (t, a). Since U0 = U \ {z G C : arg z = 
—7r or z = 0} is a set of positive inner Lebesgue measure in C and 1 G Uq, 
the set d(Uo) includes a subset V\ x V2 of positive Lebesgue measure in R2 

such that (1,0) G Vi x V2. 
Define a function s : (0,00) x [—7r, n) —> R by s(t, a) = m(teta). Then 

s{t\t2, ax + a2) = s(ti, ai)s(t2, a2) 

for every (ti,ai),(t2,a2) G (0,00) x [—7r,7r) such that 01+0:2 G [—7r,7r). 
The function si : (0,00) —> R given by s\(t) = s(t,0) is multiplicative on 
(0,00) and bounded on the set Vi of positive Lebesgue measure in R, hence 
continuous, by [1, Corollary 7 and Corollary 8, pp. 30-31]. Now consider 
«2 : TT) - • R given by S2(<*) = s(l,o;)- Then 

s2(<*i + a2) = s2(a1)s2(a2) 

for every «1,0:2 £ [—7r, 7r) such that oi + 02 G [—7r,7r). We prove that there 
exists a unique exponential function s2 : R —;• R such that s2\^j7r) = s2. 

First note that «2(a) = s2(2 • = «2(f)2 > 0 for each a G (—7r,7r). 
Moreover, we have that either «2 = 0 or «2(0) > 0 for each a G (—7r,7r). 
Indeed, if S2(«o) = 0 for an 00 G (—ir,ir), then 

s2(0) = s2(a0 - o0) = S2(oo)52(-oo) = 0 

and, consequently, s2(a) = S2(o + 0) = S2(a:)s2(0) = 0 for each o G (—ir,ir). 
If s2 = 0, then ¿2 = 0. So consider the case when s2(a) > 0 for each 

a G (—7r,7r). Then p : (—7r, tt) —> R given by p(a) = lns2(o:) is well 
defined and p(oi + 02) = p(oi) + p(a2) for every 01,02 G (—7r,7r) with 
oi + 02 G (—7r,7r). Hence, by [3, Lemma 1], p can be extended to a unique 
additive function p : R —• R. Thus ¿2 : R —> R given by ¿2(0) = expp(a) is 
the unique extension of «21 Moreover, since — f G (—7r,7r), 

= ,2 (2 • ( - £ ) ) = ,2 {-I)" = S2 ( - | ) 2 = 

Hence ¿2 is also the unique extension of s2. 
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But S2 is bounded on the set V2 of positive Lebesgue measure in R. Thus, 
by [1, Theorem 5, p. 29], ¿2 is continuous. Since 

s(t, a) = s(t, 0) • s ( l , a ) = si(i) • s2(a), 
s is continuous on the domain and, consequently, m is continuous on C \ {0}, 
what ends the proof. • 

Now, we are in a position to prove our main result. 

THEOREM 2. Let B be a set having an a.i.p., f : X K, M : K —• K, 

(24) | / ( 5 ) | = { | / (z) | : 2 G B} C (0,o) for some a > 0 

and, moreover, in the case K = C, 

(25) a w / ( * 1) arg 2TT , 
< — for every 21,22 £ B. 

O f(z 2) 
Functions f and M satisfy (3) if and only if one of the following conditions 
holds: 

(a) / = 1; 
(b) M o f = 1 and there exists a nontrivial R-linear functional g : X —> K 

such that / ( x ) = expp(x) for each x € X; 
(c) K = R and there exist a multiplicative function H : R —> R continuous 

on R \ {0} and a nontrivial R-linear functional g : X —> R such that 
either (17) or (18) holds; 

(d) K = C and one of the following conditions holds: 
(dl) there exist a multiplicative injection H : C —» C continuous on 

C \ {0} and a nontrivial C-linear functional g : X —• C such that 
(19) holds; 

(d2) there exist a multiplicative function H : R —* C continuous on 
R \ {0} and a nontrivial R-linear functional g : X —> R such that 
either (17) or (18) holds. 

Proof. Assume that / and M satisfy (3). Let xq be an a.i.p. of B and 
|/(.B)| C (0, a) for an a > 0. Since B C F, this xq is also an a.i.p. of F. 
Thus one of conditions (i)-(iv) of Theorem 1 holds. 

Condition (a) coincides with (i). To get condition (b) we use (ii) and [12, 
Theorem 1, p. 308], which says that for such an / there is an additive function 
g : X —» R, g 0, such that / = exp <7. The thing to show is R-homogeneity 
of g. Since xo is an a.i.p. of B, for each x G X\ {0} there exists a c > 0 such 
that Bx = {x0 + ax : a G K, |a| < cj C B. Since | / (B) | C (0, a), g(y) < In a 
for every y G Bx. For each x G X \ {0} define gx : K —> K by gx{oi) = g(ax) 
for a G K. Obviously the function gx is additive and gx(a) < lna — g(xo) for 
each a G (—c, c). Thus, according to [12, Lemma 1, p. 210], gx is continuous. 
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Hence, in the case K = R, there is an m € R with gx{&) = rna and, in the 
case K = C, gx(a) = rri\a + m,20t for some mi,m2 € C (see [12, pp. 121, 
132]). Consequently, for every x € X \ {0}, gx is R-homogenous and so does 
g, as claimed in (b). 

Next we prove that if one of conditions (iii), (iv) holds, then H is con-
tinuous on its domain except of 0. To this end define the field L as follows: 

t, if g is R — linear; 
L ' 

IC, if g is C — linear 

and fix an x 6 X with g(x) ^ 0. Then, by Definition 1, we have 

Bo = {xo + ax : a € L, |a| < c} C B 

for some c > 0. Since functional g is L-linear, 

g(B0) = {iK^o) + a9(x) : a € L , | a | < c} . 

Hence the set 
/ := g(Bo) + 1 

is open in L. We show that H(I) = /(Bo). This equality is clear when 
f ( x ) = H(g(x) +1). So consider the case when f ( x ) = if (max{0, g(x) +1}). 
Then L = R and the set I is an open interval in R. Moreover I C (0, oo), 
because otherwise 0 6 {max{0,g(x) + 1} : x G BQ} and, consequently, 

0 = H{0) € H({max{0,g{x) + 1} : x e B0}) = f { B 0 ) C f { B ) , 

what contradicts the assumption. Thus {max{0, <7(3:) + 1} : x € Bo} = I. 
Hence the set I is open in L and 

\H(I)\ = \ f ( B 0 ) \ c \ f ( B ) \ c ( 0 , a ) . 

Moreover, in the case K = C, 
H(Zl) arg 

2 n r < — for every zi,z2 6 I. 
O H{Z2) 

If H : L R, then, by [1, Corollary 7 and Corollary 8, pp. 30-31] and 
Lemma 7, we infer that H is continuous on L \ {0}. 

If H : L C, then 
H(x) = r(x)e^x\ 

where r : L —» [0,00), tp : L —» [—7r,7r) and <p(:r) = argtf(x). Since the 
function H is multiplicative, so is r. Moreover, the boundedness of H on 
the set of positive inner Lebesgue measure in L implies the boundedness of 
r on the same set. Hence, by [1, Corollary 7 and Corollary 8, pp. 30-31] and 
Lemma 7, r is continuous on L \ {0}. 
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It remains to prove that the function h : L \ {0 } —> C given by h(x) = 

eMx) is continuous. We know that h is a character on L \ {0 } and 

arg 
h(z i) 

h(z2) 

27r , < — for every z1,z2 € /, 

because arg h(z) = argH(z ) for each z 6 L \ {0 } . Since 0 = H(0) £ H(I), 

we have 0 ^ 7 . Consequently I C L\ {0 } is a set of positive Lebesgue measure 
in L and hence, by [7, Theorem 2], l € int(/-1-J), where I~l = {z~l : z € I}. 

Moreover, 

I a rg h(z1 1z2)\ = arg 
h(z2) 

h(z i) 

27r * < — tor every zi, z2 G I 
O 

r - i and thus | arg h(w)\ < for each w 6 I 1 • I. Hence 

| h(w) - 1| <>/3 for w € 7 _ 1 • I 

and, according to [2, Theorem 2], Ai is continuous, what ends the proof of 
the continuity of H on its domain without 0. • 

REMARK 1. It is easy to see that if in Theorem 1 function / : X —> C 
satisfies (24) but not (25), then H : C 
domain except of 0. To see this, take 

C need not be continuous on its 

H(x) = | 
exp 

0, 

where a : C 

x = 0, 

is a discontinuous additive function. 
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