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SECOND ORDER EVOLUTION PROBLEM
WITH DEPENDENT ON ¢t AND
NOT DENSELY DEFINED OPERATORS

Abstract. The purpose of this paper is to present some theorems on existence and
uniqueness of solution for nonautonomous second order Cauchy problem with a dumping
operator and with dependent on t not densely defined operators.

1. Introduction

Let (X, ||{l) be a Banach space and let (A(t)):cf0,17, (B(t))tcio,r) be two
families of linear not densely defined closed operators from X to X with
domains dependent on ¢t. We endow the space C(X) of closed linear operators
A : X — X with the topology of generalized convergence (see [5], Ch. IV).
The domain of a given operator 4 : X — Y is denoted by D(A). The space
of bounded linear operators A : X — X is denoted by B(X), and Aut(X)
is the subspace of B(X) of bijective linear bounded operators with bounded
inverses.

DEFINITION 1. Let B : X — X be a linear operator. An operator A :
X — X is called B-bounded if D(B) C D(A) and if there exist a,b € Ry
such that

|Az|| < a||Bz|| + b|jz]| for z € D(B).

We consider the following second order evolution problem

d2u du du
u(0) = uo,
2 ug, U1 € X,
@ {%(0) —u, "

where f : [0,T] x X x X — X is a given function.
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The problem of the form (1)—(2) arise in mathematical physics. The
study of the cases in which operators A and B are independent of ¢ and
are densely defined can be found in [2]. In the paper [11} this problem has
studied with reference to two different cases:

(a) the operators A(t) = A and B(t) = B are independent of ¢, D(B) C
D(A) and D(A) # X,

(b) A(t) and B(t) depend on ¢, the domain D(B(t)) = Dp is independent
of t, Dg = X and Dp C D(A(t)) for all ¢ € [0, T).

The present paper expands on the study in [11] to the case when:

1) operators A and B are dependent on ¢,
2) domains D(A(t)), D(B(t)) of operators A(t) and B(t), respectively are
dependent on ¢ and are not dense in space X.

In such a case it cannot be expected that the classical solution exists. The
main goal of this paper is to present a construction of a new problem in an
adequate space in which previously known theorems can be used.

DEFINITION 2. ([2, Def. 3.1, p. 368]) A function u is said to be a classical
solution of problem (1)—(2) if
(i) w € C*([0, T, X),

(ii) u(t) € DA for t € [0, T] and the mapping [0,T] > t — A(t)u(t) € X is
continuous,

(iii) u'(t) € DE for t € [0,T] and the mapping [0,T] > t — B(t)u/(t) € X is
continuous,

(iv) u satisfies (1)—(2).

We note that if D! and DP depend on t problem (1)-(2) has usually
no classical solutions. To define a generalized solution we will construct an
extended problem in which domains are independent of ¢.

2. Construction of extended problem
Since now, for a given two families A(t), B(t) : X — X of linear opera-

tors, we make the following assumptions (Z;)—(Zs):
(Z1) domains D(B(t)) = D and D(A(t)) = D are dependent on t and

DP CDf for all t € [0,T], L
(Z3) subspaces Yp := DP and Y, := D{ are independent of ¢ € [0, 77,
(Z3) the resolvent sets of A(t) and B(t) are independent of ¢, i.e.

o(A(t)) = o(4), o(B(t)) = o(B)
and 0 € o(A) N o(B),
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(Z4) operators A~{t)B(0), B~{0)A(t) corresponding to t € [0,7] are bound-
ed and the mappings

(3) [0,T) >t — B Y 0)A(t)r € X forz €Yy,
(4) 0,T]3t— B Y(t)zae X forzeX

are of class C!,
(Zs) (B(t))scjo,r) is a stable family, i.e. there exists M > 1 and w € R such

that
(i) (w,+o0) Co(B(t)) forte[0,T],
k
.o M
(ii) gR(A,B(tj)) l < Do for A > w and

for any finite sequence 0<t <... < < T,

(Z¢) for each t,s € [0,T] the operator B~1(t)B(s) is closable and the map-
ping
[0,T] >t~ B-1(t)B(s) € C(Yg), forse€[0,T]
is continuous.

REMARK 1. By the Banach-Steinhaus theorem, it follows from (Z4)
that operators B~1(0)A(t), B~(t) corresponding to t € [0, T are uniformly
bounded.

REMARK 2. By ([12], Theorem 7 and [5], Ch. 4 ), it follows from (Z3) and
(ZG) that
(a) B-1(t)B(s) € Aut(Yp), fort,se€ [0,T],
(b) for each s € [0,T] the mappings
(5) [0,T) >t~ B~1(t)B(s) € B(Yp),
(6) [0,T] 5t — B~1(s)B(t) € B(Yp)

are continuous,
(c) the norms

(7) [e: X 32— |zl := || B~ (t)z]] < M |z

corresponding to t € [0, T] are equivalent (see [12])?,
(d) there exists K > 0 such that

(8) |z|, = || B~ (¢)z|| = || B~ (t)B(0)B~*(0)z|| < K |z|,

! Existence of a constant M follows from the Banach-Steinhaus theorem, because of
continuity of the mapping (4).
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The completion X5, of the space (X, |:lo) to a Banach space is called the
extrapolation space for B(0). Since norms (7) are equivalent, the space X5,
is the extrapolation space for B(t) for all t € [0,T].

DEFINITION 3. ([7, p. 44]) A linear operator A is called a Hille-Yosida
operator (of type (M,w)) if there exist M > 1 and w € R such that
(w,+00) C p(A) and

[R(X, A))") < A>w, n=12,....

M
(A—w)r’

By the Hille-Yosida theorem, A generates a Cy— semigroup if and only if
it is a densely defined operator.

REMARK 3. Since, by (Z5), B(0) is a Hille-Yosida operator, the space Yp
(defined in (Z5)) is dense in X5, (cf. [7], Theorem 3.1.10).

LEMMA 1. For each t € [0,T] the mapping
(9) B(t): X >DF - X c XB,
s an isomorphism of normed spaces.
Proof. Since, for each t € [0, T],
|B(t)zlo = B~} (0)B(t)z]| < Cljz|| for z € DY,
the operator (9) is bounded. The inverse operator B~1(t) : XZ, 5 X — X

is bounded, because, by definition, |B~1(0)z| = |z|o for z € D C X and
all norms (7) are equivalent. =

Now, by Lemma 1, B(t) can be uniquely extended to Yp and we can
define
B_i(t): X8 >vp — X5,

to be the extension of B(t) onto Yp considered as a subspace of X2,. We
can also uniquely extend B~!(¢) to X2, and define

B7lt): X8, - X
to be the extension of B~1(t) onto X5,. The extension of the norm ||, to
X ?1 is given by

(10) |z|g = ||B:11(0)wH for x € X5,
Since operators B_;(t)B~1(t) and BZj(t)B_1(t) are bounded and
B_(t)BZl(t)zr =z forze X C X5,

and
B7l(t)B_i(t)z =z for z € DP C Y3,

the operator B_(t) is invertible and -
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(11) (B-1(t))™* = BZ}(t) fort € [0,T].
Since
|BZL(t)z], < M ||BZ(t)z|| = M |al,
the operator BZ} (t) : X5, — X5, is bounded, and so B_1(t) is closed. Thus,
in this way we have obtained a family (B_1(t))s[o,7] of closed densely defined

linear operators with the same domain Y5 C X5, for all t € [0, 7.
Note that, by (Z4) and (Zg) (see also Remark 2), for each ¢ € [0,T] the
operator

(12) A(t): X >Dff — X5
is bounded. Indeed, for z € D/l we have (by Banach-Steinhaus theorem)
(13) [ A(t)z]y = || BT (0)A(t)z]| < Clel].

Hence the closure A(t) of A(t) (considered as in (12)) is well-defined on
Y4 = D{. Thus we can define

A_1(t): X8 oY, — XB
to be A(t) with the domain Y4 considered as a subspace of X5,.

LEMMA 2. The family (A-1(t))icjo,1) is @ family of densely defined closed
linear operators with the same domain Y4 dense in X5B,.

Proof. Since Yg C Y4 and Yp is dense in X 1_31 (see Remark 3), Yy is a dense
subspace of X5,.
By assumption (Z4) and Lemma 1 the mappings

(14) B Y0)A(t): X > Df - DE c X,

(15) B(0): X >DE - X c XB,

are isomorphisms of a normed spaces. Then

(16) A(t) = B(O)(B7Y(0)A(t)): X DDA - X c X5,

as a composition of two isomorphisms is an isomorphism too. Since the
extensions of bounded operators with dense domains are unique, A_y(t) :
X D Y4 — X3, is also an isomorphism. Hence and by (7)

| AT (2], < M| AZ{(B)z]| < MC() |z,
Thus the inverse to A_;(t) is bounded. Thus A_;(t) is closed. »

LEMMA 3. The operators A_1(t), t € [0,T), are uniformly B_;(t) bounded
in [0,T).

Proof. Using (8) we have ‘
|A(t)z|, = ”B_l(O)A(t)xH < C|lz|| < CK|B(t)z|, for z € DE.
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Hence |A_;(t)z|y < a|B_1(t)z], for z € Yp, because operators (9) and (12)
are bounded. »

Now problem (1)—(2) comes down to the following problem

d?u du = du
) G =B+ Aau (1l e,
u(O) = Ug,
(18) du ug, U1 € Xl_gl,
d_t(o) =uy,

where f: [0,T] x X5, x X8, - X B, is an extension of f and the families
(A-1())eeo,m) and (B-1(t))sejo,7}) have “better properties™

(i) for each t € [0,T] the domain D(B_;(t)) = Yp is the same dense sub-
space of X §1,

(ii) for each t € [0, 7] the domain D(B_1(t)) =Yp C Y4,

(iii) for each t € [0,T] the operator A_;(t) is B_1(t) bounded in the space
X8,

(iv) for each t € [0, T the operator B_;(t) is a generator of a Cp semigroup
(cf. [7], Theorem 3.1.11),

(v) the family (B-1(t)):cjo,7] is a stable family of generators of Cp semi-
groups (cf. [9], Theorem 5).

DEFINITION 4. A function u is said to be a generalized solution of problem
(1)—(2) if it is a classical solution of problem (17)—(18).

LEMMA 4. For any x € Y4, the mapping

(19) [0,T) 5t A_1(t)z € X5,

is of class C*.

Proof. Let z € Y4 and let H : [0,T] — Y4 C X be the derivative of the
mapping (3). Since B-1(0)A_1(t) = B-1(0)A(t) and

A_l(t + h)(L‘ - A_1(t)x

- — B_1(0)H ()

0
B7}(0)A_1(t + h)z — BZ1(0)A_1(t)z
h

- H(t)

’

B_;(0)H is the derivative of the mapping (19). Thus, the lemma is proved,
because B_1(0) as an operator from Yp to X2, is bounded and because of
the assumption (Z4). =
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THEOREM 1. If X is a reflexive space, ug € Y4, uy € Y, assumptions
(Z1)~(Z6) hold and f : [0,T] x XB, x XB| 3 (t,x,y) — X satisfies the
Lipschitz condition i.e. there exist L > 0 such that
I f(tr, z1,31) — f(t2, 2o, y2)ll < Llt1 — tal + 71 — 22y + Y1 — 32l0)
fO’l" ly,t2 € [Oa T}a Z1,T2,Y1,2 € X§1 )
then there exists exactly one classical solution in XB, of problem (17)-(18)

and the solution is of class C1([0,T), X) which mean that problem (1)-(2)
has exactly one generalized solution.

Proof. Since

|f(t11 371»!11) - f(tz,xz,yz)lo = HB—I(O)(f(tlawl,yl) - f(tzax%y?))”
< C “f(thml, yl) - f(t21z21 y2)” 3
f as a mapping from [0,7] x XB, x XB, into X5, satisfies the Lipschitz
condition. Thus, by Theorem 4 from [11], there exists exactly one classical
solution of problem (17)-(18). By definition, if u is a solution then
(i) u € 02([07T],X§1)a
(ii) u(t) € D(A_1(t)) for t € [0, T] and the mapping

(20) [0,T] 5t — A_1(t)u(t) € XB, is continuous,
(ili) /() € D(B_1(t)) for t € [0,T] and the mapping
(21) [0,T] 5t~ B_i(t)u/(t) € XB, is continuous,

(iv) u satisfies conditions (17), (18).
But
t
(22) u(t) = u(0) + | v'(s)ds.

Hence u(0) € Y, v/(t) € Y and because of (21) the mapping
[0,T] 3t — B_1(0)u/(t) € Y is continuous.

Thus
t t

B_1(0) {v/(s)ds = { B_1(0)/(s)ds € Y.
0 0
Since, by (22),
t
B_1(0)u(t) = B-1(0)u(0) + { B_1(0)v/(s)ds,
0

it follows that (B_1(0)u(t))’ = B_1(0)«'(t) and so
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HED 40 _ )] |y (D=0 )

::,B—M0ﬁ4t+iﬂ—-3_uoymn

0

— BL1 (0 (2)

— 0.
0 h—0

h

Since, by (21),

| B1(8)'(8) — B-1(to)’ (to) ]y = || B2} (0)[B-1(t)(£) — B-1(to)u’ (to)] |
= ||BZ1(0)B_1(8) [ (t) — o (to)] + BZ1(0)[B-1(t) — B-1(to)}'(to)|| — 0

and HB:%(O)B_l(t)H is bounded, it follows from (Z4) that
Jlw'(8) = o/ (ko) | ;=7 0.

We have, thus, proved that u € C1([0,T], X). n
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