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DERIVATIONS WITH ENGEL CONDITIONS 
ON MULTILINEAR POLYNOMIALS IN PRIME RINGS 

Abstract . Let R be a prime ring with extended centroid C and characteristic different 
from 2, (J a nonzero derivation of R, f(xi,..., xn) a nonzero multilinear polynomial over 
C such that [d2(f(xi,... ,xn)),d(f(xi,..., in))]k = 0 for all x i , . . . , xn in some nonzero 
right ideal p of R, where k is a fixed positive integer. If d(p) p / 0, then pC = eRC for 
some idempotent e in the socle of RC and f(xi,... ,xn) is central-valued on eRCe. 

Throughout this paper R always denotes a prime ring with center Z(R) 
and extended centroid C. For given x,y G R, let [x, y]o = x, [x, y]i ~ [x, y] = 
xy - yx and inductively for k > 1, [x,y]k = [[x,y]k-i,y\. 

A well-known result proved by Posner [24] states that R must be com-
mutative if there exists a nonzero derivation d such that [ d ( x ) , x ] G Z(R) 
for all x G R. Many related generalizations of Posner's result have been 
obtained by a number of authors in literature. For details we refer to 
[4, 12, 13, 14, 15, 16, 17, 20, 25], where further references can be found. 
In [13], Lanski generalized the Posner's result, by replacing x G R with an 
element in a noncommutative Lie ideal L of R. More precisely, he proved 
that if [d(x),x]k = 0 for all x G L, where k > 0 is a fixed integer, then 
char R = 2 and R satisfies S4, the standard identity of four variables. In 
[15], Lee and Lee considered a similar Engel condition, [d(x),x]fc = 0 in case 
x G { / ( x 1 , . . . , x n ) | x i , . . . , xn G I } , where I is a nonzero two-sided ideal of 
R and / (x 1 , . . . , xn) is a multilinear polynomial over C in R. They obtained 
the result that / ( x 1 , . . . , xn) is central-valued on R except when char R = 2 
and R satisfies £¡4. In case x G { / ( x 1 , . . . , x n ) | x i , . . . ,xn G A}, where A is 
a nonzero left ideal of R and f(x 1, . . . ,xn) is a multilinear polynomial over 
C in R, then Lee [17] proved that AC = RCe for some idempotent e in the 
socle of RC and f ( x 1 , . . . , x n ) is central-valued on eRCe except when char 
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R = 2 and d i m c e R C e = 4. In the present paper, our aim is to study the 
identity in case x € { d ( f ( x i , . . . , xn))\x\,...,xn G p}, where p is a nonzero 
right ideal of R. 

Before beginning the proof of our main theorem, we first fix some no-
tations concerning quotient rings. Denote by Q the two-sided Martindale's 
quotient ring of R and by C the center of Q, which is called the extended 
centroid of R. Note that Q is also a prime ring with C a field. We will 
make a frequent use of the following notation: f(xi,...,xn) = X\X2 .. .xn + 

Oia^a{\) • • • x<j(n) f° r some aa 6 C where Sn is the permutation group 
I^aeSn 

over n elements and we denote by f d ( x i , . . . ,xn) the polynomial obtained 
from f ( x i , . . . , x n ) by replacing each coefficient aa with d{aa). Thus we 
write 

d 2 ( f ( x i , . . . , xn)) = d { f d { x i , . . . , xn)) + f(xi> • • • » d(xi)> • • • > xn)) 

d ( f ( x i , . . . , xn)) = f d ( x i , + f ( x i , . . . , d(xi), . . . , x n ) 

and 

= fd2 ( x l t . . . , Xn) + fd(Xl> • • • > d(Xi)> • • • > xn) 

+ X] f ( X l > • • • ' d ( X i ) > • • • ' d(XJ')> • • • ' 

= f d 2 ( x 1 , . . . , x n ) + 2 ^ T f d ( x i , - - - , d ( x i ) , . . . , x n ) 

i 

+2 • • • ' • • • ' • • • ' 
i<j 

1. The case for p = R 
We first consider the matrix ring case: 

L E M M A 1 . 1 . Let F be a field of characteristic ^ 2 and R = M^{F), the 

k x k matrix algebra over the field F. Suppose that a, G R and f { x i , . . . , xn) 
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is a multilinear polynomial over F such that 

[[a, [a, f(xi,..., xn)]], [a, f ( x i , . . . , xn)})m = 0 

for all xi,... ,xn £ R, where m is a fixed positive integer. Then either 

a € F • Ik or f(xi,..., xn) is central-valued on R. 

Proof. If k = 1, the result holds trivially. So assume that k > 2. We assume 
further that char F / 2 and proceed to show that a G F • if f(xi,..., xn) 
is not central-valued on R. Suppose that f(xi,..., xn) is not central-valued 
on R. 

Since f(xi,...,xn) is not central on R, by [22, Lemma 2, Proof of 
Lemma 3] there exists a sequence of matrices r = (ri,...,rn) in R such 
that f(r\,... ,rn) = 7 e i j with 0 ^ 7 € F and i ^ j. Since the set 
f ( R ) = { f ( x i , . . . ,xn),xi € R} is invariant under the action of all inner 
automorphisms of R, f ( r ) = jetj holds for any i ^ j. Thus 

0 = [[a, [a, f ( n , . . . , r„)]], [a, f ( n , . . . , rn)}]m 

= [[a, [a,7eij]], [a,7eij]]m 
m / \ 

= ( 7 ) ta' 7Ctj]][o, 7eij]m~s. 
5=0 v s ' 

Left and right multiplying by e tj we obtain 
m 

0 = eij 7 > 1 ) * ( ) ( ' y a e i j ) 3 ( a 2 ' y e i j - 2a'yeija + •yeija2)(—felja)in~selj 

s=o 

= eij ( — ) m ( m ) (iaeij )s{—2a/yeija) (/yeija)m~Seij 
s=0 V 8 ' 

m / \ 

s=0 

= ( - l ) m + 1 2 m + 1 7 m + 1 < + % - -

This implies that a^ = 0 for any i j. Thus a is a diagonal matrix. Now for 
any F-automorphism 6 of R, ae enjoy the same property as a does, namely, 

[[ae, [a0, f ( x 1,...,xn)]], [a0, /(xi , . . . , xn)}]m = 0 
k 

for all x\,...,xn G R. Hence, ae must be diagonal. Write, a = aaeiu 
¿=0 

then for s ^ t, we have 
k 

(1 + ets)a( 1 - ets) = aliell + (ass - au)ets 

¿=0 
diagonal. Hence, ass = au and so o is a scalar matrix that is a £ F • 4 . 



470 B. Dhara 

LEMMA 1 . 2 . Let R be a prime ring of characteristic different from 2 and 
f{xi,..., xn) a multilinear polynomial over C. If for any i = 1,..., n, 

for all yi,r\,... ,rn G R, then the polynomial f(x\,..., xn) is central-valued 
on R. 

Proof. Let a be a noncentral element of R. Then replacing yi with [a, r^], 
we have that 

for all r i , . . . , r n € R implying f(ri,... ,rn) is central-valued on R [15, The-
orem]. 

THEOREM 1 . 3 . Let R be a prime ring of characteristic different from 2 and 
f(xi,... ,xn) a multilinear polynomial over C. Suppose that d is a nonzero 
derivation of R such that 

for all xi,..., xn G R, where k is a fixed positive integer. Then f(xi,..., xn) 
is central-valued on R. 

Proof. Let f(xi,...,xn) be noncentral-valued on R. Assume first that d 
is Q-inner, i.e., d(x) = [a,x] for all x G R and for some a G Q. Since d is 
nonzero, a £ C. Thus R satisfies the generalized polynomial identity 

g{x i, ...,xn) = [[a, [a, f(x i , . . . , x„)]], [a, f(x h ..., xn)]]k. 

Since f(xi,..., xn) is noncentral-valued on R and a ^ C, this is a nontrivial 
GPI. By Chuang [5] this GPI is also satisfied by Q. In case C is infinite, we 
have g(r\,..., rn) = 0 for all r i , . . . , rn G Q ®c C, where C is the algebraic 
closure of C. Since both Q and Q ®c C are centrally closed [7, Theorem 
2.5 and 3.5], we may replace R by Q or Q <S>c C according as C is finite or 
infinite. Thus we may assume that R is centrally closed over C which is either 
finite or algebraically closed and <7(7*1,..., rn) = 0 for all 7*1,..., rn G R. By 
Martindale's theorem [23], R is a primitive ring having nonzero socle H with 
C as the associated division ring. In light of Jacobson's theorem [10, p. 75], 
R is isomorphic to a dense ring of linear transformations on some vector 
space V over C. Assume first that V is finite dimensional over C. Then the 
density of R on V implies that R = Mf.(C) with k =dimcV. By Lemma 
1.1, we have f(x 1 , . . . , xn) is central-valued on R. 

[ f i n , ...,yi,...,rn), f ( n , r n ) } k = 0 

n 

which gives, 

[a,f(ri,...,rn)]k+l = 0 

[d2(/(:ri,..., xn)), d(f(x 1,..., xn))}k = 0 
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Assume next that V is infinite dimensional over C. Since V is infinite 
dimensional over C then as in Lemma 2 in [26], the set f(R) is dense on R 
and so from 

[[a, [a, / ( n , . . . , r„)]], [a, f(n,rn)]]fc = 0 

for all r i , . . . , rn G R, we have 

(1) [[a,[a,r]],[a,r]]fe = 0 

for all r € R. Let e be an idempotent element of H. Replacing r with 
er( 1 — e) in (1), we obtain 

0 = [[a, [a, er( 1 - e)]], [a, er( 1 - e)]]fc 

(a2er( 1 - e) - 2aer(l - e)a + er( 1 - e)a2)[a, er( 1 - e)]k~j. 

Left multiplying by (1 — e) and right multiplying by er, we obtain 

k 
0 = ¿ ( - i y (1 - e){aer{ 1 - e))j{-2aer{l - e)o)(-er( 1 - e)a)k~jer 

j=o 
= (—l) f c + 12 f c + 1((l — e)aer)fe+2. 

By [8], it follows that (1 — e)aer = 0 for any r E R, implying (1 — e)ae = 0. 
Similarly, replacing r with (1 — e)re in (1), we shall get ea( 1 — e) = 0. 
Thus for any idempotent e € H, we have (1 — e)ae = 0 = ea(l — e) that is 
[a, e] = 0. Therefore, [a, E) — 0, where E is the additive subgroup generated 
by all idempotents of H. Since E is non central Lie ideal of H, this implies 
a e C (see [3, Lemma 2]), a contradiction. 

Assume next that d is not Q-inner. Then R satisfies the differential 
identity 

i 

+2 XI • • •' • • •' ̂ fa)' • • •' 
i<j 

+ f ( r i > • • •' d2(ri)> • • •'r")' • • • ' + • • •' • • •' 
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By Kharchenko's [11] theorem, R satisfies the polynomial identity 

In particular, R satisfies blended component 

[/(71, • • •, yi, • • •, rn), /(ri, ...,Xi,..., rn)]k 

in the indeterminates r\, . . . , rj_i, r j + i , . . . , rn,Xi, yx which implies that 
/ ( r i , . . . , rn) is central-valued on R by Lemma 1.2. 

2. The case for p. 
We need the following lemmas. 

LEMMA 2.1. Let p be a nonzero right ideal of R and d a derivation of R. 
Then the following conditions are equivalent: 
(i) d is an inner derivation induced by some b € Q such that bp = 0; 

For its proof, we refer to [9], 

LEMMA 2.2. Let R be a prime ring. If[d2(f(xi,...,xn)),d(f(xi,...,xn))]k 
— 0 for all x i,... ,xn € p, where k is a fixed positive integer, then either R 
satisfies a nontrivial generalized polynomial identity or d(p)p = 0. 

Proof. Suppose, on the contrary, that R does not satisfy any nontrivial 
generalized polynomial identity and then we derive that d(p)p = 0. We may 
assume that R is noncommutative, otherwise R satisfies trivially a nontrivial 
GPI. Now we consider the following two cases: 

CASE I. Suppose that d is Q-inner derivation induced by an element a G Q. 
Then for any x € p, 

is a GPI for R, so it is the zero element in Q *c C{Xi,X2,..., Xn}. Denote 
IQ(P) the left annihilator of p in Q. Suppose first that {1, a, a 2 } are linearly 
C-independent modulo IQ(P), that is (aa2 + f3a + 7 )p = 0 if and only if 
a = ¡3 = 7 = 0. Since R is not a GPI-ring, a fortiori it cannot be a Pi-ring. 
Thus, by [19, Lemma 3] there exists XQ € p such that {a2xo,axo,xo} are 

> yi 1 • • • > rn ), fd(r 1) • • • > rn) + • • • ' X i ' • • • ' r " ) L-Jfc 

(ii) d{p)p = 0. 

[[a, [a, f(xX 1 , . . . , zXn)]], [a, f(xX 1 , . . . , xXn)]]k 
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linearly C-independent. In this case, we have that 

(2) ( k ) (af(xoXu .. .,x0Xn) - f ( x 0XU .. .,x0Xn)aY 
j=o 

(a?f(x0Xi,..., x0Xn) - 2af(x0Xi,..., xoXn)a + f ( x 0 X i , x 0 X n ) a 2 ) 

( a f ( x 0 X i , x 0 X n ) - f ( x 0 X i , x o X n ) a ) k ~ j = 0. 

In this expansion a2f(xoX\,..., xoXn)(af(xoXi,...,xoXn))k appears non-
trivially, a contradiction. 

Therefore, {1, a, a 2} are linearly C-dependent modulo IR(P), that is there 
exist a,P, 7 € C, not all zero, such that (aa2 + @a + 7 )p = 0. Suppose that 
a = 0. Then f3 ^ 0, otherwise 7 = 0. Thus by (/3a + 7 )p = 0, we have that 
(a + /3~17)p = 0. Since a and a + (3 7 induce the same inner derivation, we 
may replace a by a + (3~l7 in the basic hypothesis. Therefore, in any case 
we may suppose ap = 0 and then by Lemma 2.1, d(p)p = 0. 

Next suppose that a ^ 0. In this case there exist A,/x € C such that 
a2x0 = Xaxo + pxQ for all xo € p. Choose XQ G p such that ax0 and xo 
are linearly C-independent, otherwise we have again ap = 0 and hence by 
Lemma 2.1, d{p)p = 0. Thus right multiplying by J(XQXI, . . . , XQXTI) in (2) 
and then replacing a2x0 with Xaxo + p,x0, we get, R satisfies 

(' ] (af{x0X 1,... ,x0Xn) - f ( x 0 X i , . . . , x0Xn)ay U 
((A a + n)f{x0X 1 , . . . , XQ XN) - 2 a f { x 0 X I , x 0 X n ) a 

+ f ( x 0 X u ..., x0Xn)(Aa + p)) 

( a f ( x 0 X i , . . . , x0Xn) - f{x0X 1,..., x0Xn)a)k~jf(x0Xi,..., x0Xn). 

In this sum the terms 

j=0 ^^ 

( - 2 a f ( x 0 X i , . . . , xoXn)a)(-f(xoXi,..., x0Xn)a)k~j f f a X t , . . . , x0Xn) 

= ( - l ) ^ 2 k + 1 ( a f ( x o X u ..., x0Xn))k+2 

appears nontrivially, a contradiction, because ax0 and XQ are linearly C-
independent. 

CASE II. Next suppose that d is an outer derivation. If for all x G p, 
d(x) € xC, then [d(x),x] = 0 which implies that R is commutative (see [2]), 
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a contradiction. Therefore there exists x € p such that d{x) ^ xC i.e., x 
and d(x) are linearly C-independent. By our assumption we have that R 
satisfies 

[fd\xXx,..., xXn) + 2 Y, fd(xX i. • • •»d{x)Xi + xd(Xi),xXn) 
i 

+ 2 Y f ( x X • • •. d(x)Xi + xd(Xi) , . . . , d{x)Xj + x d ( X j ) , . . . , xXn) 
i<j 

+ / ( x X i , . . . , d 2 ^ ) ^ + 2d(x)d(Xi) 
i 

+ • • •, xXn), fd[xX^..., xXn) 

+ Y f(xXl> •••' d(x)xi + xd(Xi),..., xXn)]k. 
i 

By Kharchenko's theorem [11], 

(3) [ f d 2 (xXu ...,xXn) + 2Y fd(xX l, • • •, + • • •»xXn) 
i 

+ 2 ^ f(xXi,..., d(x)Xi + xri,..., d(x)Xj + xrj,..., a?Xn) 
i<j 

+ f(xXu ..., d2{x)Xi + 2d(x)ri + xsi,..., xXn), ^(xXi,..., xXn) 
i 

+ Y f(xXi> • • • > + ax*, . . . , = 0 
i 

for all X\,..., Xn, r i , . . . , rn, si,...,sn € R. In particular, for X\ = r^ = 
. . . = r„ = si = 0, 

[2/d(arn,..., xX„) + 2 £ / (xr i , . . . , d(x)X,-,. . . , 
i> 2 
+ f(2d(x)n,..., xXn),f(xri,..., xXn)]fe = 0 

which is a nontrivial GPI for R, because x and d(x) are linearly C-indepen-
dent, a contradiction. 

T H E O R E M 2 . 3 . Let R be a prime ring with extended centroid C and charac-
teristic different from 2, d a nonzero derivation of R, f(xi,..., xn) a nonzero 
multilinear polynomial overC such that [d2(f(x i , . . . ,xn)),d(f(x\,... ,zn))]fc 
= 0 for all x\,... ,xn in some nonzero right ideal p of R, where k is a fixed pos-
itive integer. Ifd(p)p ^ 0, then pC = eRC for some idempotent e in the socle 
of RC and f(x\,..., xn) is central-valued on eRCe. 
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P r o o f . Assume first that [f(p),p]p — 0, that is [f(xi,... 
0 for all x\,..., xn+2 € P- Then by [18, Proposition], pC = eRC for some 
idempotent e G soc(RC). Since [f(p),p]p = 0, we have [f(pR),pR]pR = 0 
and hence by [5], [f(pQ), pQ]pQ = 0. In particular, [f(pC), pC]pC = 

0. Since pC = eRC, we have [f(eRC),eRC]eRC = 0, or equivalently 
[f(eRCe),eRCe] — 0 which shows that f(xi,...,xn) is central-valued on 
eRCe. 

Next assume that \f(p),p]p 0 that is [f(x 1,..., xn), xn+\\xn+2 is not 
an identity for p. By Lemma 2.2, R is a prime GPI-ring and so is Q (see 
[1] and [5]). Since Q is centrally closed over C, it follows from [23] that 
Q is a primitive ring with H = Soc(Q) ± 0. Then [f(pH),pH]pH ^ 0. 
For otherwise, [f(pQ),pQ]pQ — 0 by [1] and [5], a contradiction. Choose 
0 1 , . . . , an+2 G pH such that [ / ( a i , . . . , a n ) , an + i ]an +2 0. Let a G pH. 

Since H is a regular ring, there exists e2 = e G H such that eH — aH + 

a\H H 1- an+2H. Then e G pH and a = ea, ai = ea^ for i = 1 , . . . , n + 2. 
Thus, we have f(eHe) = f(eH)e / 0. By our assumption and by [21, 
Theorem 2], we may also assume that [d?(f(xi,..., x n ) ) , d(f(x 1 , . . . , x„))]fc 
is an identity for pQ. In particular, [d2(f(x 1,..., xn)),d(f(x 1,..., zn))]fc is 
an identity for pH and so for eH. It follows that, for all 7*1,... ,rn G H, 

0 = [d2{f(eri,..., ern)),d(f(eri,..., ern))]k. We may write f(x 1,..., xn) = 

t(x 1,... 

, xn—\)xn + h(x 1 , . . . , Xn)t where xn never appears as last variable in 
any monomials of h. Let r G H. Then replacing rn with r ( l — e) we have 
(4) 0 = [ d 2 ( i ( e r i , . . . , e r n _ i ) e r ( l - e)),d(t(eri,ern_i)er(l - e))]k. 

Now we know the fact that d(x( 1 — e) )e = — x{l — e)d(e), (1 — e)d(ex) = 

(1 — e)d(e)ex and thus 

(1 - e)d2{ex{ 1 - e ) )e = (1 - e)d{d(e)ex( 1 - e) + ed(ex( 1 - e ) ) } e 

= (1 - e)d(e)d(ex(l - e ) )e + (1 - e)d{e)d(ex{ 1 - e ) )e 

= - 2 ( 1 - e)d(e)ex( 1 - e)d(e). 

Thus left multiplying by (1 — e) and right multiplying by e, we get from (4) 
that 

0 = (1 — e)[d2(t(eri,..., e r n _ i ) e r ( l - e) ) , d(t(eri,..., e r n _ i ) e r ( l - e))]ke 

= ( 1 ~ e ) Q ) • • •' e r n - i ) e r ( l - e ) ) | 5 . 

|d2 ( i (er1 , . . . ,ern_1 )er( l - e ) ) ||d ( i ( e r i , . . . , e r „ _ i ) e r ( l - e ) ) | e 
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= i 1 - e ) E i " 1 ) ' ' Q ) fa)^ • • •. ern-i)er(l - e) 

| d 2 ( i ( e r i , . . . , ern_i)er( l - e)) j j - t(eru . . . , ern_i)er(l - e)d(e)j 

= (1 - c) ( * ) ( d ( e ) i ( en , . . . , ern_i)er(l - e) 

| - 2d(e)i(eri , . . . , er„_i)er(l - e)d(e)j 

| - t{eri,..., ern_i)er( l - e)d(e)j 

k 

= (- l ) f c + 12{(l - e)d(e) i (cn, . . . , ern_i)er} f e + 1(l - e)d(e) £ 
j=o 

= ( - l ) ^ 2 f c + 1 { ( l - e)d(e)t(en,ern_!)er}fc+1( 1 - e)d(e). 

Since char R^ 2, this gives 

0 = {(1 - e)d(e)t(eru ern-l)er}h+2 

for all r € H. By [8], (1 — e)d(e)t(er\,..., ern-\)eH = 0 which implies 
(1 — e)d{e)t{er\e,..., ern-\e) = 0 for all r i , . . . , r n _ i G H. Since eHe is 
a simple Artinian ring and t(eHe) ^ 0 is invariant under the action of 
all inner automorphisms of eHe, by [6, Lemma 2], (1 — e)d(e) = 0 and 
so d(e) = ed(e) e eH. Thus d(eH) C d(e)H + ed(H) C eH C pH and 
d(a) = d(ea) E d(eH) C pH. This means that d(pH) C pH. It is easily seen 
that d(ln(pH)) C I f j ( p H ) holds and so d naturally induces a derivation <5 on 
the prime ring pH = p^fy^pH) defined by 6(x) = d(x) for x G pH, where 
Ifj(pH) denotes the left annihilator of pH in H. Thus by assumption we 
have [ 5 2 ( f ( x i , . . . , x n ) ) , S ( f ( x i , . . . ,xn))]k is a differential identity for pH. 

By Theorem 1.3, either 6(pH) = 0 or f { x i , . . . , xn) is central-valued on 
pH. If 6(pH) = 0 that is d(pH)pH = 0, then 0 = dippH)pH = dip)pHpH 

implying dip)p = 0, a contradiction. I f / ( x i , . . . , xn) is central-valued on pH, 

then [ f i x i , . . . , xn), xn+\)xn+2 is an identity for pH, again a contradiction. 
Thus the proof of the theorem is complete. 

Acknowledgement. The author wishes to thank the referee for his 
valuable comments and suggestions. 
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