

Piotr Majcher, Sushil Sharma

APPLICATION OF MEASURES OF WEAK NONCOMPACTNESS TO A NONLOCAL DARBOUX PROBLEM

Abstract. In this paper we study the existence of pseudosolutions of a nonlocal hyperbolic Darboux problem for the equation

$$\frac{\partial^2 u}{\partial x \partial y}(x, y) = f((x, y), u(x, y))$$

with nonlocal boundary conditions $u(x, 0) + h_1(x, u) = g_1(x)$, $u(0, y) + h_2(y, u) = g_2(y)$, on the bounded region. The functions considered have values in a Banach space and are weakly-weakly sequentially continuous, and the relevant integrals are Pettis integrals.

Introduction

In this paper we study the existence of pseudosolutions of a nonlocal hyperbolic Darboux problem for functional-differential equations. Methods of functional analysis together with measures of weak noncompactness and Sadovskii's fixed point theorem are applied.

We consider the problem

$$(1) \quad \begin{cases} \frac{\partial^2 u}{\partial x \partial y}(x, y) = f((x, y), u(x, y)), & (x, y) \in \Delta, \\ u(x, 0) + h_1(x, u) = g_1(x), & x \in [0, a_1], \\ u(0, y) + h_2(y, u) = g_2(y), & y \in [0, a_2], \end{cases}$$

where $\Delta = [0, a_1] \times [0, a_2] \subset \mathbb{R}^2$, $a_1, a_2 > 0$, $f : \Delta \times E \rightarrow E$, $g_i \in C^1([0, a_i], E)$, $h_i : C^1(\Delta, E) \rightarrow E$ ($i = 1, 2$) (E is a Banach space and E^* its topological dual) are continuous functions.

When the functions h_i, g_i are equal to zero, this problem can be found in [9], [10]. In [9] the properties of the set of solutions of problem (1) are also considered.

Key words and phrases: measure of noncompactness, Darboux problem, hyperbolic nonlocal problem.

1991 *Mathematics Subject Classification:* 35D05, 35L20, 47H09.

Existence and uniqueness theorems for solutions of nonlocal hyperbolic problems were proved by Byszewski ([4], [5]). Our results extend those of [4], [5], [7], [8], [10], [17], [18].

The theory of differential equations with nonlocal conditions is an interesting and important theory elaborated on in the literature ([3–7, 10-11]) as it can be applied in many real world problems.

The hyperbolic Darboux problem described here can be applied in physics —the nonlocal condition can determine the way of testing a given phenomenon or disturbance affecting the phenomenon being examined. Some physical phenomena which require application of nonlocal conditions are analysed in [4], [7], [8].

1. Preliminaries

Let E be an infinite dimensional Banach space. In the present paper $C^1(\Delta, E)$ will denote the space of all continuously differentiable functions defined on Δ and taking values in E , with the norm

$$\|u\|_{C^1} = \max \left\{ \sup_{(x,y) \in \Delta} \|u(x, y)\|, \sup_{(x,y) \in \Delta} \left\| \frac{\partial u}{\partial x}(x, y) \right\|, \sup_{(x,y) \in \Delta} \left\| \frac{\partial u}{\partial y}(x, y) \right\| \right\}.$$

For any subsets $V \subset C^1(\Delta, E)$ and $P \subset \Delta$, we set

$$V(x, y) = \{u(x, y) : u \in V\}, \quad V(P) = \{u(x, y) : u \in V, (x, y) \in P\}.$$

Let $C(I, E)$ be the space of all continuous functions defined on $I = (t_0, t_0+a]$, $a > 0$, with values in E and with supremum norm $\|\cdot\|_C$. Moreover, $B(x, r)$ is the closed ball in E with center at x and radius r , and $\mu(A)$ denotes the Lebesgue measure of the set A .

DEFINITION 1. ([13]) Given a bounded subset $A \subset E$, we define the measure of weak noncompactness $\omega(A)$ as follows:

$$\omega(A) = \inf \{\varepsilon > 0 : A \subset C + B(0, \varepsilon), C \in K^\omega\},$$

where K^ω is the family of all weakly compact subsets of E .

For the properties of ω , see [2], [3], for instance.

DEFINITION 2. ([2], [3]) Let \aleph denote the set of all bounded subsets of E . An axiomatic measure of weak noncompactness is a function $\Phi : \aleph \rightarrow [0, \infty)$ satisfying for all $A, B \in \aleph$ the following conditions:

- 1° $\Phi(A) = 0$ if and only if \bar{A}^ω is a weakly compact set;
- 2° if $A \subset B$, then $\Phi(A) \leq \Phi(B)$;
- 3° $\Phi(A \cup \{x\}) = \Phi(A)$, $x \in E$;
- 4° $\Phi(\lambda A) = |\lambda| \Phi(A)$, $\lambda \in R$;
- 5° $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}$;

6° $\Phi(A + B) \leq \Phi(A) + \Phi(B)$;

7° $\Phi(\overline{\text{conv}} A) = \Phi(A)$.

DEFINITION 3. A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset of E with dense linear hull in E .

DEFINITION 4. A Banach space E is a Fubini-Pettis space (an FP -space) if there exists a WCG space X containing no isomorphic copy of the space l^1 .

Examples of FP spaces can be found in [14].

We will need the following lemmas and theorems:

LEMMA 5. ([20]) Let $V \subset C(I, E)$ be a family of strongly equicontinuous functions. Then the function $t \mapsto \omega(V(t))$ is strongly continuous and

$$\omega_C(V) = \sup_{t \in I} \omega(V(t)) = \omega(V(I))$$

defines a measure of weak noncompactness in $C(I, E)$.

LEMMA 6. ([16]) Let $V \subset C_\omega(I, E)$ be a family of strongly equicontinuous functions. Then the function $t \mapsto \Phi(V(t))$ is continuous and

$$\Phi(V(I)) = \sup_{t \in I} \Phi(V(t)).$$

THEOREM 7. ([19]) Let E be an FP space. Then for every bounded function $f : \Delta \rightarrow E$ there exists a function $f_1 : \Delta \rightarrow E$ scalarly equivalent to f such that

- (i) the function $s \mapsto f_1(s, t)$ is Pettis integrable for almost all $t \in [0, a_2]$,
- (ii) the function $t \mapsto f_1(s, t)$ is Pettis integrable for almost all $s \in [0, a_1]$,
- (iii) moreover,

$$\begin{aligned} \iint_{A \times B} f(s, t) ds dt &= \iint_{A \times B} f_1(s, t) ds dt \\ &= \int_B \left(\int_A f_1(s, t) ds \right) dt = \int_A \left(\int_B f_1(s, t) dt \right) ds \end{aligned}$$

for any measurable subsets $A \subset [0, a_1]$ and $B \subset [0, a_2]$.

DEFINITION 8. Let E_1, E_2 be Banach spaces. We say that a function $f : E_1 \rightarrow E_2$ is weakly-weakly sequentially continuous if for every sequence (x_n) , $x_n \in E_1$, weakly convergent to $x \in E_1$ the sequence $(f(x_n))$ is weakly convergent to $f(x)$.

A weakly-weakly continuous function is weakly-weakly sequentially continuous but the converse is not true. Some comparison results for this type of continuity can be found in [1].

Now, let us present a fixed point theorem for such functions:

THEOREM 9. ([15]) Let X be a bounded, closed and convex subset of $C(I, E)$ and Φ an axiomatic measure of weak noncompactness on X . Let $F : X \rightarrow X$ be a weakly-weakly sequentially continuous function such that

$$\Phi(F(V)) < \Phi(V)$$

for every $V \subset X$ with $\Phi(V) > 0$. Then F has a fixed point.

2. Existence of a pseudosolution

DEFINITION 10. Suppose that the function $(t, s) \mapsto f((t, s), u(t, s))$ is Pettis integrable for each $u \in C(\Delta, E)$. A continuous function $u : \Delta \rightarrow E$ satisfying the equation

$$\begin{aligned} u(x, y) = & g_1(x) - g_1(0) + g_2(y) - h_1(x, u) - h_2(y, u) \\ & + \int_0^x \int_0^y f((t, s), u(t, s)) dt ds, \quad (x, y) \in \Delta, \end{aligned}$$

is said to be a pseudosolution of the nonlocal Darboux problem (1).

We will need the following assumptions:

- (F1) For each continuous function $u : \Delta \rightarrow E$ the function $(x, y) \mapsto f((x, y), u(x, y))$ is Pettis integrable.
- (F2) For each $(x, y) \in \Delta$ the function $z \mapsto f(x, y, z)$ is weakly-weakly sequentially continuous.
- (F3) There are functions $v_i \in L^1([0, a_i], R)$ and $v \in L^\infty(\Delta, R)$ such that for each bounded subset $A \subset E$,

$$\omega(f(\{(x, y)\} \cdot A)) \leq v_1(x) \cdot v_2(y) \cdot v(x, y) \cdot \omega(A)$$

for almost all $(x, y) \in \Delta$; here ω is the measure of weak noncompactness.

- (H1) The functions $h_i : [0, a_i] \cdot C(\Delta, E) \rightarrow E$ are continuous and weakly differentiable with respect to the first variable and weakly-weakly sequentially continuous with respect to the second variable. Moreover, there are functions $\phi_i : R_+ \rightarrow R_+$ right-continuous at zero such that for any $z_1^i \in [0, a_i]$ and $u \in C(\Delta, E)$,

$$\|h_i(z_1^i, u) - h_i(z_2^i, u)\| \leq \phi_i(|z_1^i - z_2^i|) (1 + \|u\|_C).$$

- (H2) There are constants C_i^j ($i, j = 1, 2$) with $1 - (C_1^1 + C_1^2) > 0$ and $C_2^i > 0$ such that for each $u \in C(\Delta, E)$,

$$\|h_i(z_i, u)\| \leq C_1^i \|u\|_{C^1} + C_2^i, \quad z_i \in [0, a_i].$$

- (H3) There are constants C^1, C^2 with $C^1 + C^2 < 1$ such that for each bounded equicontinuous subset $V \subset C(\Delta, E)$ and $z_i \in [0, a_i]$

$$\omega(h_i(\{z_i\} \cdot V)) \leq C^i \cdot \omega(V) \quad (i = 1, 2).$$

(G1) The functions g_i are continuous and weakly differentiable on $[0, a_i]$ ($i = 1, 2$).
 (G2) $g_1(0) = g_2(0)$.

Now we are in a position to formulate our main result.

THEOREM 11. *Suppose that the bounded function f and the functions g_i, h_i satisfy the assumptions (F1)–(F3), (H1)–(H3) and (G1), (G2). Then there exists a pseudosolution of the problem (1).*

Proof. The existence of a solution of (1) is equivalent to the existence of a fixed point of the operator defined by

$$(Fu)(x, y) = g_1(x) - g_1(0) + g_2(y) - h_1(x, u) - h_2(y, u) \\ + \int_0^x \left(\int_0^y f((t, s), u(t, s)) dt \right) ds.$$

Let $x^* \in E^*$ and $\|x^*\| \leq 1$. If u is a solution of (1) then by Theorem 7 and the assumptions (H2), (G1) we have the estimate

$$|x^*u(x, y)| \leq |x^*g_1(x)| + |x^*g_1(0)| + |x^*g_2(y)| + |x^*h_1(x, u)| + |x^*h_2(y, u)| \\ + \left| x^* \int_0^x \left(\int_0^y f((t, s), u(t, s)) dt \right) ds \right| \\ \leq \|g_1(x)\| + \|g_1(0)\| + \|g_2(y)\| + \|h_1(x, u)\| + \|h_2(y, u)\| \\ + \iint_{[0, a_1] \times [0, a_2]} |x^*f((t, s), u(t, s))| dt ds \\ \leq 2G_1 + G_2 + C_1^1 \|u\|_C + C_2^1 + C_1^2 \|u\|_C + C_2^2 + a_1 a_2 C,$$

and so

$$\|u\|_C \leq \frac{2G_1 + G_2 + C_1^1 + C_2^2 + a_1 a_2 C}{1 - (C_1^1 + C_2^2)},$$

where G_i and C are the supremum norms of g_i and f ($i = 1, 2$), respectively. Denote the right side of the above inequality by S . Let X_S be the set of all continuous functions u bounded by S and satisfying

$$\|u(x, y) - u(x_1, y_1)\| \leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| \\ + \phi_1(|x - x_1|)(1 + S) + \phi_2(|y - y_1|)(1 + S) \\ + C a_1 |y - y_1| + C a_2 |x - x_1|.$$

The set X_S is bounded, closed and convex. By the continuity of g_i and the right-hand continuity of ϕ_i at zero, it is a family of strongly equicontinuous functions.

Now, we will show that F is weakly-weakly sequentially continuous and $F(X_S) \subset X_S$. Indeed, by Theorem 7 and the assumption (G1) we obtain

$$\begin{aligned}
|x^*(Fu(x, y) - Fu(x_1, y_1))| &\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| \\
&\quad + \|h_1(x, u) - h_1(x_1, u)\| + \|h_2(y, u) - h_2(y_1, u)\| \\
&\quad + x^* \left(\int_0^x \left(\int_0^y f((t, s), u(t, s)) dt \right) ds - \int_0^x \left(\int_0^y f((t, s), u(t, s)) dt \right) ds \right) \\
&\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| + (1 + S) \phi(|x - x_1|) \\
&\quad + (1 + S) \phi(|y - y_1|) \\
&\quad + \left| x^* \left(\iint_{[0, x] \times [0, y]} f((t, s), u(t, s)) dt ds - \iint_{[0, x_1] \times [0, y_1]} f((t, s), u(t, s)) dt ds \right) \right| \\
&\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| \\
&\quad + (1 + S) \phi(|x - x_1|) + (1 + S) \phi(|y - y_1|) \\
&\quad + \left| x^* \left(\iint_{[x_1, x] \times [0, y]} f((t, s), u(t, s)) dt ds + \iint_{[0, x_1] \times [y_1, y]} f((t, s), u(t, s)) dt ds \right) \right| \\
&\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| \\
&\quad + (1 + S) \phi(|x - x_1|) + (1 + S) \phi(|y - y_1|) \\
&\quad + \iint_{[x_1, x] \times [0, y]} |x^* f((t, s), u(t, s))| dt ds + \iint_{[0, x_1] \times [y_1, y]} |x^* f((t, s), u(t, s))| dt ds \\
&\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| + (1 + S) \phi(|x - x_1|) \\
&\quad + (1 + S) \phi(|y - y_1|) + Ca_2 |x - x_1| + Ca_1 |y - y_1|,
\end{aligned}$$

and hence

$$\begin{aligned}
&\|Fu(x, y) - Fu(x_1, y_1)\| \\
&\leq \|g_1(x) - g_1(x_1)\| + \|g_2(y) - g_2(y_1)\| + (1 + S) \phi(|x - x_1|) \\
&\quad + (1 + S) \phi(|y - y_1|) + Ca_2 |x - x_1| + Ca_1 |y - y_1|.
\end{aligned}$$

By the weak-weak continuity of h_i and from the Lebesgue theorem for the Pettis integral, for each weakly convergent sequence (u_n) , $u_n \in X_S$, $u_n \xrightarrow{\omega} u \in X_S$ we get, for each $x^* \in E^*$,

$$\begin{aligned}
&|x^*(Fu_n(x, y) - Fu(x, y))| \\
&= |x^*(h_1(x, u_n) - h_1(u))| + |x^*(h_2(y, u_n) - h_2(y, u))| \\
&\quad + \iint_{[0, x] \times [0, y]} |x^*(f((t, s), u_n(t, s)) - f((t, s), u(t, s)))| dt ds,
\end{aligned}$$

which tends to zero as $n \rightarrow \infty$.

We are now in a position to show that the operator F is a contraction with respect to some measure of weak noncompactness. Let $V \subset X_S$, $(x, y) \in \Delta$. We partition the intervals $[0, x]$, $[0, y]$ with points $0 = x_0 < x_1 < \dots < x_m = x$, $0 = y_0 < y_1 < \dots < y_n = y$, in the following manner: $x_i = \frac{i \cdot x}{m}$, $y_j = \frac{j \cdot y}{n}$ for $i = 0, 1, \dots, m$, $j = 1, 2, \dots, n$. Define $P_{ij} = \{(t, s) : x_{i-1} \leq t \leq x_i, y_{j-1} \leq s \leq y_j\}$ and $V(P_{ij}) = \{u(t, s) : u \in V, (t, s) \in P_{ij}\}$.

Let A_v be the set where v is bounded. Then $\mu(\Delta \setminus A_v) = 0$ and $\sup_A v(x, y) < \infty$. From the absolute convergence of the Pettis integral it follows that for each $\varepsilon > 0$ there exists δ such that for each $A \subset I$ with $\mu(A) < \frac{1}{2}\delta$, we have

$$\omega \left(\iint_A f((t, s), V(t, s)) dt ds \right) < \varepsilon.$$

Since v_i is measurable, by the Luzin theorem for each $\delta > 0$ there exist closed sets A_{v_i} such that $\mu(\Delta \setminus A_{v_i}) < \frac{1}{2}\delta$ and v_i is continuous on A_{v_i} . Set $A_\delta = A_v \cap A_{v_1} \cap A_{v_2}$. Then $\mu(\Delta \setminus A_\delta) < \delta$ and there exist $(t_i, s_i) \in P_{ij} \cap A_\delta$ such that

$$v(t_i, s_i) v_1(t_i) v_2(s_i) \omega(V(t_i, s_i)) = \sup_{(t, s) \in P_{ij} \cap A_\delta} v(t, s) v_1(t) v_2(s) \omega(V(t, s)).$$

From the mean value theorem for the Pettis integral for each $w \in V$ we have

$$\begin{aligned} \iint_{([0, x] \cdot [0, y]) \cap A_\delta} f((t, s), w(t, s)) dt ds &= \iint_{([0, x] \cdot [0, y]) \cap A_\delta} f((t, s), w(t, s)) dt ds \\ &= \sum_{i=0}^m \sum_{j=0}^n \iint_{P_{ij} \cap A_\delta} f((t, s), w(t, s)) dt ds \\ &\subset \sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i)(y_{j+1} - y_j) \overline{\text{conv}}\{f(P_{ij} \cap A \cdot V(P_{ij} \cap A))\}. \end{aligned}$$

By the properties of the measure of weak noncompactness we have

$$\begin{aligned} \omega(F(V)(x, y)) &= \omega(g_1(x) - g_1(0) + g_2(y) - h_1(x, V) - h_2(y, V) \\ &\quad + \int_0^x \int_0^y f((t, s), V(t, s)) dt ds) \\ &\leq \omega(h_1(x, V)) + \omega(h_2(y, V)) + \omega \left(\iint_{[0, x] \cdot [0, y] \cap A_\delta} f((t, s), V(t, s)) dt ds \right) + \varepsilon \end{aligned}$$

$$\begin{aligned}
&\leq (C^1 + C^2) \cdot \omega(V) \\
&\quad + \omega \left(\sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i) (y_{j+1} - y_j) \overline{\text{conv}} f(P_{ij} \cap A_\delta \cdot V(P_{ij} \cap A_\delta)) \right) + \varepsilon \\
&\leq (C^1 + C^2) \cdot \omega(V) \\
&\quad + \sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i) (y_{j+1} - y_j) \omega(\overline{\text{conv}} f(P_{ij} \cap A_\delta \cdot V(P_{ij} \cap A_\delta))) + \varepsilon \\
&= (C^1 + C^2) \cdot \omega(V) \\
&\quad + \sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i) (y_{j+1} - y_j) \omega(f(P_{ij} \cap A_\delta \cdot V(P_{ij} \cap A_\delta))) + \varepsilon \\
&= (C^1 + C^2) \cdot \omega(V) \\
&\quad + \sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i) (y_{j+1} - y_j) \omega(f(\{(t_i, s_j)\} \cdot V(t_i, s_j))) + \varepsilon \\
&\leq (C^1 + C^2) \cdot \omega(V) \\
&\quad + \sum_{i=0}^m \sum_{j=0}^n (x_{i+1} - x_i) (y_{j+1} - y_j) v(t_i, s_i) v_1(t_i) v_2(s_i) \omega(V(t_i, s_j)) + \varepsilon,
\end{aligned}$$

and so

$$\omega(F(V)(x, y)) \leq (C^1 + C^2) \cdot \omega(V) + \iint_{0,0}^{x, y} v(t, s) v_1(t) v_2(s) \omega(V(t, s)) dt ds + \varepsilon.$$

Notice that the right side of the above inequality does not depend on the choice of δ . Since ε can be arbitrarily small, we have

$$\begin{aligned}
&\omega(F(V)(x, y)) \\
&\leq (C^1 + C^2) \cdot \omega(V) + \iint_{0,0}^{x, y} \|v\|_\infty v_1(t) \cdot v_2(s) \omega(V(t, s)) dt ds.
\end{aligned}$$

Define a new function

$$\varphi(V) = \sup_{(t,s) \in \Delta} \left\{ \omega(V(t, s)) \exp \left(-r \|v\|_\infty^{1/2} \left(\int_0^t v_1(p) dp + \int_0^s v_2(p) dp \right) \right) \right\},$$

where

$$r > \sqrt{\frac{1}{1 - (C^1 + C^2)}}.$$

It can be easily proved that φ is an axiomatic measure of weak noncompactness (cf. [3]). Moreover, by Lemmas 6 and 5 we obtain

$$\begin{aligned}
\omega(F(V)(x, y)) &\leq (C^1 + C^2) \cdot \omega(V) + \int_0^x \int_0^y \|v\|_\infty v_1(t) v_2(s) \omega(V(t, s)) \\
&\quad \cdot \exp \left(-r \sqrt{\|v\|_\infty} \left(\int_0^t v_1(p) dp + \int_0^s v_2(p) dp \right) \right) \\
&\quad \cdot \exp \left(r \sqrt{\|v\|_\infty} \left(\int_0^t v_1(p) dp + \int_0^s v_2(p) dp \right) \right) dt ds \\
&\leq (C^1 + C^2) \cdot \omega(V) + \varphi(V) \int_0^x \int_0^y \|v\|_\infty v_1(t) v_2(s) \\
&\quad \cdot \exp \left(r \sqrt{\|v\|_\infty} \left(\int_0^t v_1(p) dp + \int_0^s v_2(p) dp \right) \right) dt ds \\
&\leq (C^1 + C^2) \cdot \omega(V) + \varphi(V) \frac{1}{r^2} \int_0^x d \left(\exp \left(r \sqrt{\|v\|_\infty} \int_0^t v_1(p) dp \right) \right) \\
&\quad \cdot \int_0^y d \left(\exp \left(r \sqrt{\|v\|_\infty} \int_0^s v_2(p) dp \right) \right) \\
&= (C^1 + C^2) \cdot \omega(V) + \varphi(V) \frac{1}{r^2} \exp \left(r \sqrt{\|v\|_\infty} \left(\int_0^x v_1(p) dp + \int_0^y v_2(p) dp \right) \right).
\end{aligned}$$

Thus

$$\begin{aligned}
&\omega(F(V)(t, s)) \cdot \exp \left(-r \sqrt{\|v\|_\infty} \left(\int_0^t v_1(p) dt_1 + \int_0^s v_2(p) ds_1 \right) \right) \\
&\leq (C^1 + C^2) \cdot \omega(B) \cdot \exp \left(-r \sqrt{\|v\|_\infty} \left(\int_0^t v_1(p) dp + \int_0^s v_2(p) dp \right) \right) + \frac{1}{r^2} \cdot \varphi(B)
\end{aligned}$$

and

$$\varphi(F(B)) \leq \left(C^1 + C^2 + \frac{1}{r^2} \right) \varphi(B).$$

By the assumption (H3) we get

$$C^1 + C^2 + \frac{1}{r^2} < 1.$$

Finally, from Theorem 9 it follows that the function F has a fixed point.

The proof of the theorem is complete. ■

References

- [1] J. M. Ball, *Weak continuity properties of mappings and semi-groups*, Proc. Roy. Soc. Edinburgh Sect. A 72(1979), 275–280.
- [2] J. Banaś, K. Goebel, *Measures of Noncompactness in Banach Spaces*, Lecture Notes in Pure and Applied Math. 60, Marcel Dekker Inc., New York, Basel, (1980).
- [3] J. Banaś, J. Rivero, *Measure of weak noncompactness*, Ann. Mat. Pura Appl. 125 (1987), 213–224.
- [4] L. Byszewski, *Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem*, Selected Problems of Mathematics, Cracow University of Technology, (1995).
- [5] L. Byszewski, *Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation $u_{xt} = F(x, t, u, u_x)$* , J. Appl. Math. Stochastic Anal. 3 (1990), 163–168.
- [6] L. Byszewski, *Application of monotone iterative method to a system of parabolic semilinear functional-differential problems with nonlocal conditions*, Nonlinear Analysis 28 (8), (1997), 1347–1357.
- [7] L. Byszewski, N. S. Papageorgiou, *An application of a noncompactness technique to an investigation of the existence of solutions to a nonlocal multivalued Darboux problem*, J. Appl. Math. Stochastic Anal. 12 (1999), 179–190.
- [8] L. Byszewski, A. Tabor, *An application of the Kuratowski measure of noncompactness to an investigation of the existence of solutions of an abstract integrodifferential problem*, Nonlinear Studies 6 (1999), 111–122.
- [9] M. Cichoń, I. Kubiaczyk, *Kneser-type theorem for the Darboux problem in Banach spaces*, Comment. Math. Univ. Carolin. 42 (2001), 267–279.
- [10] M. Cichoń, I. Kubiaczyk, *Kneser's theorem for strong, weak and pseudosolutions of ordinary differential equations in Banach space*, Ann. Polon. Math. 62 (1) (1995), 13–21.
- [11] M. Cichoń, P. Majcher, *On semilinear nonlocal Cauchy problems*, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), 363–376.
- [12] M. Cichoń, P. Majcher, *On some solutions of nonlocal Cauchy problems*, Comment. Math. 42 (2003), 187–199.
- [13] F. S. De Blasi, *On a property of the unit sphere in a Banach space*, Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977), 259–262.
- [14] D. Dulst, *Characterizations of Banach Spaces not Containing l^1* , CWI Tract, Amsterdam, (1989).
- [15] I. Kubiaczyk, *On a fixed point theorem for weakly sequentially continuous mapping*, Disc. Math.-Diff. Inclusions 15 (1995), 15–20.
- [16] I. Kubiaczyk, *On the existence of solutions of differential equations in Banach spaces*, Bull. Polish Acad. Sci. Math. 33 (1985), 607–614.
- [17] I. Kubiaczyk, *Existence theorem for hyperbolic equation in Banach space*, Funct. Approx. Comment. Math. 26 (1988), 207–215.
- [18] P. Majcher, *The nonlocal Darboux problem on the bounded region*, Dynam. Systems Appl. 14, No. (3-4) (2005), 381–392.
- [19] A. Michalak, *On the Fubini theorem for the Pettis integral for bounded functions*, Bull. Polish Acad. Sci. Math. 49 (1) (2001), 1–14.
- [20] A. R. Mitchell, C. H. Smith, *An existence theorem for weak solutions of differential equations in Banach spaces*, Nonlinear Equations in Abstract Spaces, V. Lakshmikantham ed., (1978), 387–404.

P. Majcher

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

ADAM MICKIEWICZ UNIVERSITY

Umultowska 87

61-614 POZNAŃ, POLAND

E-mail: majcher@amu.edu.pl

S. Sharma

DEPARTMENT OF MATHEMATICS

MADHAV VIGYAN MAHAVIDYALAYA, VIKRAM UNIVERSITY

UJJAIN-456010, INDIA

E-mail: sksharma2005@yahoo.com

Received June 23, 2008.

