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APPLICATION OF MEASURES OF WEAK 
NONCOMPACTNESS TO A NONLOCAL DARBOUX 

PROBLEM 

Abstract. In this paper we study the existence of pseudosolutions of a nonlocal 
hyperbolic Darboux problem for the equation 

d2u Tj^(x,y) = f {{x,y) ,u(x,y)) 

with nonlocal boundary conditions u(x, 0) + h\(x,u) = gi(x), u(0, y) + h^iy, u) = g2(y), 
on the bounded region. The functions considered have values in a Banach space and are 
weakly-weakly sequentially continuous, and the relevant integrals are Pettis integrals. 

Introduction 
In this paper we study the existence of pseudosolutions of a nonlocal 

hyperbolic Darboux problem for functional-differential equations. Methods 
of functional analysis together with measures of weak noncompactness and 
Sadovskii's fixed point theorem are applied. 

We consider the problem 

' aa&fo v) = f ((x> v) > u(x> v)) > v) e A> 

(1) u(x,0) + hi(x,u) = gi(x), x G [0,ai] , 

k u(0,y) + h2(y,u)=g2(y), y G [ 0 , a 2 ] , 

where A = [0,ai] x [0,a2] C R2, a i , a 2 > 0, / : A x E E, gt G 
C71([0, ai],E), hi : C1(A, E ) E {i = 1,2) (E is a Banach space and E* its 
topological dual) are continuous functions. 

When the functions hi, gi are equal to zero, this problem can be found in 
[9], [10]. In [9] the properties of the set of solutions of problem (1) are also 
considered. 

Key words and phrases: measure of noncompactness, Darboux problem, hyperbolic 
nonlocal problem. 
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Existence and uniqueness theorems for solutions of nonlocal hyperbolic 
problems were proved by Byszewski ([4], [5]). Our results extend those of [4], 
[5], [7], [8], [10], [17], [18], 

The theory of differential equations with nonlocal conditions is an inter-
esting and important theory elaborated on in the literature ([3-7, 10-11]) as 
it can be applied in many real world problems. 

The hyperbolic Darboux problem described here can be applied in physics 
—the nonlocal condition can determine the way of testing a given phe-
nomenon or disturbance affecting the phenomenon being examined. Some 
physical phenomena which require application of nonlocal conditions are 
analysed in [4], [7], [8]. 

1. Preliminaries 
Let E be an infinite dimensional Banach space. In the present paper 

C1 (A, E) will denote the space of all continuously differentiate functions 
defined on A and taking values in E, with the norm 

||u||cl=max( sup ||«(x,y)||, sup ^ ( x , y ) , sup x,y) } . 

I (x,y)eA {x,y)eA ax (x,y)eA °V J 

For any subsets V C C1 (A, E) and P C A, we set 

V(x, y) = {'u(x, y) : u € V} , V(P) = {u(x, y):ueV, (x, y) 6 P} . 

Let C(I, E) be the space of all continuous functions defined on I = (to, io+a], 
a > 0, with values in E and with supremum norm ||-||c. Moreover, B(x,r) 
is the closed ball in E with center at x and radius r, and ¡JL(A) denotes the 
Lebesgue measure of the set A. 

DEFINITION 1. ([13]) Given a bounded subset A C E, we define the mea-
sure of weak noncompactness UJ(A) as follows: 

LU(A) = inf{e > 0 : A c C + £(0,e), C G K"}, 

where Kw is the family of all weakly compact subsets of E. 

For the properties of u>, see [2], [3], for instance. 

DEFINITION 2. ([2], [3]) Let N denote the set of all bounded subsets of E. 
An axiomatic measure of weak noncompactness is a function $ : N —• [0, oo) 
satisfying for all A,B 6 K the following conditions: 

1° $(^4) = 0 if and only if A^ is a weakly compact set; 
2° if A c B, then 9(A) < 9(B); 
3° $ ( A U { x } ) = $(4) , x € E; 
4° §(\A) = A € R-, 

5° $(AUB) = m a x { $ ( A ) , $ ( B ) } ; 
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6 ° $(A + B) + 
7° $(mnvA) = $(A). 

D E F I N I T I O N 3. A Banach space E is weakly compactly generated (WCG) 
if there exists a weakly compact subset of E with dense linear hull in E. 

D E F I N I T I O N 4 . A Banach space E is a Fubini-Pettis space (an FP-space) 
if there exists a WCG space X containing no isomorphic copy of the space I1. 

Examples of FP spaces can be found in [14]. 

We will need the following lemmas and theorems: 

L E M M A 5 . ([20]) Let V c C (I, E) be a family of strongly equicontinuous 
functions. Then the function 1 u (V (t)) is strongly continuous and 

uc(V) = supuj(V(t))=u(V(I)) 
tei 

defines a measure of weak noncompactness in C (I, E). 

L E M M A 6 . ([16]) Let V C Cw (I, E) be a family of strongly equicontinuous 
functions. Then the function t H-> $ {V (t)) is continuous and 

$(!/(/)) = sup $ ( V ( t ) ) . 
ta 

T H E O R E M 7 . ([19]) Let E be anFP space. Then for every bounded function 
f : A —• E there exists a function f\ : A —» E scalarly equivalent to f such 
that 

(i) the function s /i (s,t) is Pettis integrable for almost all t € [0 ,02], 

(ii) the function t»—> /1 (s, t) is Pettis integrable for almost all s € [0,01], 
(iii) moreover, 

$ J / (s, i) dsdt = ¡I fi(s,t)dsdt 
AxB AxB 

= \(\f1(s, t) ds)dt =\(\f1(s, t) dt)ds 
B A A B 

for any measurable subsets A C [0,ai] and B C [0,02]. 

D E F I N I T I O N 8. Let Ei,E2 be Banach spaces. We say that a function 
/ : E i —> E2 is weakly-weakly sequentially continuous if for every sequence 
{xn), xn 6 Ei, weakly convergent to x E Ei the sequence (/ (xn)) is weakly 
convergent to f(x). 

A weakly-weakly continuous function is weakly-weakly sequentially con-
tinuous but the converse is not true. Some comparison results for this type 
of continuity can be found in [1], 

Now, let us present a fixed point theorem for such functions: 
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THEOREM 9. ([15]) Let X be a bounded, closed and convex subset ofC(I, E) 
and $ an axiomatic measure of weak noncompactness on X . Let F : X —> X 
be a weakly-weakly sequentially continuous function such that 

$(F(V)) < $(V) 

for every V <Z X with > 0. Then F has a fixed point. 

2. Existence of a pseudosolution 
D E F I N I T I O N 1 0 . Suppose that the function (t,s) >—> / ((t,s) ,u(t,s)) is 
Pettis integrable for each u G C (A, E). A continuous function u : A —> E 
satisfying the equation 

u(x, y) = gi(x) - (0) + g2{y) -hi(x,u)~ h2(y, u) 
xy 

+ \\f((t,s),u(t,s))dtds, (x,y)€ A , 
0 0 

is said to be a pseudosolution of the nonlocal Darboux problem (1). 
We will need the following assumptions: 

(Fl) For each continuous function u : A —> E the function (x, y) i—> f((x, y), 
u(x,y)) is Pettis integrable. 

(F2) For each (x,y) € A the function 2 i—»• f(x,y,z) is weakly-weakly se-
quentially continuous. 

(F3) There are functions G L1 ([0, a»], R) and v € L°° (A, R) such that for 
each bounded subset A C E, 

v ( / 2/)} ' 4)) < vi (x) • v2 (y) • v (x, y) • u(A) 
for almost all (x, y) € A; here uj is the measure of weak noncompact-
ness. 

(HI) The functions hi : [0, Oj] • C(A, E) —• E are continuous and weakly 
differentiable with respect to the first variable and weakly-weakly se-
quentially continuous with respect to the second variable. Moreover, 
there are functions (j>i : —> right-continuous at zero such that 
for any z\ G [0, Oj] and u G C(A, E), 

IIhi (4,u) - hi (4,u) II < <f,i (IZ\ - 41) (1 + |M|C). 

(H2) There are constants Cj (i,j = 1, 2) with 1 - (C\ + Cl) > 0 and C\ > 0 
such that for each u G C(A, E), 

\\hi(zi,u)\\<Ci\\u\\cl+Cl Zi G [0,Oj]. 
(H3) There are constants C1, C2 with C1 + C2 < 1 such that for each 

bounded equicontinuous subset V C C(A, E) and Zi G [0, ai] 
u { h i { { z i } - V ) ) < C i - u { V ) (¿ = 1 , 2 ) . 
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(Gl) The functions gi are continuous and weakly differentiable on [0,aj] 
(¿ = 1,2). 

(G2) 5i(0) = 52(0). 

Now we are in a position to formulate our main result. 

THEOREM 11. Suppose that the bounded function f and the functions gi, hi 
satisfy the assumptions (F1)-(F3) , (H1)-(H3) and (Gl ) , (G2). Then there 
exists a pseudosolution of the problem (1). 

Proof . The existence of a solution of (1) is equivalent to the existence of a 
fixed point of the operator defined by 

(.Fu)(x,y) = gi(x) - gi(0) + g2(y) - hx(x,u) - h2(y,u) 
x V 

+ \(]f((t,s),u(t,s))dt)ds. 
0 0 

Let x* G E* and ||x*|| < 1. If u is a solution of (1) then by Theorem 7 and 
the assumptions (H2), (Gl) we have the estimate 

x y 

(\f({t,s),u{t,s))dtds}\ 

\x*u(x,y)\ < |x*3i(x)| 4- |x*5i(0)| + \x*g2{y)\ + |z*/n(x,u)| + \x*h2(y,u)\ 
x ,y 

+ 

< \\gi(x)\\ + | |5i(0)|| + \\92(y)\\ + | | fci(x,u)| | + \\h2(y,u)\\ 

+ ^ \x*f{(t,s),u(t,s))\dtds 
[0,ai]-[0,a2] 

< 2Gx + G2 + C{ ||u||c + C.21 + C\ ||«||c + Cl + aia2C, 

and so 

« U < 
2Gi + G2 + C\ + C\ + ai a2C 

l c - 1 -{c\+cl) 

where Gi and C are the supremum norms of gi and f {i = 1,2), respectively. 
Denote the right side of the above inequality by S. Let Xs be the set of all 
continuous functions u bounded by S and satisfying 

\\u(x,y) -u(xi,yi)\\ < ||</i(x) - 5i(^i)ll + llflafo) - 02(tfi)|| 
+ (\x - Xl\) (1 + S) + <j>2 (\y - ¡ft|) (1 + S) 

+ Ca\ \y — yi\ + Ca2 \x — x\\. 

The set X s is bounded, closed and convex. By the continuity of gt and the 
right-hand continuity of fa at zero, it is a family of strongly equicontinuous 
functions. 
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Now, we will show that F is weakly-weakly sequentially continuous and 
F (Xs) C Xs- Indeed, by Theorem 7 and the assumption (Gl) we obtain 

\x* (.Fu (x, y) - Fu (xi, yi))| < ||<7i(x) - si(xi)|| + ||sa(y) - ifc(i/i)|| 
+ ||/ii(ar,«) - hi(xi,u)\\ + \\h2{y,u) - h2{yi,u)\\ 

,x ,v x x y 

+ x * ( \ ( \ f ( ( t , s ) , u ( t , s ) ) d t U s - \ ( \ f { ( t , s ) , u ( t , s ) ) d t ) d s ) 

0 0 0 0 

< ||5l(rr) - 5i(a:i)|| + I M y ) ~ <?2(yi)|| + (1 + S) <j>{\x - X l \ ) 

+ (l + S)4>(\y-yi\) 

+ |z*( \\ f((t,s),u(t,s))dtds- \\ f((t,s),u(t,s))dtdsj 

M-[o,»] [o,xi].[o,j/i] 
< l l<7i(*) - 0 i ( * i ) l l + \\92(y) ~ 92(vi)\\ 

+ (l + S)<i>(\x-xl\) + (l + S)</>(\y-y1\) 

+ |a;*( \\ f((t,s),u(t,s))dtds+ j j f({t,s),u(t,s))dtds^ | 

[xi,z]-[0,y] [Qpi)-\vi,v] 

<\\gi(x)-g1(x1)\\ + \\g2(y)-g2(y1)\\ 

+ (l + S)ct>(\x-x1\) + (l + S)<t>(\y-y1\) 

+ ( J \x*f{(t,s),u(t,s))\dtds+ ( J \x*f((t,s),u(t,s))\dtds [xi,x]-{0,y] [0,xi]-[yi,y] 

< ||5l(x) - 5i(xi)|| + ||<?2(y) - 52(1/1)11 + (1 + S) <j>(|X - X,\) 
+ (1 + S)(t> (Iy - yil) + Ca2 \x - Xil + Cax \y - y i \ , 

and hence 

||Fu ( x , y ) - F u (xi,yi)|| 
< ||5l(x) - ^(xOH + ||g2(y) - g2{yi)\\ + (1 + S) <(> (\x - xi|) 

+ ( 1 + S) 0 ( | y - y i | ) + Ca2 \x - m l + C 0 1 \ y - y i \ . 

By the weak-weak continuity of hi and from the Lebesgue theorem for the 
Pettis integral, for each weakly convergent sequence (un), un € Xs, u 
u G Xs we get, for each x* G E*, 

u> 
•n 

\x* (Fun (x, y) - Fu (x, y))| 

= \x* (hi(x,un) - /ii(it))| + \x* (h2(y,un) - h2(y,u))| 

+ 5 5 \x*(f((t,s),un{t,s))-f((t,s),u(t,s)))\dtds, 

[0,x]-[0,y] 

which tends to zero a s n - ^ o o . 
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We are now in a position to show that the operator F is a contraction with 
respect to some measure of weak noncompactness. Let V C Xg, (x, y) € A. 
We partition the intervals [0,a:], [0,y] with points 0 = xo < x\ < . . . < xm = 
x, 0 = yo < y\ < ... < yn = y, in the following manner: Xi = yj = ^ for 
i = 0 ,1 , . . . , m, j = l,2,...,n. Define P{j = {(t, s) : Xi-\ < t < X i , yj-i < 
s < y j } a n d V(Pij) = {u(t, s) : u G V, (t, s) G Pij}. 

Let Av be the set where v is bounded. Then ¡JL (A \ Av) = 0 and 
supj4v(a;, y) < oo. Prom the absolute convergence of the Pettis integral it 
follows that for each e > 0 there exists 8 such that for each A C I with 
fx (A) < we have 

u ( \ \ f { { t , s ) , V { t , s ) ) d t d s ) < e. 
A 

Since Vi is measurable, by the Luzin theorem for each S > 0 there exist 
closed sets Av. such that ¿t (A \ Av) < and vl is continuous on Av.. Set 

Av D AV1 n AV2. Then [A (A \ As) < 6 and there exist (ij, Sj) G Pij PI A& 
such that 

v(ti,Si)vi {U)v2 (si) u(V (U, si)) = s u p v(t,s)vi(t)v2{s)u{V(t,s)). 
(t,s)ePijnAs 

Prom the mean value theorem for the Pettis integral for each w G V we have 

\\ f((t,s),w(t,s))dtds= $5 / ((t,s) ,w{t,s))dtds 

m n 
= i i f((t,s),w(t,s))dtds 

i=o j=o PijHAii 
m n 

C Y^ ~ Xi"> ( y i + 1 ~ V i ) w m { f ( p i j ^ A - V { P i j D A))}. 
i=0 j=0 

By the properties of the measure of weak noncompactness we have 

v(F(V)(z, y)) = u(9l(x) - pi(0) + g2(y) - h^x, V) - h2(y, V) 
x y 

+ \ ( \ f ( ( t , s ) , V ( t , s ) ) d t ) d s ) 
0 0 

+ Jj / ((t, s), V (t, s)) dtdsj + £ 
[0,x]-[0,y]nA6 
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< (C1 + C2) • u> (V) 

m n 

+ u ( ~ ( y j + 1 ~ Vj) convf ( p i j n AS • V (Pij n As)) ) + £ 

1=0 j=0 

< (C1 + C 2 ) • u (V ) 
m n 

+ X ^ + i ~ Xi) ( y i + 1 ~ Vi)u (convf ( P i j n As-V (Pij n As))) + £ 

¿=o j=o 

= {C1+ C 2 ) - u { V ) 

m n 

1=0 j=0 

= (C' + C ^ - u i V ) 

m n 

1=0 j=0 

< (C1 + C2)-u (V) 

771 71 

+ E - Z») (yj+1 - Vj) V ( t i , Si) VI ( t i ) (-Si) U ( V (ti, Sj)) + £, 

i=0 j=0 

and so 
xy 

u{F(V)(x, y)) < (C1 + C2) • u(V) + J J v(t, s)wi(t)w2(s)a;(V(i, s))dids + e. 

00 

Notice that the right side of the above inequality does not depend on the 
choice of 5. Since e can be arbitrarily small, we have 

u(F(V)(x,y)) 

xy 

< (C1 + C 2 ) • u (V) + ¡ 5 I M U VI (t) • (s) u (V (t, s)) dtds. 

00 

Define a new function 

l s 

<¿>00= sup {w(F( i ,s ) )exp( -r||u||^ 2 (5v i (p ) ( ip + 5i;2(p)dp))), 
(t,s)eA1 v o o / / J 

where 

I 1 
r > 

1 - (C1 + C 2 ) ' 
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It can be easily proved that ip is an axiomatic measure of weak noncompact-
ness (cf. [3]). Moreover, by Lemmas 6 and 5 we obtain 

u, (F(V)(x, y)) < (C1 + C2) • u (V) + J \ IMloo ^ (i) v2 (s) u (V (t, s)) 
0 0 

t s 

• exp ( - ( ! V l ^ d P + S v ^ p ) d p ) ) 
0 0 

t s 
• exp f r y l H o o f \ vi ( p ) d p + \ v2(p)dp\ ) dtds 

0 0 

< (C1 + C2) • u (V) + <p{V) 55 |ML «1 (t) v2 (s) 
0 0 

t s 
• exp (r^p^\00(^\v1(p)dp + \v2{p)dpjjdtds 
x f 

< (.C1 + C2) • u {V) + V(V) 15 d{exp ( r y t t \ v, (p) dp)) 

y s 
• \d(exp ( r ^ H u l l ^ j v2 (?) dp)) 

0 0 

= (C1 + C2) • u (V) + <p(V)± exp ( r y t i u (5 v, (p) dp + \v2 (p) dp) ). 

Thus 

a; (F(V)(t, s)) • exp ( - r ^ O \ Vl (p) dti + \ v2 (p) dsA) 
o o 

t s -I 
< (Cl + C2)-u(B)-exp(-ry/M^(\vi(p)dp^v2(p)dp^+^-<p(B) 

and 

<p(F{B))< ( c ' + C ' + ^ y i B ) . 

By the assumption (H3) we get 

C 1 + C2 + 4 < 1. 

Finally, from Theorem 9 it follows that the function F has a fixed point. 
The proof of the theorem is complete. • 
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