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DERIVATIONS WITH ENGEL CONDITIONS
ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

Abstract. Let R be a prime ring with extended centroid C and characteristic different
from 2, d a nonzero derivation of R, f(xi1,...,Zx) a nonzero multilinear polynomial over
C such that [d*(f(z1,...,%xn)),d(f(Z1,...,%a))]x = O for all z1,...,Z, in some nonzero
right ideal p of R, where k is a fixed positive integer. If d(p) p # 0, then pC = eRC for
some idempotent e in the socle of RC and f(z1,...,zs) is central-valued on eRCe.

Throughout this paper R always denotes a prime ring with center Z(R)
and extended centroid C. For given z,y € R, let [z,ylo = z, [z, y]1 = [z,y] =
zy — yz and inductively for k > 1, [z, y)x = |z, ylk-1, 9]

A well-known result proved by Posner [24] states that R must be com-
mutative if there exists a nonzero derivation d such that [d(z),z] € Z(R)
for all x € R. Many related generalizations of Posner’s result have been
obtained by a number of authors in literature. For details we refer to
[4, 12, 13, 14, 15, 16, 17, 20, 25}, where further references can be found.
In [13}, Lanski generalized the Posner’s result, by replacing z € R with an
element in a noncommutative Lie ideal L of R. More precisely, he proved
that if {[d(z),z]x = O for all x € L, where £ > 0 is a fixed integer, then
char R = 2 and R satisfies Sy, the standard identity of four variables. In
[15], Lee and Lee considered a similar Engel condition, [d(z), z]x = 0 in case
z € {f(z1,...,zn)|z1,...,2, € I}, where I is a nonzero two-sided ideal of
R and f(x1,...,%,) is a multilinear polynomial over C in R. They obtained
the result that f(zi,...,z,) is central-valued on R except when char R = 2
and R satisfies Sy. In case z € {f(z1,...,2Zn)|Z1,...,Zn € A}, where A is
a nonzero left ideal of R and f(x;,...,zy) is a multilinear polynomial over
C in R, then Lee [17] proved that A\C = RCe for some idempotent e in the
socle of RC and f(z1,...,zy) is central-valued on eRCe except when char
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R = 2 and dimgeRCe = 4. In the present paper, our aim is to study the
identity in case z € {d(f(z1,...,zn))|T1,...,Zn € p}, where p is a nonzero
right ideal of R.

Before beginning the proof of our main theorem, we first fix some no-
tations concerning quotient rings. Denote by @) the two-sided Martindale’s
quotient ring of R and by C the center of @), which is called the extended
centroid of R. Note that @) is also a prime ring with C a field. We will
make a frequent use of the following notation: f(z1,...,zn) = 122...Tp +

Y. QoZy(1) - To(n) for some o, € C where S, is the permutation group
I#Ges'n

over n elements and we denote by fd(xl, ...,Tp) the polynomial obtained
from f(z1,...,2zn) by replacing each coefficient o, with d(a,). Thus we
write

d(f(z1,...,20)) = fd(ml,...,:cn)+Zf(:c1,...,d(x,~),...,xn)

and

A(f(xy,...,z)) = d(f(z1,...,20)) + d(Z Fler, .., d(®), ..., zn))
= ¥ (z1,...,20) +Zfd(:cl,...,d(zi),...,zn)
+Zfd(m1,...,d(:vi),...,zn)

+3 flay, .. d@), ., d(@g), .., Tn)
i#j
+Zf(x1,...,d2(:1:i),...,a:n)

:fd2(a:1,...,:1:n)+2Zfd(x1,...,d(mi),...,a:n)
+2) f(@,- -y d(@i), - d(@5), - Tn)

1<J

+Zf(a:1,...,d2(:ci),...,mn).

1. The case for p=R
We first consider the matrix ring case:

LEMMA 1.1. Let F be a field of characteristic # 2 and R = M(F), the
k x k matriz algebra over the field F. Suppose that a € R and f(x1,...,T,)
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s a multilinear polynomial over F such that

[[aa [a’ f(mlr sy iL'n)]], [av f($1, s .’L‘n)]]m =0
for all z1,...,x, € R, where m is a fired positive integer. Then either
a€F I or f(zi,...,z,) is central-valued on R.
Proof. If k = 1, the result holds trivially. So assume that k > 2. We assume
further that char F # 2 and proceed to show that a € F - Iy if f(zy,...,zy)
is not central-valued on R. Suppose that f(z1,...,Z,) is not central-valued
on R.

Since f(z1,...,Zn) is not central on R, by [22, Lemma 2, Proof of
Lemma 3| there exists a sequence of matrices 7 = (rq,...,7,) in R such
that f(ry,...,7n) = vei; with 0 # v € F and i # j. Since the set
f(R) = {f(z1,...,zs),x; € R} is invariant under the action of all inner
automorphisms of R, f(r) = ve;; holds for any ¢ # j. Thus

0 =|[a,[a, f(r1,---,ma)l]s (@, f(r1, - s 70)]Im
= [la, [a, vei;l}, a, veij]lm

m
m _
= >0 (7 faresllo fa el e
5=0
Left and right multiplying by e;; we obtain

m
m —_—
0=e¢; Z(—l)s ( s ) (vaeij)®(a®ye;; — 2aveija + yeija®) (—veija) ™ ei;
= m
= ;) Z(—l)m ( s ) (yaei;)*(—2avei;a)(veija)™ “eij

— ( m-+—12,ym+1 Z ( )e” ae” m+2

:( )m+12m+1 m+1 ;TZL+261]'

This implies that aj; = 0 for any ¢ # j. Thus a is a diagonal matrix. Now for
any F-automorphism 6 of R, a® enjoy the same property as a does, namely,

[[a0> [a'oa f(wla cee ,.’L'n)]], [a'g’ f(xla ) mn)”m =0
k

for all 1,...,z, € R. Hence, a?

=0
then for s # t, we have

(1+ers)a(l — ers) = > aisesi + (ass — ane)ers

diagonal. Hence, ass = ay; and so a is a scalar matrix that is a € F - I}.
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LEMMA 1.2. Let R be a prime ring of characteristic different from 2 and

f(z1,...,2n) a multilinear polynomial over C. If for anyi=1,...,n,
[f(rla' -y Yiy- ",Tn)af(rla' -w"”n)]k = 0

for all y;,m1,...,rn € R, then the polynomial f(z1,...,xy) is central-valued

on R.

Proof. Let a be a noncentral element of R. Then replacing y; with [a,r;],
we have that

[zn:f(rlw--’[aﬂ‘i],---,Tn),f(rl,...,rn)]k =0
=0

which gives,

[(1, f(rla sy Tn)]k+1 =0

for all r1,...,r, € R implying f(r1,...,75) is central-valued on R [15, The-
orem|.

THEOREM 1.3. Let R be a prime ring of characteristic different from 2 and
f(z1,...,zn) a multilinear polynomial over C. Suppose that d is a nonzero
derivation of R such that

[dz(f(xla <. ,-'L'n)); d(f(xla cee xn))]k =0

forallzy,...,x, € R, where k is a fized positive integer. Then f(z1,...,2n)
s central-valued on R.

Proof. Let f(z1,...,zn) be noncentral-valued on R. Assume first that d
is Q-inner, i.e., d(z) = [a,z] for all z € R and for some a € Q. Since d is
nonzero, a ¢ C. Thus R satisfies the generalized polynomial identity

g(-’L'l, s ,.’L‘n) = [[a’ [a” f(l)l, s ’m’ﬂ)]L [a‘?f(xla cee 7$n)Hk-

Since f(z1,...,Zy) is noncentral-valued on R and a ¢ C, this is a nontrivial
GPI. By Chuang [5] this GPI is also satisfied by Q. In case C is infinite, we
have g(r1,...,mn) =0 for all rq,...,7, € Q ®¢ C, where C is the algebraic
closure of C. Since both @ and Q ®¢ C are centrally closed [7, Theorem
2.5 and 3.5], we may replace R by Q or Q ®c C according as C is finite or
infinite. Thus we may assume that R is centrally closed over C which is either
finite or algebraically closed and g(ry,...,7,) =0 for all r1,...,m, € R. By
Martindale’s theorem [23], R is a primitive ring having nonzero socle H with
C as the associated division ring. In light of Jacobson’s theorem [10, p. 75|,
R is isomorphic to a dense ring of linear transformations on some vector
space V over C. Assume first that V is finite dimensional over C. Then the
density of R on V implies that R & M(C) with k¥ =dim¢cV. By Lemma
1.1, we have f(z1,...,z,) is central-valued on R.
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Assume next that V is infinite dimensional over C. Since V is infinite
dimensional over C then as in Lemma 2 in [26], the set f(R) is dense on R
and so from

[[a'a [a'a f(rla oo ,Tn)”, [(l, f(rla v ,Tn)]]k =0
for all r1,...,r, € R, we have
(1) (la, [a,7]), [a, 7]}k =0
for all r € R. Let e be an idempotent element of H. Replacing r with
er(l —e) in (1), we obtain

0= [[a’ [a: 67‘(1 - e)]]’ [a’ er(l - e)]]k

Sy (’;) g, er(1 — e))!

=0
(a?er(1 — €) — 2aer(1 — e)a + er(1 — e)a?)[a, er(1 — €)]F7.
Left multiplying by (1 — e) and right multiplying by er, we obtain

k
0= (-1y (;") (1 — e)(aer(1 — €)) (—2aer(1 — e)a)(—er(1 — e)a)*Jer
j=0

k
— (—1)FF9((1 — e)ger)F+2 k
= (~1)*H12((1 - e)aer) 2;(3)

= (=1)*12%+1((1 — e)aer)*+2.

By [8], it follows that (1 — e)aer = 0 for any r € R, implying (1 — e)ae = 0.
Similarly, replacing r with (1 — e)re in (1), we shall get ea(l — e) = 0.
Thus for any idempotent e € H, we have (1 — e)ae = 0 = ea(l — e) that is
[a, €] = 0. Therefore, [a, E] = 0, where FE is the additive subgroup generated
by all idempotents of H. Since E is non central Lie ideal of H, this implies
a € C (see [3, Lemma 2|), a contradiction.

Assume next that d is not @Q-inner. Then R satisfies the differential
identity

£ (re, ... ) +2Zfdl(r1,...,d(ri),...,rn)
+2) f(r1,...,d(ri), ..., d(rj), ..., )

1<j

+ 3 f ey @),y mn), £y ) Y F (L d(r), o)k



472 B. Dhara

By Kharchenko’s [11] theorem, R satisfies the polynomial identity
(P20 ra) 230 FHrs, i)
i
+2Zf (r1,. ey Zjyee ey Tn)

1<

+Zf('r1,...,yi,... )f‘irl, ,Tn +Zf(r1, s Liyerns )]k

In particular, R satisfies blended component

(FOr1y ey Yiyeesmn) F(P1y oo oy Ziy e ooy o)k

in the indeterminates ry,...,r5—1,7it1,...,7n, T,y which implies that
f(r1,...,7s) is central-valued on R by Lemma 1.2.

2. The case for p.
We need the following lemmas.

LEMMA 2.1. Let p be a nonzero right ideal of R and d a derivation of R.
Then the following conditions are equivalent:
(i) d is an inner derivation induced by some b € Q such that bp = 0;

(ii) d(p)p = 0.
For its proof, we refer to [9].

LEMMA 2.2. Let R be a prime ring. If [d*(f(z1,...,70)),d(f(z1,...,2Z0))]k
=0 forallxy,...,xn € p, where k is a fized positive integer, then either R
satisfies a nontrivial generalized polynomial identity or d(p)p = 0.

Proof. Suppose, on the contrary, that R does not satisfy any nontrivial
generalized polynomial identity and then we derive that d(p)p = 0. We may
assume that R is noncommutative, otherwise R satisfies trivially a nontrivial
GPI. Now we consider the following two cases:

CASE L. Suppose that d is Q-inner derivation induced by an element a € Q.
Then for any z € p,

([a,[a, f(zX1,...,2Xp)]], [, f(zX1,...,2X0)]]k

is a GPI for R, so it is the zero element in @ *¢c C{X1, X2, ..., Xn}. Denote
lo(p) the left annihilator of p in Q. Suppose first that {1, a,a?} are linearly
C-independent modulo Ig(p), that is (aa? + Ba + v)p = 0 if and only if
a = [ =~ =0. Since R is not a GPl-ring, a fortiori it cannot be a Pl-ring.
Thus, by [19, Lemma 3] there exists zo € p such that {a%zo,axo,zo} are
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linearly C-independent. In this case, we have that

k
(2) Z(——l)j (5) (af(zoX1,...,2z0Xn) — flzaX1,- .. ,zoXn)a)j
=0
(a®f(zoX1,-..,T0Xn) — 2af(z0X1,...,Z0Xn)a + f(zoXy,...,20Xn)a?)
(af(zoXy,..., :II()Xn) — f(.’I?()Xl, ceey .’E()Xn)a)k_j =0.

In this expansion a?f(zoX1,...,20Xs)(af(2oX1,...,20Xx))* appears non-
trivially, a contradiction.

Therefore, {1,a,a?} are linearly C-dependent modulo [r(p), that is there
exist a, 3,7 € C, not all zero, such that (aa®? + Ba + v)p = 0. Suppose that
a = 0. Then B3 # 0, otherwise v = 0. Thus by (8a + v)p = 0, we have that
(a+B71v)p = 0. Since a and a+ 31y induce the same inner derivation, we
may replace a by a + 3! in the basic hypothesis. Therefore, in any case
we may suppose ap = 0 and then by Lemma 2.1, d(p)p = 0.

Next suppose that o # 0. In this case there exist A, € C such that
a’zg = Aazg + pxo for all zg € p. Choose zg € p such that arg and zg
are linearly C-independent, otherwise we have again ap = 0 and hence by
Lemma 2.1, d(p)p = 0. Thus right multiplying by f(zoX1,...,zeXy) in (2)
and then replacing a?z¢ with Aaxzg + pxg, we get, R satisfies

k

Z(—l)j (f) (af(:thl, e ,:L‘oXn) - f(.’l,‘()Xl, N ,$0Xn)a)j

j=0
(a4 p)f(zoX1,...,20Xn) — 2af(z0X1,...,20Xn)a
+ f(xoX1,...,z0Xn)(Aa + p))
(af(zoX1,...,20Xn) — f(zoX1,...,20Xn)a) 7 f(zoXy,. .., x0Xn).
In this sum the terms

k

S (-1 (;“) (af(@oX1,.. ., z0Xn))

j=0
(=2af(xoX1,...,x0Xn)a)(—f(xoX1,.. ., T0Xn)a)* ™ f(zoXa,...,20Xn)
= (=1)FH1 2" (af (2o X1,.. ., 20 Xn))FH?

appears nontrivially, a contradiction, because azxg and xy are linearly C-
independent.

CASE II. Next suppose that d is an outer derivation. If for all x € p,
d(z) € zC, then [d(z), z] = 0 which implies that R is commutative (see [2]),
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a contradiction. Therefore there exists © € p such that d(z) ¢ zC ie., z
and d(z) are linearly C-independent. By our assumption we have that R
satisfies

[ (xXy, .., 2Xa) +2) fH 2 Xy, .., d(@)X; + 2d(X), ..., 2 Xy)

+2> f@Xy,...,d@)X; + zd(Xs), ..., d(@)X; +zd(X;),...,5Xn)
1<g

+ 3 F@ X, (@)X + 2d(2)d(X)

+ 2d%(X;),. ..,z X,), fUzXy,. ..,z X5)
+Y flaXy, ..., d@)Xi +2d(Xs), ...,z Xn)lk-

By Kharchenko’s theorem [11],

@) [T (@Xy,...,2Xn) +2) faXy, ..., d(@)X; + i, ..., 2Xn)

+ 2Zf(zX1, o d@) X+ xrg, L d(@) X oy, .2 Xy)
1<J
+ 3 flzXy,...,d (@) Xi + 2d(@)ri + T5i, ..., 2 X)), FU2 X1, .., 2 XR)

+ Zf(:l:Xl, e ,d(x)Xz + zr;, ... ,xXn)]k =0

for all X4,...,Xn,71,---,7n,51,---,8, € R. In particular, for X1 = ro =
...='rn=s1=0,

2f%zry,...,zX0) +2)_ flary,...,d(@)X;, ..., zXp)
j>2
+ f(2d(z)r1, ..., xXp), flzry,...,zXp)|lk =0

which is a nontrivial GPI for R, because z and d(z) are linearly C-indepen-
dent, a contradiction.

THEOREM 2.3. Let R be a prime ring with extended centroid C and charac-
teristic different from 2, d a nonzero derivation of R, f(z1,...,zn) a nonzero
multilinear polynomial over C such that [d?(f(z1,...,Tn)), d(f(Z1,-- ., Tn))]k
=0 forallzy,...,xz, in some nonzero right ideal p of R, where k is a fized pos-
itive integer. Ifd(p)p # 0, then pC = eRC for some idempotent e in the socle
of RC and f(x1,...,xy) is central-valued on eRCe.
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Proof. Assume first that [f(p), plp = 0, that is [f(z1,...,Zn), Tnt1|Tnt2 =
0 for all z1,...,Znt2 € p. Then by [18, Proposition|, pC = eRC for some
idempotent e € soc(RC). Since [f(p), plp = 0, we have [f(pR), pR|pR =0
and hence by [5], [f(p@),pQ]pQ@ = 0. In particular, [f(pC),pClpC =
0. Since pC = eRC, we have [f(eRC),eRC]eRC = 0, or equivalently
[f(eRCe),eRCe] = 0 which shows that f(z1,...,z,) is central-valued on
eRCe.

Next assume that [f(p), p]p # O that is [f(z1,...,Zn), Zn+1]Tnt2 is DOt
an identity for p. By Lemma 2.2, R is a prime GPI-ring and so is @ (see
[1] and [5]). Since Q is centrally closed over C, it follows from [23] that
Q is a primitive ring with H = Soc(Q) # 0. Then (f(pH), pH|pH # 0.
For otherwise, [f(pQ), pQ]pQ@ = 0 by [1] and [5], a contradiction. Choose
ai,...,an4+2 € pH such that [f(a1,...,an),an+1]an12 # 0. Let a € pH.
Since H is a regular ring, there exists e2 = e € H such that eH = oH +
atH+---+an42H. Thene € pH anda=-ea,a;=ea; fori=1,...,n+2.
Thus, we have f(eHe) = f(eH)e # 0. By our assumption and by [21,
Theorem 2], we may also assume that [d?(f(x1,...,2n)),d(f(Z1,. .., %))k
is an identity for p@. In particular, [d2(f(z1,...,2s)),d(f(z1,...,Zn))]k is
an identity for pH and so for eH. It follows that, for all ry,...,r, € H,
0 = [d?(f(er1,-..,ern)),d(f(er1,--.,ern))]k. We may write f(z1,...,Z,) =
t(z1,...,Tn-1)Zn+h(z1,...,2,), where z, never appears as last variable in
any monomials of h. Let r € H. Then replacing r,, with (1 — e) we have

(4) 0= [d®(t(er1,--.,ern—1)er(l — €)),d(t(ers, ..., ern_1)er(l — e))l.

Now we know the fact that d(z(1 — e))e = —z(1 — e)d(e), (1 — e)d(ex) =
(1 —e)d(e)ex and thus

(1-e)d®(ez(1 —e))e = (1 — e)d{d(e)ex(l — €) + ed(ex(1l — e))}e
= (1 —e)d(e)d(ex(l —e))e+ (1 — e)d(e)d(ex(l — e))e
= —2(1 - e)d(e)ex(1 — e)d(e).

Thus left multiplying by (1 — e) and right multiplying by e, we get from (4)
that

0= (1—e)[d(t(ery,...,ern_1)er(l —e)),d(t(ery,...,ern_1)er(l —e))]xe

—(1—e) z;(_l)f (’;) {d(t(erl, o yern_t)er(l — e))}j.

J

{d2(t(er1, ... ern_1)er(l - e))}{d(t(erl, .. ern_1)er(l — e))}k_je
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=(l-¢€) ;(—l)j (j) {d(e)t(erl, o yern_t)er(l —e) }j.
{d2(t(erl, cevemeyer(d - e))}{ —t(ery,...,ern_1)er(l - e)d(e)}k—j

—(1-¢) ]Z:(—l)j (’;) {d(e)t(erl, o erm)er(l— e)}j.
{ _ 2d(e)t(er1, ..., ern_1)er(l ~ e)d(e)}
{ —t(er,...ern_1)er(l - e)d(e)}k_j

k
= (_1)k+12{(1 - e)d(e)t(erl, RS 1)67‘}k+1 Z < )

j=0
= (—1)FH2M1L(1 —e)d(e)t(ery,. .., ern_1)er (1 — e)d(e).

Since char R # 2, this gives
0={(1—e)d(e)t(ery,...,erp_)er}rt?

for all » € H. By (8], (1 — e)d(e)t(ers,...,ern—1)eH = 0 which implies
(1 — e)d(e)t(erie,...,ern—1e) = 0 for all r1,...,7,—1 € H. Since eHe is
a simple Artinian ring and t(eHe) # 0 is invariant under the action of
all inner automorphisms of eHe, by [6, Lemma 2], (1 — e)d(e) = 0 and
so d(e) = ed(e) € eH. Thus d(eH) C d(e)H + ed(H) C eH C pH and
d(a) = d(ea) € d(eH) C pH. This means that d(pH) C pH. It is easily seen
that d(lg(pH)) C lg(pH) holds and so d naturally induces a derivation § on
the prime ring pH = /WWZ&I'(TH_F defined by §(Z) = d(x) for = € pH, where
lg(pH) denotes the left annihilator of pH in H. Thus by assumption we
have [62(f(z1,...,2n)),0(f(21,-..,Tn))|s is a differential identity for pH.
By Theorem 1.3, either §(pH) = 0 or f(zi,...,Z,) is central-valued on
pH. If §(pH) = 0 that is d(pH)pH = 0, then 0 = d(ppH)pH = d(p)pHpH
implying d(p)p = 0, a contradiction. If f(z1,...,z,) is central-valued on pH,
then [f(z1,...,Zn), Tnt1]ZTns2 is an identity for pH, again a contradiction.
Thus the proof of the theorem is complete.
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