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ON CLASSES OF MEROMORPHIC OR COMPLEX
HARMONIC FUNCTIONS WITH A POLE AT THE INFINITY

Abstract. In this article we investigate some classes of meromorphic or complex
harmonic functions with a pole, which are generated either by analytic conditions or
by "coefficient inequalities". There are given theorems, which combine the geometrical
properties of functions of the introduced classes. Some results broaden knowledge about
the classes of functions, which were investigated in [15]. The main inspiration for the
reaserch were the papers [4] and [11]. The part of results were presented in the XII-th
International Mathematically-Informatical Conference in Chetm (2nd-5th July, 2006) [12].

1. On some classes of holomorphic functions in U

Let U, := {2 € C:|z| >r}, r > 1, Uj := U. Let us consider functions
H of the form

(1) H(z;&):§z+2anz‘", zeU, £€C\{0}, a,€C,n=1,2,....
n=1

DEFINITION 1. Let o € (0,1), Re£ < 0. We denote by J(£,«) the class
of functions H of the form (1) satisfying the condition

(2) Re{a@ + (@ — 1)H (z;€) — 20} >0, z€U.

The class J (£, a) for a fixed a € {(0,1) and € € C, Re& < 0 is not empty.
Indeed e.g. the function
Ie(2) = 1(%6) =€z, Re€ <0, z€ U

is the function from the class J (¢, a).
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From (1) we obtain

(02E 4 (o 1)(z10) ~ 2%0) =

=—§+Z—;+(2—a)% +(n+ (1~ n)a)

n+1 ©

so, by (2), the condition Re{ < 0 is essential.

Since Re{aiﬂj;—Q + (o — 1)H}(2;€) — 2£a} is the real harmonic function
in UU{oo}, thus Re & = 0 is impossible. It is visible that in (2) there appears
a convex combination of conditions:

) Re{ZEE) _a¢} >0, Re(-H(z)) >0.

The second of them guarantees the locally univalence of function H in U
and is equivalent to Arg(—H_(2;¢)) € (—5,%) for z€ U.

It is worth rememberig, that for functions holomorphic in the unit disc
A := {z € C: |z| < 1}, the conditions corresponding to (3) have been known
for long time (see e.g. [2], [6), [9], [10], [13], [14]). The similar conditions
concerning the functions with a pole can be found e.g. in [1], [3].

In the next investigations we need

EXAMPLE 1. Let a € (0,1), Re£ <0, k € N. Let us consider the functions
—Re¢

. < 77
(@) H(z8=8+ 5 an € R, 0< jorl < =,

zeU.

The functions Hy, are of the form (1) and
Re{ozi;;Q + (@ —1)Hy, (2;€) — 2§a} >0, zeU,
thus Hy € J (¢, o).
Let o denotes the well-known class of Carathéodory of functions with a
positive real part (e.g. [5], p. 40 ).
By gV let us denote the subclass of the class p of functions p satisfying

the condition p; = p’(0) = 0. Hence and from Definition 1 we obtain

PROPERTY 1. Let a € (0,1). If H € J (&, ), £ <0, then function p of the
form

6)  pleo ) =—p{aB

+ (o = DH}(2;¢) - 26a}

5

where { € A, is the function from the class pV.

=1’
=1
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Conversely, if p € p¥, £ <0, then a function H of the form (1), which
is the solution of the equation (5), belongs to the class J (&, a).

DEFINITION 2. Let a € (0,1), £ € C\ {0}. By J(&,a) let us denote the
class of functions H of the form (1) satisfying the condition

oo

(6) Y (e+ (1~ a)n)an| < Jg]-

n=1
REMARK 1. Let a € (0,1).
1. If Re§ < 0, then we have:
() I € J(&, ) N T (€, 0);
(b) the functions Hy, of the form (4) are also the functions from the class
J (€, a);
2. If He J(¢,a), £ € C\ {0}, then

€]
lan| < m

The estimates are sharp. The functions Hy from the Example 1 are the
extremal functions, with a; = a_—(fm, k=mn, £ C\{0}.

,n=12....

EXAMPLE 2. Let
H(56) =€ +3), =€ U, £€C\ {0},

It is obvious that H € J (¢, a) for all a € (0,1). Moreover, let us notice that
H(z; - 1
Re{a@ + (a— 1V)H(2;¢) - 2§a} = Re{{(;— - 1)} >0 inU

only if £ < 0. Therefore H € J(£,a) only if £ < 0. Since the function
zZ— z+ % maps conformally U onto the plane C, which is cut along the

segment —2 < w < 2, thus H maps U onto the plane which is cut along the
segment connecting the points —2&, 2¢.

Next we have the theorems combining the functions from the class J (¢, a)
with the fucntions from the class J (¢, a).

THEOREM 1. If £ <0, then J(€,a) C J (£, ).

Proof. We will prove that

o) 4 (o 1)H(56) 260 - (-0)| < ~¢, zeU.
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For the sake of (1) and (6) for z € U we have

oo

o 1 (- YGs6) - 2 - ()] < Yo+ nl1 - a))| 22,
n=1
<lel= ¢

Hence H satisfies the condition (2), thus H € J(£, ). =

The function H from Example 2 shows that for freely fixed o € (0,1)
the assumption £ < 0 in Theorem 1 cannot be replaced with more general
assumption Re¢ < 0.

Let £ < 0. Let us observe that no each function from the class J(¢, o)
is a function of class J (&, ), which is illustrated by the next example.

EXAMPLE 3. Let us consider the function H* of the form

oo
*( .. _ _2€ —2n
H (z,£)~sz+;a+(1_a)2nz , €U, £<0, a€(0,1).
Owing to Property 1 the function H*, which is the solution of the equa-

2
tion (5) in the case of p*({) = %ig'g, is the function from the class J(¢, o).

For the function H* the condition (6) does not hold, thus
J(E )\ T a) #0, £ <0.

It appears that functions belonging to some subclasses of the class J (¢, a)
satisfy the condition (6).

DEFINITION 3. Let a € (0,1), Re{ < 0. Let us denote by J7(§,a) the
class of functions H from the class J (&, ) of the form

oo
(7) H(z;f):fz—Zanz—", 0, >0, n=1,2,..., 2z€U.
n=1

It occurs

THEOREM 2. FEach function H from the class J~(§, ) satisfies the condi-
tion (6).

Proof. Since H is of the form (7) and satisfies (2) for any fixed a €
(0,1), Re¢ < 0, then for all z € (1,+00) we have

0<RefaEE 4 (a-l(ai) - 260} — Rog- Y LELZM,,
n=1

T
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Therefore,

0<y 9‘—%&% < —Re¢ < [¢].
n=1

If we go to the limit with z — 1%, we obtain (6). =
From Theorems 1 and 2 it follows directly

COROLLARY 1. Let § < 0. Function H belongs to the class T~ (£, ) if and
only if H is the function from the class J (&, a).

REMARK 2. From the Definition 2 and inequalities
1<a+{(l—-a)n<n, a€(0,1),neN
we have
J(€0) c I o) cIED.
Thus, owing to Corollary 1 we obtain
T (£0)c T ()T (§1).
The question about inclusions J(£,0) C J(§,0) € J(§,1), £ < 0 re-

mains open.

DEFINITION 4. Let
o0 a(i)
Hi(z;€) =£,~z+21—§;, z€U, & eC\{0},i=1,2.
n=
The Hadamard convolution of the functions Hy, Hs is the function Hy x Hy
of the form
o0 a%l)aq(f)
(Hi* Ho)(2:6182) :=G1&a2+ )

n=1

oy zeU.

This definition is based on the classic definition of convolution of the
holomorphic functions, introduced by J. Hadamard [7]. Hence, owing to
Definition 2 we have

PROPERTY 2. If H € J(¢,0) and ® is a function of the form
o= b
<1>(z)=z+zz—:§-, zel,
n=1

and [b] <1, n=1,2,..., then Hx® € J (£, ).
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Directly from the above-mentioned property and from Theorem 2 we
obtain

PROPERTY 3. IfH € J7(§,0), ¥(2) =2+ o0, Ig—',;l, z €U, by <1,
n=12..., then Hx¥ € J~(£,a).

2. On some classes of complex harmonic functions in U

In the paper [15] we introduced and investigated the following classes of
harmonic functions in U with a pole at the infinity.

DEFINITION 5. Let a € (0,1), £,n € C, |n| < |{|. Let us denote by
Ju(€,m, a) the class of functions F' of the form

(8) F(z:&m) = H(%¢) + Gz n),

o0 [e o]
HzE =6+ anz ™, Gam)=nz+Y baz ™ z€U,

which are complex harmonic in U and satisfy the condition

o0
(9) Y (a+ (1= a)n)(lan] + [ba]) < 1€} - Inl.
n=1
In this part of the article we investigate their further properties. It ap-
pears that the coefficient condition (9), in the case of some values of param-
eters & 7, is connected with some analytic condition.
Let us notice that if ¥ = H + G is the function of the form (8) such that
&€ +n # 0, then the function W = H + G is of the form (1).

DEFINITION 6. Let a € (0,1), Re(§ +n) < 0. Let us denote by Ju (&, n, a)
the class of functions F' = H + G of the form (8) such that W = H + G is
the function from the class J(§ + 7, @), i.e.

Re{aH(Z;g) + G(Z;n)—}-(a—l)(H;(z;é)—!-G;(z; n))—2(§+n)a} >0,z€eU.

z

Next, we have
THEOREM 3. Let £+ 1 <0, [£| > |n|. Then the inclusion
jH(&a UB a) C JH(&? 1, a)

18 true.

Proof. Since —(£ + 1) = |£+ 1] > |€] — |n| > 0, thus if F satisfies (9), then
it also satysfies the condition
o

(10) > (a+ (1= a)n)(lan] + bal) < = (€ +n).

n=1
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The function W = H + G is of the form

W(zé+m) = (E+mz+) (an+b)2™, 2€T,

n=1

and
[ o]

Y (a+ (L —am)(lan +bal) <Y (@ + (1 = @)n)(jan| + [bal) < € +l-

n=1 n=1

Hence, owing to Definition 2, it follows that W € J (£ + n,). Thus, from
Theorem 1 and Definition 6, F € Jg(£,7,a). »

DEFINITION 7. Let a € (0,1), 0 <7 < —¢£. Let us denote by J;(¢,n,a)
the subclass of the class Jy (€, 7, @), of functions of the form

(11)  F(z&mn) = H(z) + G(2),
H(z8) =2- Y ana™, Glzim) =nz—3 buz™, z€ U,
n=1 n=1

an>0,0,>20,n=12,....
REMARK 3. If 0 < n < —¢, then the conditions (9) and (10) are equivalent.
Moreover, we have

THEOREM 4. Let 0 <7 < —{. The function F of the form (11) belongs to
the class Ju (&, n, ) if and only if it is the function from the class T (€,n, o).

Proof. Let 0 < n < —¢. By the Definition 7 and Theorem 3, it is enough to
prove that each function from the class Jy; ({, 7, o) satisfies the condition (9).

Since F € Jg(&,m,a), then the function W = H + G is the map from
the class J(€ + 1, a) and

o0

W(zé+n) =(E+mz—) (an+ba)2™",

n=1

zelU a,+b,>20,n=1,2,...,6+17 <0,
thus W is of the form (7). From Theorem 2 we obtain the thesis. a
EXAMPLE 4. Let a € (0,1), 0 < n < —£. Let us consider
F, = H, + Gy,
where

a b
Hi(z5§=¢z-—, Gilzm)=nz——, z€U.

Then F1 € Jz (6,1, @), if a1, by > 0 and a1 + by < —(€ + 7).



486 Z. J. Jakubowski, A. Sibelska

It is known [8] that if the harmonic function F' of the form (8) satisfies

the condition
[o o]

3 nlanl +18a) < 1] = Inl, 1€ > Inl,

n=1
then F' is the function univalent and sense-preserving in U and each set
C\ F(U;), r > 1 is starlike with respect to the origin, i.e. for all r > 1,
0 € (0, 27), the inequality of the form

0 i6
5 (argF(re )) >0
holds.

In the paper [15] it was shown the theorem which gives the size of the
optimal narrowness U, of the domain U, where the condition (9) is sufficient
and necessary for the function F' of the form (11) to be univalent, sense-
preserving and starlike with respect to the origin.

THEOREM A. Let a € {(0,1) and let F be a function of the form (11). Let

us set
n(e)= {35, 2 » ra(0) =/ 3a

The condition (9) is necessary and sufficient for univalence, sense-preserva-
tion and starlikness of F' in U, for any r > r* where

1 ifa=0
(12) =4 r(a) if a€(0,a;)
ro(a) if a € (o, 1)
and ay 1s the least positive solution of the equation
354 —30)* - 443 -22)° = 0.

Directly from the above-mentioned theorem and from Theorem 4 we
obtain

THEOREM 5. Let F' be of the form (11), a € (0,1),0 < n < —€. The
function belongs to the class T (€,m, &) if and only if it is univalent, sense-
preserving and starlike with respect to the origin in Uy, for any r > r*, where
r* is defined by (12).

By the same method, we obtain

COROLLARY 2. Let a € (0,1),£ < 0. The function H belongs to the class
J (&, a) if and only if it is univalent, sense-preserving and starlike with re-
spect to the origin in Uy, for any r > r*, where v* is defined by (12).
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Directly from Theorems 3 and 4 we obtain the property connected with
the Hadamard convolution.

PROPERTY 4. Leta € (0,1), 0<n < £, x = &+ ¥, where ®(z) =
24300 1 dpz ™, W(2) =24 o i enz ™ z2€U and0<d, <1,0<e, < 1,
n=12,.... If F € J5(§,n,a), then the convolution Fxx = H+®+G * ¥
is the function of the same class.

3. On the convexity of functions from some classes generated by
analytic conditions

DEFINITION 8. Let a € {0,1), Re£ > 0. We denote by K(&, @) the class of
functions H of the form (1) satisfying the condition
(13)  Re{(1-2a)H(z;¢) + (1 — a)zH],(2,£) + 26a} >0, z€U.

The class K(¢, a) is not empty, the function I_, belongs to X(¢, ).

According to (1) and (13), the condition Re£ > 0 is essential.

The classes K(¢, a) and J (€, a) are closely related by the following the-
orem.

THEOREM 6. The function H belongs to the class K(&, ) if and only if the
function ® of the form

0(z;€) = —2H,(¢), z€ U,
belongs to the class J(-&, a).

DEFINITION 9. Let o € (0,1), £ € C\ {0}. Let us denote by K(£,a) the
class of functions H of the form (1) satisfying the condition

(14) Y (an+ (1 - a)n®) |an| < [€].

n=1
By Theorems 1 and 6 we get

COROLLARY 3. Let a € (0,1), £ > 0. If the function H of the form (1)
satisfies the coeffcient condition (14), then H € K(&, ).

REMARK 4. Owing to the function H* from Example 2 and Theorem 6,
we have that

K(€, @)\ K(§, @) #0.

DEFINITION 10. Let a € (0,1), Ref > 0. Let us denote by KX~ (£, a) the
class of functions H from the class K(§, a) of the form (7).

We have

COROLLARY 4. Let Re > 0. A function H belongs to the class K~ (£, a)
if and only if H is a function from the class K(£, a).
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Similarly as in the Part 2, the classes of complex harmonic functions,
corresponding to the above-mentioned classes of holomorphic functions, can
be investigated.

DEFINITION 11. Let o € (0,1), {,7 € C, || < [{|. Let us denote by
Kr(€,n, a) the class of complex harmonic in U functions F of the form (8),
satisfying the condition

o
(15) > (an+ (1= a)n?)(jan] + [bal) < €] = Inl.

n=1

Let Ku (€, n, ) denote the class of functions F of the form (8) such that

W=F+GeK(+n,a) for afixed a € (0,1) and Re (£ +7) >0, ie.

Re{(1 — 2a)(H,(2¢) + Gy(z;m)+
+ (1 — a)z(H,(2,8) + Gy, (z,m) + 2(E + n)a} > 0, 2 € U.

Moreover, by K (&,n, ) we denote the subclass of the class Kg (&, 7, a)
of functions of the form (11) for a fixed a € (0,1), 0 < £ < —1.

Obviously, K(§,a) C Kg(€,n, a).

Some properties of the classes Ky (&, 7, ), defined by the coefficient con-
dition (15), were investigated in [15].

By Corollaries 3 and 4 and Definition 11, like in the Part 2, we obtain
the following two corollaries.

COROLLARY 5. Let £ +n > 0, |¢| > |n]. If F € Kg(&,n,0), then F €
’CH(fan»O‘)'

COROLLARY 6. Let 0 < & < —n. A function F of the form (11) belongs to
the class K (§,m, ) if and only if F' is a function from the class K (€,n, o).

The following result is known.

Theorem B. [15] Let a € (0,1) and let F be a function of the form (11). The

condition (15) is necessary and sufficient for univalence, sense-preservation

and convezity of F in Uy, for any r > r*, where r* is defined by (12).
Directly from the above-mentioned theorem and from Corollary 6 follows

COROLLARY 7. Let F' be a function of the form (11), 0 < £ < —n. The
function F belongs to the class K5 (€, 1, a) if and only if it is univalent, sense-
preserving and convex in Uy, for any r > r*, where r* is defined by (12).

From Corollary 7 we obtain the corollary, analogous to Corollary 2, which
gives the size of the optimal narrowness U, of the domain U, where the
condition (15) is necessary and sufficient for the holomorphic function of the
form (7) to be univalent, sense-preserving and convex.
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