

Teresa Winiarska

SECOND ORDER EVOLUTION PROBLEM
 WITH DEPENDENT ON t AND
 NOT DENSELY DEFINED OPERATORS

Abstract. The purpose of this paper is to present some theorems on existence and uniqueness of solution for nonautonomous second order Cauchy problem with a dumping operator and with dependent on t not densely defined operators.

1. Introduction

Let $(X, \|\cdot\|)$ be a Banach space and let $(A(t))_{t \in [0, T]}$, $(B(t))_{t \in [0, T]}$ be two families of linear not densely defined closed operators from X to X with domains dependent on t . We endow the space $\mathcal{C}(X)$ of closed linear operators $A : X \rightarrow X$ with the topology of generalized convergence (see [5], Ch. IV). The domain of a given operator $A : X \rightarrow Y$ is denoted by $\mathcal{D}(A)$. The space of bounded linear operators $A : X \rightarrow X$ is denoted by $\mathcal{B}(X)$, and $\text{Aut}(X)$ is the subspace of $\mathcal{B}(X)$ of bijective linear bounded operators with bounded inverses.

DEFINITION 1. Let $B : X \rightarrow X$ be a linear operator. An operator $A : X \rightarrow X$ is called B -bounded if $\mathcal{D}(B) \subset \mathcal{D}(A)$ and if there exist $a, b \in \mathbb{R}_+$ such that

$$\|Ax\| \leq a \|Bx\| + b \|x\| \quad \text{for } x \in \mathcal{D}(B).$$

We consider the following second order evolution problem

$$(1) \quad \frac{d^2u}{dt^2} = B(t) \frac{du}{dt} + A(t)u + f \left(t, u, \frac{du}{dt} \right), \quad t \in [0, T],$$

$$(2) \quad \begin{cases} u(0) = u_0, \\ \frac{du}{dt}(0) = u_1, \end{cases} \quad u_0, u_1 \in X,$$

where $f : [0, T] \times X \times X \rightarrow X$ is a given function.

The problem of the form (1)–(2) arise in mathematical physics. The study of the cases in which operators A and B are independent of t and are densely defined can be found in [2]. In the paper [11] this problem has studied with reference to two different cases:

- (a) the operators $A(t) = A$ and $B(t) = B$ are independent of t , $\mathcal{D}(B) \subseteq \mathcal{D}(A)$ and $\overline{\mathcal{D}(A)} \neq X$,
- (b) $A(t)$ and $B(t)$ depend on t , the domain $\mathcal{D}(B(t)) = \mathcal{D}_B$ is independent of t , $\overline{\mathcal{D}_B} = X$ and $\mathcal{D}_B \subseteq \mathcal{D}(A(t))$ for all $t \in [0, T]$.

The present paper expands on the study in [11] to the case when:

- 1) operators A and B are dependent on t ,
- 2) domains $\mathcal{D}(A(t))$, $\mathcal{D}(B(t))$ of operators $A(t)$ and $B(t)$, respectively are dependent on t and are not dense in space X .

In such a case it cannot be expected that the classical solution exists. The main goal of this paper is to present a construction of a new problem in an adequate space in which previously known theorems can be used.

DEFINITION 2. ([2, Def. 3.1, p. 368]) A function u is said to be a classical solution of problem (1)–(2) if

- (i) $u \in C^2([0, T], X)$,
- (ii) $u(t) \in \mathcal{D}_t^A$ for $t \in [0, T]$ and the mapping $[0, T] \ni t \mapsto A(t)u(t) \in X$ is continuous,
- (iii) $u'(t) \in \mathcal{D}_t^B$ for $t \in [0, T]$ and the mapping $[0, T] \ni t \mapsto B(t)u'(t) \in X$ is continuous,
- (iv) u satisfies (1)–(2).

We note that if \mathcal{D}_t^A and \mathcal{D}_t^B depend on t problem (1)–(2) has usually no classical solutions. To define a generalized solution we will construct an extended problem in which domains are independent of t .

2. Construction of extended problem

Since now, for a given two families $A(t), B(t) : X \rightarrow X$ of linear operators, we make the following assumptions (\mathbf{Z}_1) – (\mathbf{Z}_6) :

- (\mathbf{Z}_1) domains $\mathcal{D}(B(t)) = \mathcal{D}_t^B$ and $\mathcal{D}(A(t)) = \mathcal{D}_t^A$ are dependent on t and $\mathcal{D}_t^B \subseteq \mathcal{D}_t^A$ for all $t \in [0, T]$,
- (\mathbf{Z}_2) subspaces $Y_B := \overline{\mathcal{D}_t^B}$ and $Y_A := \overline{\mathcal{D}_t^A}$ are independent of $t \in [0, T]$,
- (\mathbf{Z}_3) the resolvent sets of $A(t)$ and $B(t)$ are independent of t , i.e.

$$\varrho(A(t)) = \varrho(A), \quad \varrho(B(t)) = \varrho(B)$$

and $0 \in \varrho(A) \cap \varrho(B)$,

(Z₄) operators $A^{-1}tB(0)$, $B^{-1}0A(t)$ corresponding to $t \in [0, T]$ are bounded and the mappings

$$(3) \quad [0, T] \ni t \rightarrow \overline{B^{-1}(0)A(t)}x \in X \quad \text{for } x \in Y_A,$$

$$(4) \quad [0, T] \ni t \rightarrow B^{-1}(t)x \in X \quad \text{for } x \in X$$

are of class \mathcal{C}^1 ,

(Z₅) $(B(t))_{t \in [0, T]}$ is a stable family, i.e. there exists $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$(i) \quad (\omega, +\infty) \subset \varrho(B(t)) \quad \text{for } t \in [0, T],$$

$$(ii) \quad \left\| \prod_{j=1}^k \mathcal{R}(\lambda, B(t_j)) \right\| \leq \frac{M}{(\lambda - \omega)^k} \quad \text{for } \lambda > \omega \text{ and}$$

for any finite sequence $0 \leq t_1 \leq \dots \leq t_k \leq T$,

(Z₆) for each $t, s \in [0, T]$ the operator $B^{-1}(t)B(s)$ is closable and the mapping

$$[0, T] \ni t \mapsto \overline{B^{-1}(t)B(s)} \in \mathcal{C}(Y_B), \quad \text{for } s \in [0, T]$$

is continuous.

REMARK 1. By the Banach–Steinhaus theorem, it follows from (Z₄) that operators $\overline{B^{-1}(0)A(t)}$, $B^{-1}(t)$ corresponding to $t \in [0, T]$ are uniformly bounded.

REMARK 2. By ([12], Theorem 7 and [5], Ch. 4), it follows from (Z₃) and (Z₆) that

$$(a) \quad \overline{B^{-1}(t)B(s)} \in \text{Aut}(Y_B), \quad \text{for } t, s \in [0, T],$$

(b) for each $s \in [0, T]$ the mappings

$$(5) \quad [0, T] \ni t \mapsto \overline{B^{-1}(t)B(s)} \in \mathcal{B}(Y_B),$$

$$(6) \quad [0, T] \ni t \mapsto \overline{B^{-1}(s)B(t)} \in \mathcal{B}(Y_B)$$

are continuous,

(c) the norms

$$(7) \quad |\cdot|_t : X \ni x \rightarrow |x|_t := \|B^{-1}(t)x\| \leq M \|x\|$$

corresponding to $t \in [0, T]$ are equivalent (see [12])¹,

(d) there exists $K > 0$ such that

$$(8) \quad |x|_t = \|B^{-1}(t)x\| = \|B^{-1}(t)B(0)B^{-1}(0)x\| \leq K |x|_0.$$

¹Existence of a constant M follows from the Banach–Steinhaus theorem, because of continuity of the mapping (4).

The completion X_{-1}^B of the space $(X, |\cdot|_0)$ to a Banach space is called the extrapolation space for $B(0)$. Since norms (7) are equivalent, the space X_{-1}^B is the extrapolation space for $B(t)$ for all $t \in [0, T]$.

DEFINITION 3. ([7, p. 44]) A linear operator A is called a Hille-Yosida operator (of type (M, ω)) if there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that $(\omega, +\infty) \subset \rho(A)$ and

$$\|R(\lambda, A))^n\| \leq \frac{M}{(\lambda - \omega)^n}, \quad \lambda > \omega, \quad n = 1, 2, \dots$$

By the Hille-Yosida theorem, A generates a \mathcal{C}_0 -semigroup if and only if it is a densely defined operator.

REMARK 3. Since, by (\mathbf{Z}_5) , $B(0)$ is a Hille-Yosida operator, the space Y_B (defined in (\mathbf{Z}_2)) is dense in X_{-1}^B (cf. [7], Theorem 3.1.10).

LEMMA 1. *For each $t \in [0, T]$ the mapping*

$$(9) \quad B(t) : X \supset \mathcal{D}_t^B \rightarrow X \subset X_{-1}^B$$

is an isomorphism of normed spaces.

Proof. Since, for each $t \in [0, T]$,

$$|B(t)x|_0 = \|B^{-1}(0)B(t)x\| \leq C\|x\| \quad \text{for } x \in \mathcal{D}_t^B,$$

the operator (9) is bounded. The inverse operator $B^{-1}(t) : X_{-1}^B \supset X \rightarrow X$ is bounded, because, by definition, $\|B^{-1}(0)x\| = |x|_0$ for $x \in \mathcal{D}_t^B \subset X$ and all norms (7) are equivalent. ■

Now, by Lemma 1, $B(t)$ can be uniquely extended to Y_B and we can define

$$B_{-1}(t) : X_{-1}^B \supset Y_B \rightarrow X_{-1}^B$$

to be the extension of $B(t)$ onto Y_B considered as a subspace of X_{-1}^B . We can also uniquely extend $B^{-1}(t)$ to X_{-1}^B and define

$$B_{-1}^{-1}(t) : X_{-1}^B \rightarrow X$$

to be the extension of $B^{-1}(t)$ onto X_{-1}^B . The extension of the norm $|\cdot|_0$ to X_{-1}^B is given by

$$(10) \quad |x|_0 = \|B_{-1}^{-1}(0)x\| \quad \text{for } x \in X_{-1}^B.$$

Since operators $B_{-1}(t)B_{-1}^{-1}(t)$ and $B_{-1}^{-1}(t)B_{-1}(t)$ are bounded and

$$B_{-1}(t)B_{-1}^{-1}(t)x = x \quad \text{for } x \in X \subset X_{-1}^B$$

and

$$B_{-1}^{-1}(t)B_{-1}(t)x = x \quad \text{for } x \in \mathcal{D}_t^B \subset Y_B,$$

the operator $B_{-1}(t)$ is invertible and

$$(11) \quad (B_{-1}(t))^{-1} = B_{-1}^{-1}(t) \quad \text{for } t \in [0, T].$$

Since

$$|B_{-1}^{-1}(t)x|_0 \leq M \|B_{-1}^{-1}(t)x\| = M |x|_t,$$

the operator $B_{-1}^{-1}(t) : X_{-1}^B \rightarrow X_{-1}^B$ is bounded, and so $B_{-1}(t)$ is closed. Thus, in this way we have obtained a family $(B_{-1}(t))_{t \in [0, T]}$ of closed densely defined linear operators with the same domain $Y_B \subset X_{-1}^B$ for all $t \in [0, T]$.

Note that, by (Z₄) and (Z₆) (see also Remark 2), for each $t \in [0, T]$ the operator

$$(12) \quad A(t) : X \supset \mathcal{D}_t^A \rightarrow X_{-1}^B$$

is bounded. Indeed, for $x \in \mathcal{D}_t^A$ we have (by Banach–Steinhaus theorem)

$$(13) \quad |A(t)x|_0 = \|B^{-1}(0)A(t)x\| \leq C\|x\|.$$

Hence the closure $\overline{A(t)}$ of $A(t)$ (considered as in (12)) is well-defined on $Y_A = \overline{\mathcal{D}_t^A}$. Thus we can define

$$A_{-1}(t) : X_{-1}^B \supset Y_A \rightarrow X_{-1}^B$$

to be $\overline{A(t)}$ with the domain Y_A considered as a subspace of X_{-1}^B .

LEMMA 2. *The family $(A_{-1}(t))_{t \in [0, T]}$ is a family of densely defined closed linear operators with the same domain Y_A dense in X_{-1}^B .*

Proof. Since $Y_B \subset Y_A$ and Y_B is dense in X_{-1}^B (see Remark 3), Y_A is a dense subspace of X_{-1}^B .

By assumption (Z₄) and Lemma 1 the mappings

$$(14) \quad B^{-1}(0)A(t) : X \supset \mathcal{D}_t^A \rightarrow \mathcal{D}_0^B \subset X,$$

$$(15) \quad B(0) : X \supset \mathcal{D}_0^B \rightarrow X \subset X_{-1}^B$$

are isomorphisms of a normed spaces. Then

$$(16) \quad A(t) = B(0)(B^{-1}(0)A(t)) : X \supset \mathcal{D}_t^A \rightarrow X \subset X_{-1}^B$$

as a composition of two isomorphisms is an isomorphism too. Since the extensions of bounded operators with dense domains are unique, $A_{-1}(t) : X \supset Y_A \rightarrow X_{-1}^B$ is also an isomorphism. Hence and by (7)

$$|A_{-1}^{-1}(t)x|_0 \leq M \|A_{-1}^{-1}(t)x\| \leq MC(t) |x|_0.$$

Thus the inverse to $A_{-1}(t)$ is bounded. Thus $A_{-1}(t)$ is closed. ■

LEMMA 3. *The operators $A_{-1}(t)$, $t \in [0, T]$, are uniformly $B_{-1}(t)$ bounded in $[0, T]$.*

Proof. Using (8) we have

$$|A(t)x|_0 = \|B^{-1}(0)A(t)x\| \leq C \|x\| \leq CK |B(t)x|_0 \quad \text{for } x \in \mathcal{D}_t^B.$$

Hence $|A_{-1}(t)x|_0 \leq a |B_{-1}(t)x|_0$ for $x \in Y_B$, because operators (9) and (12) are bounded. ■

Now problem (1)–(2) comes down to the following problem

$$(17) \quad \frac{d^2u}{dt^2} = B_{-1}(t) \frac{du}{dt} + A_{-1}(t)u + \tilde{f} \left(t, u, \frac{du}{dt} \right), \quad t \in [0, T],$$

$$(18) \quad \begin{cases} u(0) = u_0, \\ \frac{du}{dt}(0) = u_1, \end{cases} \quad u_0, u_1 \in X_{-1}^B,$$

where $\tilde{f} : [0, T] \times X_{-1}^B \times X_{-1}^B \rightarrow X_{-1}^B$ is an extension of f and the families $(A_{-1}(t))_{t \in [0, T]}$ and $(B_{-1}(t))_{t \in [0, T]}$ have “better properties”:

- (i) for each $t \in [0, T]$ the domain $\mathcal{D}(B_{-1}(t)) = Y_B$ is the same dense subspace of X_{-1}^B ,
- (ii) for each $t \in [0, T]$ the domain $\mathcal{D}(B_{-1}(t)) = Y_B \subset Y_A$,
- (iii) for each $t \in [0, T]$ the operator $A_{-1}(t)$ is $B_{-1}(t)$ bounded in the space X_{-1}^B ,
- (iv) for each $t \in [0, T]$ the operator $B_{-1}(t)$ is a generator of a C_0 semigroup (cf. [7], Theorem 3.1.11),
- (v) the family $(B_{-1}(t))_{t \in [0, T]}$ is a stable family of generators of C_0 semigroups (cf. [9], Theorem 5).

DEFINITION 4. A function u is said to be a generalized solution of problem (1)–(2) if it is a classical solution of problem (17)–(18).

LEMMA 4. *For any $x \in Y_A$, the mapping*

$$(19) \quad [0, T] \ni t \mapsto A_{-1}(t)x \in X_{-1}^B$$

is of class C^1 .

Proof. Let $x \in Y_A$ and let $H : [0, T] \mapsto Y_A \subset X$ be the derivative of the mapping (3). Since $B_{-1}^{-1}(0)A_{-1}(t) = \overline{B^{-1}(0)A(t)}$ and

$$\begin{aligned} & \left| \frac{A_{-1}(t+h)x - A_{-1}(t)x}{h} - B_{-1}(0)H(t) \right|_0 \\ &= \left\| \frac{B_{-1}^{-1}(0)A_{-1}(t+h)x - B_{-1}^{-1}(0)A_{-1}(t)x}{h} - H(t) \right\|, \end{aligned}$$

$B_{-1}(0)H$ is the derivative of the mapping (19). Thus, the lemma is proved, because $B_{-1}(0)$ as an operator from Y_B to X_{-1}^B is bounded and because of the assumption (Z_4) . ■

THEOREM 1. *If X is a reflexive space, $u_0 \in Y_A$, $u_1 \in Y$, assumptions (\mathbf{Z}_1) – (\mathbf{Z}_6) hold and $f : [0, T] \times X_{-1}^B \times X_{-1}^B \ni (t, x, y) \mapsto X$ satisfies the Lipschitz condition i.e. there exist $L > 0$ such that*

$$\|f(t_1, x_1, y_1) - f(t_2, x_2, y_2)\| \leq L(|t_1 - t_2| + |x_1 - x_2|_0 + |y_1 - y_2|_0)$$

$$\text{for } t_1, t_2 \in [0, T], x_1, x_2, y_1, y_2 \in X_{-1}^B,$$

then there exists exactly one classical solution in X_{-1}^B of problem (17)–(18) and the solution is of class $C^1([0, T], X)$ which mean that problem (1)–(2) has exactly one generalized solution.

Proof. Since

$$|f(t_1, x_1, y_1) - f(t_2, x_2, y_2)|_0 = \|B^{-1}(0)(f(t_1, x_1, y_1) - f(t_2, x_2, y_2))\|$$

$$\leq C \|f(t_1, x_1, y_1) - f(t_2, x_2, y_2)\|,$$

f as a mapping from $[0, T] \times X_{-1}^B \times X_{-1}^B$ into X_{-1}^B satisfies the Lipschitz condition. Thus, by Theorem 4 from [11], there exists exactly one classical solution of problem (17)–(18). By definition, if u is a solution then

$$(i) \quad u \in C^2([0, T], X_{-1}^B),$$

(ii) $u(t) \in \mathcal{D}(A_{-1}(t))$ for $t \in [0, T]$ and the mapping

$$(20) \quad [0, T] \ni t \mapsto A_{-1}(t)u(t) \in X_{-1}^B \quad \text{is continuous,}$$

(iii) $u'(t) \in \mathcal{D}(B_{-1}(t))$ for $t \in [0, T]$ and the mapping

$$(21) \quad [0, T] \ni t \mapsto B_{-1}(t)u'(t) \in X_{-1}^B \quad \text{is continuous,}$$

(iv) u satisfies conditions (17), (18).

But

$$(22) \quad u(t) = u(0) + \int_0^t u'(s)ds.$$

Hence $u(0) \in Y$, $u'(t) \in Y$ and because of (21) the mapping

$$[0, T] \ni t \mapsto B_{-1}(0)u'(t) \in Y \quad \text{is continuous.}$$

Thus

$$B_{-1}(0) \int_0^t u'(s)ds = \int_0^t B_{-1}(0)u'(s)ds \in Y.$$

Since, by (22),

$$B_{-1}(0)u(t) = B_{-1}(0)u(0) + \int_0^t B_{-1}(0)u'(s)ds,$$

it follows that $(B_{-1}(0)u(t))' = B_{-1}(0)u'(t)$ and so

$$\begin{aligned} \left\| \frac{u(t+h) - u(t)}{h} - u'(t) \right\| &= \left| B_{-1}(0) \left(\frac{u(t+h) - u(t)}{h} - u'(t) \right) \right|_0 \\ &= \left| \frac{B_{-1}(0)u(t+h) - B_{-1}(0)u(t)}{h} - B_{-1}(0)u'(t) \right|_0 \xrightarrow[h \rightarrow 0]{} 0. \end{aligned}$$

Since, by (21),

$$\begin{aligned} &|B_{-1}(t)u'(t) - B_{-1}(t_0)u'(t_0)|_0 = \|B_{-1}^{-1}(0)[B_{-1}(t)u'(t) - B_{-1}(t_0)u'(t_0)]\| \\ &= \|B_{-1}^{-1}(0)B_{-1}(t)[u'(t) - u'(t_0)] + B_{-1}^{-1}(0)[B_{-1}(t) - B_{-1}(t_0)]u'(t_0)\| \xrightarrow[h \rightarrow 0]{} 0 \end{aligned}$$

and $\|B_{-1}^{-1}(0)B_{-1}(t)\|$ is bounded, it follows from **(Z₄)** that

$$\|u'(t) - u'(t_0)\| \xrightarrow[t \rightarrow t_0]{} 0.$$

We have, thus, proved that $u \in C^1([0, T], X)$. ■

References

- [1] H. Amann, *Linear and Quasilinear Parabolic Problems*, Birkhäuser, 1995.
- [2] K. J. Engel, R. Nagiel, *One-Parametric Semigroups for Linear Evolution Equations*, Springer, 2000.
- [3] A. Foryś, A. Gajewski, *Parametryczna optymalizacja pręta lepkosprężystego ze wzgledu na stateczność dynamiczną*, Rozpr. Inż. 35, 2 (1987), 297–308.
- [4] M. Jużyniec, *Dependence on parameter of weak solutions of differential equations in Banach spaces* (in Polish), Kraków 2001, Phd thesis.
- [5] T. Kato, *Perturbation Theory for Linear Operators*, Springer, 1980.
- [6] S. G. Krein, *Linear Differential Equations in Banach Spaces*, Amer. Math. Soc., 1972.
- [7] J. van Neerven, *The Adjoint of a Semigroup of Linear Operators*, Springer, 1992.
- [8] A. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations*, Springer-Verlag, 1983.
- [9] T. Winiarska, *Extrapolation Banach spaces and abstract semilinear second order differential equations*, Int. Journ. of Diff. Equations and App. Vol. 6, 4 (2002), 449–465.
- [10] T. Winiarska, *Quasilinear evolution equations with operators dependent on t*, Matematyczni Studii V21, 2 (2004), 170–178.
- [11] T. Winiarska, *Second order Cauchy problem with a damping operator*, Univ. Iag. Acta Math. Fasc. 43 (2005), 11–20.
- [12] T. Winiarska, T. Winiarski, *Regularity of domains of parametrized families of closed linear operators*, Ann. Polon. Math. 80 (2003), 231–241.

INSTITUTE OF MATHEMATICS
 TECHNICAL UNIVERSITY OF KRAKÓW
 ul Warszawska 24
 31-155 KRAKÓW, POLAND
 E-mail: twiniars@usłk.pk.edu.pl

Received October 28, 2008; revised version December 14, 2008.