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NEW PROPERTIES OF SOME FAMILIES OF
HOLOMORPHIC FUNCTIONS OF
SEVERAL COMPLEX VARIABLES

Abstract. The paper concerns holomorphic functions in complete bounded n-circular
domains of the space C™ and presents some properties of the above mentioned functions
belonging to the families described by some geometrical or analytical conditions. This sub-
ject has been considered by many mathematicans, for example 1.I. Bavrin, K. Dobrowol-
ska, I. Dziubinski, S. Fukui, Z.J. Jakubowski, J. Kaminski, A. Marchlewska, Y. Michiwaki,
J. A. Pfaltzgraff, R. Sitarski, T. J. Suffridge, J. Stankiewicz, I. Weinberg, A. Wrzesien,
L. Zywien and the authors.

1. Introduction

A domain G C C"*, n > 2, containing the origin is called complete n-
circular, if zZA = (211,...,2pAn) € G for each z = (21,...,2,) € G and
every A = (Ay,...,A,) € E™, where E is the disc {¢ € C: |¢] < 1}. Polidiscs

En(rla'--;rn) = {Z e C": |Z]| < T'j,j = 1,...,”}
with center at the origin and radii r; > 0,...,r, > 0 are good examples of

such domains. )
Another example is provided by the domains

n
A(n;é) = {z e C": lejl% < 1}, d>0.
j=1
The latter are generalizations of the cone {z € C": }°%_, |zj| < 1} and the

Euclidean ball {z € C*: 7%, |zj|> < 1}. Sometimes complete n-circular
domains are called complete Reinhardt domains. In the paper we assume
that GG is a bounded complete n-circular domain.
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Let us consider the Minkowski function ug: C* — [0, 00)
uc(z) =inf{t > 0: %z eG}, zeC™
We shall use the continuity of ug and the following facts as well:
(i) G={z2€C": ua(z) <1},
(ii) 0G = {2z € C": ug(z) = 1}.

EXAMPLE 1. The Minkowski function for E™(ry,...,7p),71 > 0,...,7 > 0
and A(n;0), 6 > 0, can be expressed as
_ |21 |2n| n
/J‘E"(rl,...,rn)(z) = max { - PR ™ , 2 € C )

amnis)(2) = [Z Iza'l%]éy z€C"
j=1

Let Hg be the vector space of holomorphic functions f: G — C and let
L : He — Hg be the Temljakov linear operator {22}, which is defined by

(1) Lf(z) = f(z) + Df(2)(z), z€G,

where D f(z) is Frechet’s derivative of f at the point z.
It is also known (see [22]) that the inverse £~1 of the Temljakov operator
has the following form

1
(2) (L7U)(2) = ft2)dt, z€G.
0
LI. Bavrin [1], [2] considered the subclasses Mg and Ng of the class
He(1l) = {f € He : f(0) = 1}. We say that f € Hg(1) belongs to Mg if
f(2) #£0 for z € G and

Lf(z)

(3) Re=r >0, z¢€G.

Similarly, f € Hg(1) belongs to Ng if Lf(z) # 0 for z € G and
LLf(2)

(4) R >0, z€G.

The family Mg (Ng) corresponds to the class S* (S€) (see [6]) of normalized
holomorphic univalent starlike (convex) functions F' : E — C. Let us denote
that the class M has been used in research some linear invariant families
of locally biholomorphic mapping in C” (see [17}).
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In case n = 2 the classes Mg, Ng have the following geometrical inter-
pretation (see [1]). A function f belongs to Mg (Ng) if and only if

(i) the function z; f(21, 22) is univalent starlike (convex) in the intersection
of the domain G by every analitic plane 2, = az1, @ € C. In other words
the function z1 f(21,@21) of one variable is univalent starlike (convex)
in the disc, which is the projection of the intersection G N {z2 = az;}
onto the plane 29 = 0,

(ii) the function 23 f(0, 22) is univalent starlike (convex) in the intersection

Gﬂ{zl = 0}.

In his works I.I. Bavrin examined also the families R¢ and Pgo of func-
tions in a way “close” to functions of the families Nz and Mg, respectively.
We say that f € Hg(1) belongs to R¢ if there exists a function ¢ € Ng
such that

Lf(2)
Lo(2)

In turn we say that f € Hg(1) belongs to Pg if there exists a function
1 € Mg such that

(6)

(5) Re >0, z€G.

rei® S0 Lea.
¥(2)
The family R corresponds to the well-known class §°° of close-to-convex
functions in the unit disc F (see e.g. [4], [10], [12]). In turn, the family Pg
corresponds to the class of close-to-starlike functions in the unit disc E (see
e.g. [18)]).

REMARK 1. ([1})) If f € Rg, then Lf € Pg and conversely, if f € Pg, then
L1f € Rg, where L is the Temljakov operator defined by (1).

2. A new approach of the sharpness of estimations

We will deal with the problem of the precision of some estimates in the
families Rg and Pg. Let rG = {rz: z € G}, r € [0, 1].
Let us notice that for a function f € Pg the following estimation is valid
1-7r 147 —
< <, G, 1),
A SHOIS g 2€7C ey
which was given by Bavrin for the case n = 2. He also showed that this
estimate is precise for G = A(2;4) and for G = E?(ry,r2). Bavrin also stated
that the same estimates hold for n > 2, but he provided no information
about the precision of the estimates in another domains. We will present
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the estimates using the Minkowski function ug and we will show that for any
complete n-circular domain G C C" the above estimates are sharp. Cleary,
it is sufficient to consider the case if r € (0,1). Let us start from the following
observation

(7) rG={z€C": ug(z) <r}, 0(rG)={z € C": pg(z) =r}, r € (0,1),

where pg is the Minkowski function of G (both equalities follows from the
properties (i) and (ii) of the Minkowski function pg). It turns out that a
generalization of the above Bavrin result holds.

PROPOSITION 1. Letn > 2, G C C" be a bounded complete n-circular
domain and

(8) A=A(G)= ISE%I; zj'.
If f € Pg, then
(9) &%}5 <If2)| < (11_%")3 pe(z) <r, relo,1).

The estimate is precise for every domain G and an extremal function has the
form:

A+ eia Z?:l Zj
(A—e}y iy 2)%
Proof. The inequality (9) follows from the above-mentioned results of
Bavrin and from relations (7).

Now we will prove the second part of the theorem. Every function f de-

fined by (10) belongs to the family Pg, because the condition (6) is satisfied
by f with the function v defined by

A2
YO = By
which belongs to the family M. We shall show that for every r € [0,1)

there exists a point 2, uc(g) = r such that function (10) with an appropriate
o gives the equality in the upper part of the inequality (9).

(10)  f(z)= A%

z=(21,...,2n) €G, a€R.

z2=(z1,...,2,) € G,

It is obvious that A = maz,co¢| Z?=1 zj|, so there exists a point z€ 8G
for which | 377, z; | = A. In virtue of the properties of the domain G and

the Minkowski function pg there exists a point z= (z1,...,2,) € G \ {0},
MG(E) =r € (0,1) for such that P (ug(g))_1 z. Hence, we have

(11) |2; 5
po

= Apc(?).
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For this point 2€ G \ {0} let us choose a function f of the form (10) with
a = og € R such that

(12) e'eo

Therefore
14+pg(z) = 147
(1-pe(z)s (A=)
which makes the upper estimation (9) sharp for z € G such that pg(2) <,
i.e. for z € rG, r € (0,1). The equality in the upper bound (9) holds also
forr=0.
In order to show the precision of the lower estimation in (9) it is sufficient

to repeat the above reasoning with the parameter @ = ag chosen in the
following way

1f(2)] =

(13) elao

n
(o] [o]
Zj— —| E Zj

J Jj=1

REMARK 2. Let n = 2. If G = A(2;4), then our extremal function (10) is

identical with Bavrin’s extremal function

f(z) B [21—6 + eio‘(zl + 22)]22(1—6)

- [21-0 — eio(z) 4 29)3

In order to check this fact it is sufficient to choose @ = ¢ defined by (12)
and (13) and observe that

n

1

z=(z1,22) €G, a€eR

A(A(2;6)) = 2175,
However, for G = E2(ry,73) our extremal function (10) and the Bavrin’s
extremal function

g 2riT2 + €'%(r221 + T122)

= 472 . = G
f(2) 172 2112 — 69 (rez1 + r122)” z=(21,22) €G, a€R

differ, because
A(E?(r1,m2)) =71+ 72

and consequently A(E?(ry,r2)) # 2rirg, for 1y # 1 or ro # 1.

Now, we consider the problem of sharpness of estimates of some quantities
connected with the expansion of the function f € Pg and f € Rg into a
series of homogeneous polynomials

(14) f(2)=1+) Qs i(z), z€G.
k=1
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In the case n = 2 Bavrin ([1], §15) obtained the following estimates

(k+1)2 for f e Pg,

(15) Bi(G) < {k-i— 1 for feRg

for k£ € N, where

k
Bi(G)= sup |Qgx(2)l= sup 'Z ak—l,lzf_lzél-
(21,22)€G (21,22)€G' 12

He also proved that these estimates are sharp for domains G = A(2;4) and
G = E*(ry,r2). Moreover, he stated ([1], §19 V) that similar estimates
hold for any n > 2, but he gave no information about the precision of the
estimates in other domains.

We will show that these estimates are sharp for an arbitrary bounded
complete n-circular domain G C C", n > 2. Moreover, estimates (15) will
be presented with the use of the Minkowski function yug.

It is known that homogeneous polynomials for n > 2 have the form

Qf,k(z) = Z aal...anzin ---zg", = (217"',Z'n) € Cn7 k € Na
ar+-+an=k
where for nonnegative integers a;, j = 1,...,n the coefficients aq,. q, are
complex numbers.
Now
Bi(G) =sup|Qy, x(2)| = sup‘ Z Goy.0n?yt .- 25", keN
zeG 2€G a1+ tan=k

Thus, due to the maximum modulus principle for holomorphic functions and
properties of the Minkowski function we have

Bi(G) = sup Q1 k(2)] = sup |Qfk(2)l, keN
2€0G na(2)=1

Let us denote

1Qs, k()]
16 Qr 1) = 198, KW)T_ Q  keN.
(16) HG( 4 k) wei:gl\){o} (,U'G('w))k ucs(lql;g)zl | . (@) €

Then for w € C* we have 2

(17) 1Qs, k(W) < na(Qy, k) (pa(w))*.

1) By §19 we denote the Supplement in [1].
) Assuming moreover that G is convex, we have that ug is a norm || - || in C™ (see
e.g. [19], Chapt. 8) and consequently, (17) takes the following form:

Qs (w)| Q] - llwll*, w e C™.
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By the estimates (15) and the notation (16) for k € N, we obtain the following
estimates for f € Pg and f € R, respectively

(18) pe(Qr k) < (k+1)%, keN,

(19) pe(Qp k) <k+1, keN.
Now, we can formulate the following proposition.

PROPOSITION 2. Let G C C", n > 2 be a bounded complete n-circular
domain and let f € Hg(1) be a function of the form (14). Then the inequal-
ities (18) and (19) hold for f € Pg and f € Rg, respectively. Moreover, the
estimates are sharp.

Proof. It remains to prove the sharpness of the estimations (18) and (19).
Let us consider, for instance, inequality (18). Firstly, observe that the func-
tion f € Pg of the form (10) gives equality in (18). Indeed, this function on
G develops into a series of homogeneous polynomials of the form (14), where

Qs k(2) = (k+1)° sz) z€G, keN

Moreover,

pe(Qs k) = sup |Qy k(2)] = sup
pe(z)=1

(k+1)2( wzn:zJ)k

j=1

=(k+1)2=AF = (k+1)2

AF
Similarly, one can show that the function f € R¢g of the form

A2
(20) f(Z) - (A _ eia E?:l zj)21

gives equality in (19). m

z2=1(21,...,20) €EG

We use the estimates (18) in the proof of the following theorem.

THEOREM 1. Letn > 2 and G C C™ be a bounded complete n-circular
domain. For each function f € Pg the following precise estimates hold

2

() @< TS pez) < relo)
7'2 T

(i) LA L e < relo),
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Proof. Let us take z € G such that ug(z) =r € [0,1), then from (17) and
(18) we obtain

LFE =1+ 36+ 1)@y k()] < 1+ Dk + 1%
k=1 k=1

_ r? 4 4r +1
S (-
This yields claim (i).
Now we will prove the inequality (ii). By the definition of the family Pg
there exist functions g € Mg and

helCg=1{h € Hg(l):Reh(z) >0,z € G}
such that f(z) = g(2)h(z) for z € G. Since f € Pg, g € Mg, h € Cg, we
have f(z)g(z)h(z) # 0 for z € G (see definitions of Pg, Mg, Cg) and

Lf(z) _ Lg(z) | Dh(2)(2)
= + , 2€G@.
fz)  g(2) h(z)
Let us find upper estimates of the modulus for both summands of this sum.
For g € Mg we have (see [1], §16 and §19)

Lg(z)| _1+r

< 1
9(z) |~ 1=r
On the other hand 1.I. Bavrin showed ([1], §13 and §19) that

2r
1—72

zerG, relo,l).

(21) |Dh(2)(2)] < Reh(z), z€rG, relo,1).

Hence
IDh(z)(z) 2r  Reh(z) < 2
h(z) |~ 1-=r2 |h(2)] — 1—2r%
By combining the estimates of the summands of the above sum we obtain
the estimate (ii) by (7).
Now we will show the sharpness of the estimate (ii). Let f € Pg be
defined by (10). Thus

A? +4Aee Y 2+ (e ST z)?
A2 j=1~°J 7=17°J
(22) Lf(z)=A B e Z;'l:l ) , z€G,

zerG, rel0l).

and consequently,
Lf(z) A%+ AN YT 2+ (62307 25)?

f(2) A2 — (eie E;}=1 2;)? , z2€QG.
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For every r € (0,1) let us take a point ze G\ {0}, ug(g) = r which satisfies
(11) and a = ap € R defined by (12). Thus we obtain

Lf(2)
[e]
f(2)
which proves the sharpness of the estimation (ii) for every bounded complete
n-circular domain G.

Similarly, we can show that the function f € Pg of the form (10) is an
extremal function for the estimate (i). w

_ 1+ 4r 4 r2
T 1-—12

REMARK 3. There is no positive lower bound for the quantities |Lf(z)],
Lf(z
|5

Indeed, if f is a function defined by (10), then by introducing into the

formula (22) both @ = ap € R defined by (13) and the point ze G with
,ug(g) = 2 — /3 satisfying the condition (11), we get ,Cf(g) =0.

in the family Pg.

THEOREM 2. Letn > 2 and G C C" be a bounded complete n-circular
domain. For each function f € Rqg the following precise estimates hold

1—r f(2) 1+r
147 “|Lf(z)|~ 1—-7
The estimate is precise for every domain G and an extremal function has the
form (8).

Proof. The inequalities in (23) hold for » = 0. Let us fix arbitrarily z € G
such that ug(z) = r € (0,1). In order to prove the above inequalities let
us take a function F : E — C defined by F({) = (f((—==), ¢ € E.

(23)

pa(z) <r, rel0,1).

uc(z)
Thus F'(¢) = Lf(¢ uc;(z)) and F € §%. In the class S holﬁcthe following
estimates | ) )
IS —1¢D) _ | F) | . Il +I¢h)
E.
R Vo] e

It follows from the same estimates in the class S of all function f univalent
in E, f(0) =0, f/(0) = 1 (see [6]) by the facts that S* C S and the extremal
function in the class S also belongs to §¢.

From the above estimates we have

K=K _ | )| _ 1K+
eI e | ks I

Consequently, putting {( = ug(z) = r and using the maximum modulus
principle, we obtain (23).
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Now it is sufficient to prove the sharpness of the estimates. Let us con-
sider a function f € Rq of the form (20), where A is defined by (8). For

every r € (0,1) we choose 2€ G, pug(2) = r satisfying (11) and a = a9 € R
defined by (13). Therefore

(AteioyT | 2)

Lf(z) = A?

e (A —eiw0 3 | 2)3
and

) | A+Dpgz) 1+

i@ A-Apgz) 1-7

which gives equality in the upper estimate (23).

In order to prove the sharpness of the lower estimate (23) we choose Z in
the same way as above and a = ap € R defined by (12). a

3. A majorization problem

We will use Theorem 2 to solve an extremal problem concerning the
majorization of functions belonging to the family Hg. The above-mentioned
problem relates to with the family R¢.

Let f,F € Hg and r € [0,1]. If

(24) () <|F(2)l, z€rG,

we say that the function F majorizes the function f in the set rG.

The second author (see [13]) has proved that if in a complete bounded
two-circular domain G C C? a function F' € Mg majorizes a function f €
Hg, then LF majorizes Lf in rG, where r = r(Mg) = 2 — V3. Moreover,
the number (M) cannot be increased by taking G, to be the cone A(2;1) =
{z€C?: |z1] +|22| < 1} in C2.

It turns out that there exists an analogous result for the superclass Rg
of the class Mg and it is optimal in case of any complete bounded n-circular
domain G C C™. This is the consequence of the following theorem.

THEOREM 3. Let n > 2 and G C C" be a bounded complete n-circular
domain. If a function f € Hg is majorized in G by a function F' € Rg,
then

(25) ILf(2)| < T(|LF(2)], palz)=7€[0,1),
where

1 for r€1[0,2 - /3]
(26) T(r)=1q 4r? + (1 —r)* .

T =) for re[2-+/3,1)
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The function T cannot be replaced in (25) by any function with values T'(r)
smaller than the values of T' defined by (26).

Proof. Let f € Hg, F € R¢ and assume (24) holds with 7 = 1. Thus we
have that

(27) f(2) =w(2)F(z), z€G,

where w € Sg = Sg U {1} and Sg = {w € Hg : w(G) C E}. Indeed, since
F(z)LF(z) £ 0 for F € Rg, z € G (see [1]), we have in view of (24) with
r = 1, that
/(z)
F(z)

<1, =zedG.

Consequently the function w(z) = —;;(%, z € @G, is holomorphic in G and

lw(2)] < 1 for z € G or w(z) =1 in G. Now, we can investigate the quotient
%, z € G. If ug(z) =r €[0,1), then (27) and (23) give

Lf(z)|  |Llw(z)F(2)]] _|Dw(2)(2)F(2)
l[,F(z) —‘ LF(z) - LF(z) +w(z)| <
‘D_M% +lw(2)] < IDw(z)(z)lif: + |w(z)].

Let us also observe that for w € Sg the following inequality holds

T
1— 12 (1 - ]w(z)|2)a NG(Z) =re [Oa 1)'
Obviously, for w = 1 this inequality is true. For w € S¢ the inequality holds
by a generalization of Bavrin’s results [1] onto the case C*, n > 2 and by

relations (7). As a result we have
Lf(z) -7 r
LF2)|~ (1-7) (1-r)%’
Thus the right-hand part of the above inequality is a quadratic function of
the variable x:

|Dw(2)(2)} <

7 [w(@)” + Jw(2)| + pa(z) =r€(0,1).

- r
= r)2$2 tot gy 2= e
Its maximum is equal to
4r% 4+ (1 —r)*

waonr o TeR-VED

and it is 1 for r € (0,2 — v/3). Hence we obtain (26).
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In order to prove the second part of the theorem we take r € [2 — /3, 1)
and the point 2€ G, /.Lg(g) = r satisfying the condition (11) and the function
AB+ e 1%
A + (et Z;.l:l 2z’
where 8 = (1—2r—72)(r(1+2r —7r2))1, F is defined by the right-hand side
of the formula (20) and A, o are determined by (8) and (12), respectively.

Thus F' € Rg, f is majorized by F in G and for the point z we have
equality in (25). However, by putting f = F for r € [0,2 — /3], where
F € Rg, we have Lf = LF and equality in (25) holds for points z € G such
that ug(z) = r € [0,2 — V/3]. This completes the proof. =

f(z) = F(2)

z=(21,...,2n) € G,

2 )4
The values of the function %i—r)?— are not greater than 1 for r €

[0,2 — /3] and are greater than 1 for r € (2 — 1/3,1), so by Theorem 3 the
following statement holds.

COROLLARY 1. Let n > 2 and G be a bounded complete n-circular domain
of C*. If a function F € Rg majorizes a function f € Hg in G, then
the function LF majorizes the function Lf in the domain (2 — v/3)G. The
number 2 — \/3 cannot be replaced by any greater number.
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