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APPROXIMATION OF MARKET VALUATIONS
ON THE SET OF RISK MEASURES

Abstract. In this work we introduce the problem of choice of a risk measure providing
best approximation of risk estimates derived from market valuations. We begin with a
brief overview of connections between pricing and risk measurement issues which reveal
importance of the problem we consider and lead to the mathematical formulation. In the
main result under fairly general assumptions we establish the existence of the solution.
In the second part we define a problem of finding a risk measure optimal with respect
to the capital requirements. We impose additional assumptions, all of which have strong
practical justification and in this particular setting we show that a solution exists and
is a spectral measure of risk. As an example of application we show that there is some
optimal spectral measure of risk for speculative position created in a market model with
CIR short rate dynamics.

Introduction

In 2006 Basel Committee published a set of rules briefly called Revised
Basel II which describes standards of financial security which must be ob-
served by participants of the financial markets. This code states e.g. that
any risky position created by a bank, requires some amount of capital to be
held in case of a loss on the position. This is called a capital requirement.
The amount to be held obviously depends on the level of risk of the par-
ticular position. Key issue is that Basel II allows financial institutions to
implement their own systems of risk measurement. Therefore the systems
can be suited to the institutions’ risk attitudes and profiles of investment.

Calculation of capital requirements is one of the most important problems
in modern finance. Another one is pricing financial products in the presence
of market incompleteness. Practical difficulties arise when classical martin-
gale valuation methods are employed. Alternative ways of pricing suggested
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by several authors, e.g. Cherny and Hodges [3], Jaschke and Kuchler [7] re-
vealed strong relationships between risk measurement and pricing problems.
In fact prices can be derived from risk estimates (called risk numbers) as
well as risk measures (functions which assign risk to contingent claims) can
be defined by price systems (valuation functionals on contingent claims).

Motivated by this correspondence and Basel II code, we formulate two
problems which are of interest for pricing purposes and are related to holding
capital requirements. We consider a one period financial market model on
some probability space (2, F,P). We assume there are M risky positions
{X1,..., XM} = L C Lo(Q,F,P) which can be entered in the market.
There is some fixed set A of the risk measures (to be defined later). We also
assume we have an exogenously given vector of risk estimates (risk numbers)
r=(r1,...,rm) € RM corresponding to the positions X1,...,Xy € L. If
we consider a situation in which risk numbers r are somehow derived from the
prices observed in the market, we are in a position in which it is reasonable to
assume that r is a result of some estimation and hence it may not correspond
to actual risk numbers produced by any risk measure p € A. This suggests
a very natural

QUESTION 1. Which measure of risk p € A produces risk numbers for
X € L which in some sense provide the best approximation to the given risk
numbers r € RM?

The second problem under consideration is directly related to Basel II.
In many financial institutions, e.g. investment banks capital requirements
are regarded as a burden. Therefore in this paper we are interested in mini-
mizing capital requirements so that more money is available for speculative
purposes.

So far the problem has not been considered in the literature. As we
shall see, it can be viewed as a dual-criterion optimization problem in which
we look for a risk measurement methodology which is consistent with the
security standards imposed by market regulators and at the same time mini-
mizes average capital requirements. We consider the most popular measures
of risk, e.g. VaR, TCE, WCE, ES and spectral measures of risk (all of which
are defined later). We show that the mathematical formulation is a special
case of the problem mentioned in Question 1. Hence the existence of the
solution would be an easy consequence of the results obtained in the first
part of this work. However, in the second part we impose stronger assump-
tions on the distributions of the payoffs X € £ under which we are able to
tell more about the solution, i.e. we prove that it is a spectral measure of
risk. This result is our contribution to the ongoing debate on proper risk
measurement methodologies.
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We begin with some notation and definitions of risk measures which are
considered in this paper. In Section 1 we formulate the problem according
to the Question 1 and provide assumptions. We work with bounded random
variables X such that P(X = essinf X) = 0 and consider the most popular
risk measures used both in practice and theory, i.e.:. VaRs, TCE5;, WCE;5,
ES5 and spectral measures of risk My.. In Section 2 we establish the
existence of the solution of a problem under our fairly general assumptions.
In Section 3 we consider a problem of the existence of a risk measure optimal
with respect to the capital requirements as a very special case of the general
problem. Under stronger assumptions on the distributions of the payoffs we
show that the solution is a spectral measure of risk. Numerical example in
CIR model is also provided.

Conventions and notation

Consider some probability space (2, F,P). In this paper any random
variable X € Lo (€, F,P) is interpreted as a risky payoff (not as a loss). Fx
denotes distribution function of X and ¢, (X) denotes the lower a-quantile
of X. As in [5| we have the following

DEFINITION 1. Let £ C Loo(Q2, F,P) be a set of some risky payoffs. Any
mapping p : £ — R is called a measure of risk if it is monotone, i.e. X <
Y = p(X) > p(Y), X,Y € £ and translation invariant, i.e. p(X +¢) =
p(X)—¢c, XL, ceR.

Later we shall consider the most popular measures of risk, namely: Value-
at-Risk (VaR), Tail Conditional Expectation (TCE), Worst Conditional Ex-
pectation (WCE), Expected Shortfall (ES) and a class of statistics called
spectral measures of risk which were introduced in [2]. For convenience we
provide the definition.

DEFINITION 2. For « € (0, 1] we have

1. VaRa(X) = —sup{z | Fx(z) < a} & —qa(X),

2. TCEa(X) = ~E(X|X < ga(X))

3. WCEL(X) = —inf{EF(X)| A€ F: P(A) > a},
where P4(-) = P(:]A)

4. ESo(X) = -5 §5 Fx (p)dp

5. ESy = —inf{z|Fx(z) > 0},

6. Mg o(X) = cESo(z) — (1 — c) §3 ¢(p) Fi (p)dp,
where F5 (p) = —VaR,(X).
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1. General formulation of the problem
We begin with a definition of the risk approximation error

DEFINITION 3. Let £L = {Xx : k =1,...,M} be a set of some risky
payoffs, r € RM, ¥ : R — R a continuous function and by x denote some
probability measure on 2{1»M} such that V& < My ({k}) > 0. pis
called measure of expectations. For a risk measure p € A, an average ¥-risk
approximation error of a vector of risk numbers r with respect to the measure
W is a number

(1.1) ARAE,(p, ¥, i) Z\y (Xx) — m)({k}).

Measure p reflects expectatlons of an investor regarding positions he is
going to enter. u can be naturally interpreted as a frequency-based probabil-
ity. Argument based on Kolmogorov’s Strong Law of Large Numbers shows
that the goal of minimizing a risk approximation error per position can be
achieved by minimizing ARAE,.

On the other hand if we put » = 0 and interpret ¥ as a function which
translates risk numbers p(Xj) into capital charges ¥(p(X%)) similar argu-
ment suggests that ARAE, is an average capital requirement per position
when methodology p is employed and charges expressed in money are pro-
vided by ¥. We shall return to this interpretation in Section 3 with ¥(z) = z.

The above considerations motivate the following

DEFINITION 4. Let £ = {X;: k=1,..., M} be a set of some risky payoffs
and let ¥, 7, i be as in Definition 3. Measure of risk measure providing best
approximation of risk numbers r in the class .4 with respect to the function
¥ under measure of expectations p is a solution of the problem

(1.2) min,c AARAE (p, ¥, ).

Problem. First establish the existence of the solution of (1.2) under some
moderate assumptions on the distributions of payoffs. In the next section
apply obtained result to find a risk measure optimal with respect to the
capital requirements and show that under stronger assumptions the solution
is a spectral measure of risk.

2. Existence of the solution
Fix a probability space (€2, F,P). We begin with a few important defini-
tions.

DEFINITION 5. Spectral class H is a set of functions ¢ € L!([0, 1]), which
satisfy the following: 1. ¢(p) > 0, p € [0,1], 2. §Sd(p)dp = 1, 3. ¢ is
nonincreasing.
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DEFINITION 6. Let & € (0,1). A set of a-feasible measures of risk is given
by

(21) Asz = {VaRa, TCEs, WCEg, ES;, M¢’C, cc [O, 1], ¢ € H}
We shall work under the assumption that distributions of the payoffs
satisfy

Condition 1. P(X =essinf X) =0,
which is not very demanding from the practical point of view.

We have a standard result

PROPOSITION 1. X € L (2, F,P) satisfies Condition 1 if and only if
there exists 6 > 0 such that the function p — Fx (p) is continuous and
strictly increasing on [0, 6).

Now we are ready to prove the main theorem.
THEOREM 1. Let £ = {Xj : Xy satisfies Condition 1}, u be measure of
expectations on 2{1M} and let Ag be a set of a-feasible risk measures for

some a € (0,1). Then with A = Aj there exist p € A which is a solution of
(1.2).

Proof. We show that Problem (1.2) is equivalent to minimizing continuous
function on a compact subset of some Euclidean space.
Let

Sa={veRM:3pec A v=p(Xp), k=1,..., M}

and
S={weRM :IMy . :peH, ce0,1], vp = Mypo(Xp), k=1,..., M}.
Obviously & C S4. Denote S = {My.:¢€H,ce|0,1]}. Thus we have a
correspondence A : A — S4 given by
A(p) = (p(X1), ..., p(Xg)) :=v" € RM.

For My . = p € S we shall especially write
(22)  AMgo) = Mpe(X1),- -, My o(Xp)) "2 0P° € RM.
Let f(v) = lecv[:l W(vy, — 7%) w({k}) for v € RM. Consider a problem
(2.3) min f(v).

VESH

Because f(v?) = ARAE,(p, ¥, ) it is obvious that v? is a solution to (2.3)
if and only if p is a solution to (1.2). Hence it suffices to show that there
exists a solution to (2.3). f is continuous (in Euclidean topology). We shall
show that Sy is compact. Because @ is fixed it is enough to show that S is
compact.
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Boundedness follows almost immediately. Indeed. Denote

d= m,?x|essiank\.

Take arbitrary v#° € S. From (2.2) and the definition of My . we obtain

M M 1 2
lo?el? =Y @) =S <CE50(Xk) - (-0 ep)Fx, (p)dp) :

k=1 k=1 0
For every k ESo(X) < d, —Fx (p) = VaR,(X) < d. Hence

M 1 2
2< Z(cd—f— (1- c)d§¢(p)dp> = Md? < oo,
k=1 0
which shows boundedness of S CRM,
Closedness. It follows from Proposition 2.2 and Theorem 4.1 in [2] we
have that VM € S there exists a probability measure v on B([0,1]) such
that

[Elad

1
(2.4) VX €L  M(X)=|ESa(X)v(de).
0
To prove closedness we shall refer to (2.4) and our assumptions. Let
(v™)nen € S be any sequence such that v» — v € RM. To show that v € S,
we have to find ¢ € H, ¢ € [0, 1] such that for k =1,..., M we have

My o(Xk) = Vg

Using (2.2) we see that sequence (v") corresponds to some sequence of risk
measures (M™). For every k we have:
(2.5) MM Xy) = v 5 Ty, = N(Xp).
To prove that o € S, it suffices to show that N € S, i.e. there exists a
probability measure vy such that VX € Lo N(X) = Sé ES,(X)vn(da).
Observe that:
1. From (2.4) it follows that
1
Vn v, VX € Log M™M(X) = | ESo(X)vn(da).
0
2. For k = 1,..., M, function &« — ES,(X) is continuous on [0, 1].
Indeed: continuity on (0, 1] follows straightforwardly from Definition 2. We
only need to verify continuity at 0. In our case ESy(Xg) = —essinf Xy

& dp. Let apn N\, 0. It follows from our assumptions and Proposition 1
that for k = 1,..., M the function @ — VaR,(X}) is continuous on [0, §)
and VaRg(Xg) = dx. Hence Ve > 03dmg such that Vm > mgy we have
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dr > ES,,, (Xi) = ﬁ §o™ VaRp(Xx)dp > di — €. But ¢ is arbitrary which
shows that ES,(Xy) — dx when o\, 0. This yields continuity of ES,(X})
for every 1 < k < M.

3. For every n, vp([0,1]) = 1, which means the family of probability
measures {Vp }nen is tight. Hence Prohorov Theorem (Theorem 5, Chapter
8, [6]) shows that there exists a subsequence (vp,) weakly convergent to some
probability measure . From the definition of weak convergence and 2. we
conclude that for k=1,..., M

1 1
(26)  M™(Xy) = | ESa(Xi)vm,(da) =5 | ESa(Xi)0(da) = N(Xy),
0 0

where N € § straight from the definition.

Now from (2.5), (2.6) and uniqueness of a limit, it follows that N = N
€ 8. The proof of closedness of & is finished.

Now, since S4 is compact and f is continuous, in (2.3) we conclude that

minimum value is admitted for some v”. Corresponding p is a solution of
(12). m

3. Application — risk measure optimal with respect to capital
requirements
Now, we define the problem of choice of a risk measure optimal with
respect to the capital requirements according to the motivations provided in
Section 1.

DEFINITION 7. Let £L = {X) : k=1,..., M} be a set of some risky payoffs.
Measure of risk optimal in the class A, under measure of expectations p is
a solution of the problem

M
(3.1) minea Y p(Xe)p({k}).

k=1
3.1. Results. First we impose stronger assumption on the distribution of
the payoffs. The assumptions which have strong practical justification en-
able us to prove Lemma 1 which is our key argument in the discussion of
properties of VaR and coherent measures of risk.

We shall consider payoffs X, for which distribution function Fx satisfy:

Condition 2.

e Fx is continuous on (—o0, 0) and strictly increasing on (—d, 0), for some
0<d<l,;

o Fx(z)=1for z > 0;

o lim, , 4+ Fx(z) =0, Fx(x) >0 for z > —d;
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o lim, ,o- Fx(z)=1-P{X =0}) < 1.

Payoffs for which Condition 2 is satisfied appear in economies where
bonds are tradable securities. A suitable numerical example built in the
framework of CIR model is provided in the Paragraph 3.2.

We have standard fact

PROPOSITION 2. Let X be a random variable such that Fx satisfies Con-
dition 2. Then VaR,(X) has the following properties: 1. p — VaRy(X) s
continuous, 2. VaRo(X) =d, VaRpy(X) <d forp>0,3. pe[1 -P({X =
0}),1] & VaR,(X) =0, 4. p — VaRy(X) is nonincreasing.

We shall use
Assumption 1.

1. In (3.1) we set £ = Ly = {X : for Fx, Condition 2 holds, k =
1,..., M},

2. p is measure of expectations on oil,..M}

We have another assumption, which we justify below.

Assumption 2. In (3.1) we take: A = Ag, where Az is a set of a-feasible
measures of risk for some fixed & € (0,1).

The fact that & is fixed models the situation where security standards
for risk measurement methodologies are provided by the market regulator.
Lack of such standards could pose a serious danger to the whole financial
system.

We have chosen A in order to consider the most popular measures of risk
which posses the property that p(X) can be straightforwardly interpreted as
a capital requirement for a position X.

REMARK 1. It is crucial that & is fixed. If we left the choice of & to
the investor, then under our assumptions VaR;(X) = 0, which yields the
minimal risk. However this means that a non-positive payoff requires no
capital charge which is not acceptable from the economic point of view.

Denote py = P(X, =0), k=1,..., M. We have
Assumption 3. For a € (0,1) which is considered in Assumption 2, we
require that:
a(l1 - VaRs(Xg))

VaRs(Xy)

Number p; can be interpreted as the probability that our expectations
are correct. For the problem to have economic sense, one should think that &

is 0.05 or smaller. Then the inequalities above can be interpreted as follows:
investor takes some risk (probability that he is right does not exceed 1 — @),

Ve=1,... M 1—a>pp>
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however he does not speculate aggressively as px > % We claim
that in most cases those equations are not very restrictive as it is illustrated
in the example presented at the end of the paper.

First we find a spectral measure of risk Mgy, which produces lower risk

numbers than VaR5 pointwise on c M-
LEMMA 1. Under Assumptions 1, 2 and 3 there exists ¢ such that
(3.2) VX €Ly  Mgy(X) < VaRa(X)

Proof. From the assumptions and in particular from the finiteness of c M
it follows that there exists 0 < < 1 such that
(0 + a(l —46))(1 —VaRs(Xk))

3.3 Vk > .
(3:3) Pk (1 - 0)VaRa(Xz)
We can always pick ¢ small enough, so that 6 < VaRs(Xy) for every k =

., M. Indeed. From Assumption 3, & < 1 — pi for every k, hence by 3.
in Proposition 2 we see that for every k we have VaRs(Xy) > 0.

Let b= 1-4, a = 1=U=00=9) Define §(p) = allp 5+bl(5,1). By verifying
Conditions 1, 2, 3 of Definition 5, one easily shows that ¢ € H. Now choose
any X = Xy € Ly, for which we show inequality in (3.2). Because X is
fixed, for simplicity we shall write: VaR, := VaR,(X).

First we show the inequality

1
(3.4) b{(1 - VaR,)dp>1— VaRs.

&

From Proposition 2 we see that for p > 1 — py, we have VaR, = 0, hence
1 —-VaR, = 1. Furthermore under Assumption 3 we have 1 —p, > &. It
follows that

1 1—pk
b{(1-VaRp)dp=0b | (1-VaR,)dp+ bpy.
& &
Now using Proposition 2, we obtain
1-pg
b S (1-VaR,)dp > b(1 —VaRs)(1 — pr — @).
&
Using this and (3.3), we arrive at:

Sl—VaR )dp > b(px + (1 — VaRsz)(1 — px — &)) >

> (1—VaRz)(6 +a(l —8) + (1 — a)(1 - 9))
=1—-VaR;.
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Observe that
1 1

Mgo(X)=—18() Fi(p) dp={d(p)VaR,dp.
—VaRp(X)
From Proposition 2: VaR, € (VaRs,d) C (VaRs,1) for p € (0,&), and
hence

& 1
Mq_S,O(X) = S QE(P)VadeP =a S VaRydp + bS VaRydp <
0 &

1
<aa+b1—a)+b{((VaR, — 1))dp 21— b{(1 - VaR,)dp <

[

)
<'1-(1—VaRz) = VaRa(X),

where (*) follows from the fact that ¢ € H and (**) follows from (3.4). Thus
we obtained (3.2). It is clear that M 4,0 is a spectral measure of risk. =

Now, we are ready to prove the final theorem.

THEOREM 2. Under Assumptions 1, 2 and 3, there exist <13 € H,é € [0,1]
such that M . is a solution of (3.1).

Proof. Consider a general Problem (1.2). If we set 7 = 0, ¥(z) = z and take
i as a measure of expectations, we see that Problem (3.1) is just the special
case of (1.2). Since under Assumption 1 the hypotheses of the Theorem 1
hold we conclude that the solution exists. From Corollary 5.2 in [1] it follows
that if solution of (3.1) exists, it is either VaRs or some spectral measure
of risk. Now Lemma 1 shows that minimum value is necessarily attained in
the set of the spectral measures of risk. m

3.2. Example. We shall describe a market model for which Assumptions
1, 21 3 are satisfied.

Let @ = 0.05. We consider a set of measures of risk 4 = As. Thus
Assumption 2 holds.

Construction of the set £ and choice of measure u. Consider CIR
model ([4]) on (2, F,P*) with filtration (F%), in which dynamics of the short
rate is given by dry = (b — ary)dt + o/TedW}, where a,b,0 > 0 and W! is
P*-Wiener process. Consider another financial instrument S with dynamics
dS; = Sy(r¢dt + v(t)dW}?), where v is a continuous function and W? is P*-
Wiener process independent of W', It is clear that model extended with
this instrument is arbitrage-free.

Fix numbers 0 = t < T, < T < Ty, which have the interpretation:
t-present date, T,-investor’s horizon, T-maturity of a bond which investor
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uses to construct speculative positions, T,-market horizon. Furthermore let
n : [0,Ty] — R be some continuous function. Denote S7, = g:;* and let
A={weQ : 5} (w) <n(T.)}. Define position

(3.5) X1 = P(T.,T)(I4 - 1).

Setting £ = {X;} and taking measure yu as Dirac delta at {1}, we are in a
situation, in which Assumption 1 holds if Fx, satisfies Condition 2.

Argument which shows that Fx, satisfies Condition 2. First we find
distribution function of X;. From general theory (e.g. [9]) we know that at
time ¢, price of a bond with maturity 7" is given by P(¢t,T) = emtT)—n(tT)re
where m and n are some functions. One easily verifies that —1 < X; <
0, P*—a.s. Hence for t < —1, Fx,(t) =0 and for t > 0, Fx,(t) = 1. We
have to investigate the case —1 < t < 0. Using the fact that W' and W2
are independent Wiener processes, we easily obtain:

Fx,(t) =P*(X; < t) = P*(A n{P(T,T) > —t})

(m(T*,T) - ln(—t)),

= (=r)E, n(T.,T)

where p; = P*(A) = P*({X; = 0}).

From on we shall assume that b = {o0%. In [10] Rogers showed that
ry = Y2, where (Y;) is Ornstein-Uhlenbeck process with mean function m
and variance function V' (compare [8], Chapt. 5, Example 6.8).

It follows that rr, has a continuous distribution with positive density
on [0,00). Because m(T,T) < 0 and n(T%,T) > 0, X; has continuous
distribution on [—e”™T+T) 0). Observe that lim, ,q- Fx,(t) = 1 — p;. We
see that distribution function of X; satisfies Condition 2 with d = ¢™(T=T)
regardless of the values of parameters a,o. This means that our choice of £
and p makes our model consistent with Assumption 1.

Specification of the model so that Assumption 3 holds. Consider the
model described above in which a = 0.5, 0 =1, T =2, T, = 1, m(0) = 0.5,
V(O) =1, So = 1, V(S) = 1.5, 77(3) =1,s¢€ [OaT*]

REMARK 2. With values of the parameters specified above, we have the
situation with natural economic interpretation: X; is the instrument which
is hedged if investor does not take satisfying profit on the position created
by the instrument S.

Numeric computations reveal that: p; = P*(X; = 0) = 0.7734, in par-
ticular p; € (0.77,0.78), 1 — & = 0.95, VaRs(X1) € (0,75,0.755). Hence
a(1-VaRa(X1)) 0.05(1-0.75)

VaRalX1) < 075
tion 3 is satisfied.

= % < % < 1 — @&. This shows that Assump-
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