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APPROXIMATION OF M A R K E T VALUATIONS 
ON THE SET OF RISK MEASURES 

A b s t r a c t . In this work we introduce the problem of choice of a risk measure providing 
best approximation of risk estimates derived from market valuations. We begin with a 
brief overview of connections between pricing and risk measurement issues which reveal 
importance of the problem we consider and lead to the mathematical formulation. In the 
main result under fairly general assumptions we establish the existence of the solution. 
In the second part we define a problem of finding a risk measure optimal with respect 
to the capital requirements. We impose additional assumptions, all of which have strong 
practical justification and in this particular setting we show that a solution exists and 
is a spectral measure of risk. As an example of application we show that there is some 
optimal spectral measure of risk for speculative position created in a market model with 
CIR short rate dynamics. 

Introduction 
In 2006 Basel Committee published a set of rules briefly called Revised 

Basel II which describes standards of financial security which must be ob-
served by participants of the financial markets. This code states e.g. that 
any risky position created by a bank, requires some amount of capital to be 
held in case of a loss on the position. This is called a capital requirement. 
The amount to be held obviously depends on the level of risk of the par-
ticular position. Key issue is that Basel II allows financial institutions to 
implement their own systems of risk measurement. Therefore the systems 
can be suited to the institutions' risk attitudes and profiles of investment. 

Calculation of capital requirements is one of the most important problems 
in modern finance. Another one is pricing financial products in the presence 
of market incompleteness. Practical difficulties arise when classical martin-
gale valuation methods are employed. Alternative ways of pricing suggested 
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by several authors, e.g. Cherny and Hodges [3], Jaschke and Kuchler [7] re-
vealed strong relationships between risk measurement and pricing problems. 
In fact prices can be derived from risk estimates (called risk numbers) as 
well as risk measures (functions which assign risk to contingent claims) can 
be defined by price systems (valuation functionals on contingent claims). 

Motivated by this correspondence and Basel II code, we formulate two 
problems which are of interest for pricing purposes and are related to holding 
capital requirements. We consider a one period financial market model on 
some probability space P). We assume there are M risky positions 
{XI,...,XM} = C C LOO(Cl, T, P) which can be entered in the market. 
There is some fixed set A of the risk measures (to be defined later). We also 
assume we have an exogenously given vector of risk estimates (risk numbers) 
r = (ri,..., TM) G KM corresponding to the positions X\,..., XM G If 
we consider a situation in which risk numbers r are somehow derived from the 
prices observed in the market, we are in a position in which it is reasonable to 
assume that r is a result of some estimation and hence it may not correspond 
to actual risk numbers produced by any risk measure p G A. This suggests 
a very natural 

Q U E S T I O N 1. Which measure of risk p G A produces risk numbers for 
X G C which in some sense provide the best approximation to the given risk 
numbers r G Mm? 

The second problem under consideration is directly related to Basel II. 
In many financial institutions, e.g. investment banks capital requirements 
are regarded as a burden. Therefore in this paper we are interested in mini-
mizing capital requirements so that more money is available for speculative 
purposes. 

So far the problem has not been considered in the literature. As we 
shall see, it can be viewed as a dual-criterion optimization problem in which 
we look for a risk measurement methodology which is consistent with the 
security standards imposed by market regulators and at the same time mini-
mizes average capital requirements. We consider the most popular measures 
of risk, e.g. VaR, TCE, WCE, ES and spectral measures of risk (all of which 
are defined later). We show that the mathematical formulation is a special 
case of the problem mentioned in Question 1. Hence the existence of the 
solution would be an easy consequence of the results obtained in the first 
part of this work. However, in the second part we impose stronger assump-
tions on the distributions of the payoffs X G C under which we are able to 
tell more about the solution, i.e. we prove that it is a spectral measure of 
risk. This result is our contribution to the ongoing debate on proper risk 
measurement methodologies. 
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We begin with some notation and definitions of risk measures which are 
considered in this paper. In Section 1 we formulate the problem according 
to the Question 1 and provide assumptions. We work with bounded random 
variables X such that P (X = ess inf X) = 0 and consider the most popular 
risk measures used both in practice and theory, i.e.: VaRa, TCEa, WCEa, 
ESa and spectral measures of risk In Section 2 we establish the 
existence of the solution of a problem under our fairly general assumptions. 
In Section 3 we consider a problem of the existence of a risk measure optimal 
with respect to the capital requirements as a very special case of the general 
problem. Under stronger assumptions on the distributions of the payoffs we 
show that the solution is a spectral measure of risk. Numerical example in 
CIR model is also provided. 

Conventions and notation 
Consider some probability space (ii, T , P). In this paper any random 

variable X £ Loc(i7, T, P) is interpreted as a risky payoff (not as a loss). Fx 
denotes distribution function of X and qa{X) denotes the lower a-quantile 
of X. As in [5] we have the following 

DEFINITION 1. Let C C L^CL, J7, P) be a set of some risky payoffs. Any 
mapping p : C —> R is called a measure of risk if it is monotone, i.e. X < 
Y =>• p(X) > io(y), X,Y G £ and translation invariant, i.e. p(X + c) = 
P(X) -C, x e £ , c e R. 

Later we shall consider the most popular measures of risk, namely: Value-
at-Risk (VaR), Tail Conditional Expectation (TCE), Worst Conditional Ex-
pectation (WCE), Expected Shortfall (ES) and a class of statistics called 
spectral measures of risk which were introduced in [2]. For convenience we 
provide the definition. 

DEFINITION 2 . For a E (0,1] we have 

1. VaRa(X) = -sup{x | Fx(x) < a } -qa(X), 

2. TCEa(X) = -E(X\X < qa{X)) 

3. WCEa(X) = - mf{E%(X)\A e T : P(A) > a } , 
where PA{-) = P(-|J4) 

4. ESa(X) = - ^ F £ ( p ) d p 

5. ES0 = - i n f { x | F x ( x ) > 0}, 
6. M ^ X ) = cES0(x) - (1 - c ) \l4>(p)Fx(p)dp, 

where F£{p) = -VaRp(X). 
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1. General formulation of the problem 
We begin with a definition of the risk approximation error 

DEFINITION 3 . Let C = {XK : k — 1 ,...,M} be a set of some risky 
payoffs, r G RM, continuous function and by p denote some 
probability measure on - such that \/k < M pM({k}) > 0 . p is 
called measure of expectations. For a risk measure p € A, an average '¡/-risk 
approximation error of a vector of risk numbers r with respect to the measure 
p is a number 

M 
(1.1) ARAEr(p, V, p) = £ *(p(Xk) - nOMW)-

k=l 
Measure p reflects expectations of an investor regarding positions he is 

going to enter, p can be naturally interpreted as a frequency-based probabil-
ity. Argument based on Kolmogorov's Strong Law of Large Numbers shows 
that the goal of minimizing a risk approximation error per position can be 
achieved by minimizing ARAEr. 

On the other hand if we put r = 0 and interpret $ as a function which 
translates risk numbers p(Xk) into capital charges \1f(p(XK)) similar argu-
ment suggests that ARAEQ is an average capital requirement per position 
when methodology p is employed and charges expressed in money are pro-
vided by \1/. We shall return to this interpretation in Section 3 with i ' (x) = x. 

The above considerations motivate the following 
DEFINITION 4 . Let C — {X^ : k = 1 , . . . , M } be a set of some risky payoffs 
and let r, p, be as in Definition 3. Measure of risk measure providing best 
approximation of risk numbers r in the class A with respect to the function 

under measure of expectations /i is a solution of the problem 

(1.2) minpe^ARAEr(p,^>,p). 

Problem. First establish the existence of the solution of (1.2) under some 
moderate assumptions on the distributions of payoffs. In the next section 
apply obtained result to find a risk measure optimal with respect to the 
capital requirements and show that under stronger assumptions the solution 
is a spectral measure of risk. 

2. Existence of the solution 
Fix a probability space (ii,^7, P). We begin with a few important defini-

tions. 
DEFINITION 5 . Spectral class H is a set of functions </> G L 1 ( [0 ,1] ) , which 
satisfy the following: 1. 4>(p) > 0 , p G [0,1], 2. ^4>{p)dp = 1, 3. 4> is 
nonincreasing. 
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DEFINITION 6. Let a G (0,1). A set of a-feasible measures of risk is given 
by 

(2.1) Aa = {VaRa, TCEa, WCEa, ESa, Mfac, c G [0, 1], <f> G H}. 

We shall work under the assumption that distributions of the payoffs 
satisfy 

Condition 1. P (X = essinf X) = 0, 
which is not very demanding from the practical point of view. 

We have a standard result 

PROPOSITION 1. X G L00(II,.7R, P) satisfies Condition 1 if and only if 
there exists S > 0 such that the function p —> F^(p) is continuous and 
strictly increasing on [0, <5). 

Now we are ready to prove the main theorem. 

THEOREM 1. Let C = {Xk : Xk satisfies Condition 1}, p be measure of 
expectations on and let Aa be a set of a-feasible risk measures for 
some a G (0,1). Then with A = Aa there exist p G A which is a solution of 
(1 .2 ) . 

Proof. We show that Problem (1.2) is equivalent to minimizing continuous 
function on a compact subset of some Euclidean space. 

Let 
SA = {v G Rm : 3p G A, vk = p(Xk), k = l,...,M} 

and 

S = {v£RM : 3 M^c : ^ H , c e [ 0 , 1 ] , vk = M^c(Xk), k = l,...,M}. 

Obviously S C £4 . Denote S = { M ^ : cj> G H, c G [0,1]}. Thus we have a 
correspondence A : A —* 1S4 given by 

A(p) = (p(Xl),...,p(Xk)):=v?€RM. 

For = p G S we shall especially write 

(2.2) A{M^C) = ( A ^ c p f i ) , . • •, M^c{Xk)) " ^ v^ G Mm. 

Let f(v) = ~ rk) p({k}) for v G Mm . Consider a problem 

(2.3) min /(«). 
vesA 

Because f(vp) = ARAEr(p, it is obvious that vp is a solution to (2.3) 
if and only if p is a solution to (1.2). Hence it suffices to show that there 
exists a solution to (2.3). / is continuous (in Euclidean topology). We shall 
show that <S_4 is compact. Because a is fixed it is enough to show that S is 
compact. 



446 T. Tkalinski 

Boundedness follows almost immediately. Indeed. Denote 

d = max | ess inf Xk \ • 
k 

Take arbitrary G <S. From (2.2) and the definition of M ^ ^ w e obtain 

M M / 1 v 2 
= J2(v£c)2 = X ) cESo(Xk) - (1 - c ) J <P(p)Fxk (P)dp • 

fc=l k=1^ 0 / 
For every k ES0(X) < d, -F£(p) = VaRp(X) < d. Hence 

M , 1 \ 2 ^ / \ 
< J ^ i cd+ (1 - c)d\4>(p)dp\ = Md2 < oo, 

fc=A o / 

which shows boundedness of <S C 
Closedness. It follows from Proposition 2.2 and Theorem 4.1 in [2] we 

have that V0Vi € S there exists a probability measure v on £>([0,1]) such 
that 

l 
( 2 . 4 ) V X e Loo M{X) = j ESa{X)v(da). 

o 
To prove closedness we shall refer to (2.4) and our assumptions. Let 

(fn)ner>j c 5 be any sequence such that Mm . TO show that v G S , 
we have to find 4> G H, c G [0,1] such that for k = 1 , . . . , M we have 

M<p,c{Xk) = vk. 

Using (2.2) we see that sequence (vn) corresponds to some sequence of risk 
measures (A4n). For every k we have: 

( 2 . 5 ) Mn(Xk) = v l ^ v k := N{Xk). 

To prove that v G <S, it suffices to show that iV G S , i.e. there exists a 
probability measure vn such that VX G L00 N(X) — ^ ESa{X)v^(da). 

Observe that: 
1. From (2.4) it follows that 

l 
V n 3vn \/X G Loo M n ( X ) = J ESa(X)un(da). 

o 
2. For fc = 1 , . . . , M , function a —> ESa(Xk) is continuous on [0,1]. 

Indeed: continuity on (0,1] follows straightforwardly from Definition 2. We 
only need to verify continuity at 0. In our case ESo(Xk) = — ess inf Xk 

= dk. Let an \ 0. It follows from our assumptions and Proposition 1 
that for k = 1 , . . . , M the function a —> VaRa(Xk) is continuous on [0, <5) 
and VaRo(Xk) — dk. Hence Ve > 03mo such that Vm > mo we have 
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dk > ESam(Xk) = Jom VaRp(Xk)dp > d k - e . But e is arbitrary which 
shows that ESa(Xk) —> dk when a \ 0. This yields continuity of ESa(Xk) 

for every 1 < k < M. 
3. For every n, i/n([0,1]) = 1, which means the family of probability 

measures {Vn}neN is tight. Hence Prohorov Theorem (Theorem 5, Chapter 
8, [6]) shows that there exists a subsequence (vni) weakly convergent to some 
probability measure v. From the definition of weak convergence and 2. we 
conclude that for k = 1 , . . . , M 

l l 
(2 .6 ) Mni(Xk) = jESa(Xk)vni{da) ^ JESa(Xk)v(da) = N(Xk), 

o o 
where N G S straight from the definition. 

Now from (2.5), (2.6) and uniqueness of a limit, it follows that N = N 
G S. The proof of closedness of S is finished. 

Now, since 1S4 is compact and / is continuous, in (2.3) we conclude that 
minimum value is admitted for some vp. Corresponding p is a solution of 
(1 .2 ) . • 

3. Application — risk measure optimal with respect to capital 
requirements 
Now, we define the problem of choice of a risk measure optimal with 

respect to the capital requirements according to the motivations provided in 
Section 1. 

D E F I N I T I O N 7 . Let C = {Xk : k = 1,..., M} be a set of some risky payoffs. 
Measure of risk optimal in the class A, under measure of expectations ¡jl is 
a solution of the problem 

M 

(3 .1 ) minp(zA 

k= 1 

3.1. Results. First we impose stronger assumption on the distribution of 
the payoffs. The assumptions which have strong practical justification en-
able us to prove Lemma 1 which is our key argument in the discussion of 
properties of VaR and coherent measures of risk. 

We shall consider payoffs X, for which distribution function Fx satisfy: 

Condition 2. 

• Fx is continuous on (—00, 0) and strictly increasing on (—d, 0), for some 
0 < d < 1; 

• Fx(x) = 1 for x > 0; 
• lim2._+_d+ Fx(x) = 0, Fx(x) > 0 for x > —d; 
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• lim^o- Fx{x) = 1 - ¥({X = 0}) < 1. 
Payoffs for which Condition 2 is satisfied appear in economies where 

bonds are tradable securities. A suitable numerical example built in the 
framework of CIR model is provided in the Paragraph 3.2. 

We have standard fact 

PROPOSITION 2 . Let X be a random variable such that Fx satisfies Con-
dition 2. Then VaRp(X) has the following properties: 1. p —> VaRp(X) is 
continuous, 2. VaR0(X) = d, VaRp(X) < d for p > 0, 3. p <E [1 - P ( { X = 
0}), 1] O VaRp(X) = 0, 4. p —> VaRp(X) is nonincreasing. 

We shall use 
Assumption 1. 

1. In (3.1) we set C = CM = {Xk : for Fxk Condition 2 holds, k = 
1 , . . . , M } , 

2. ¡JL is measure of expectations on . 
We have another assumption, which we justify below. 

Assumption 2. In (3.1) we take: A = A&, where Aa is a set of a-feasible 
measures of risk for some fixed a £ (0,1). 

The fact that a is fixed models the situation where security standards 
for risk measurement methodologies are provided by the market regulator. 
Lack of such standards could pose a serious danger to the whole financial 
system. 

We have chosen A in order to consider the most popular measures of risk 
which posses the property that p(X) can be straightforwardly interpreted as 
a capital requirement for a position X . 
R E M A R K 1. It is crucial that a is fixed. If we left the choice of a to 
the investor, then under our assumptions VaRi(X) = 0, which yields the 
minimal risk. However this means that a non-positive payoff requires no 
capital charge which is not acceptable from the economic point of view. 

Denote pk = F(Xk = 0), k = 1 , . . . , M. We have 
Assumption 3. For a £ (0,1) which is considered in Assumption 2, we 
require that: 

VA; = 1 , . . . , M 

Number pk can be interpreted as the probability that our expectations 
are correct. For the problem to have economic sense, one should think that a 
is 0.05 or smaller. Then the inequalities above can be interpreted as follows: 
investor takes some risk (probability that he is right does not exceed 1 — a), 
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however he does not speculate aggressively as pk > Vofi-^affi^" 
that in most cases those equations are not very restrictive as it is illustrated 
in the example presented at the end of the paper. 

First we find a spectral measure of risk which produces lower risk 
numbers than VaRa pointwise on Cm-

L E M M A 1 . Under Assumptions 1, 2 and 3 there exists (j> such that 

(3 .2 ) V X € CM MU{X) < VaRa(X) 

Proof. From the assumptions and in particular from the finiteness of Cm 
it follows that there exists 0 < S < 1 such that 

( 3 ' 3 ) Pk > (1 - 5)VaRUXk) * 

We can always pick S small enough, so that 6 < VaRa(Xk) for every k = 
1 , . . . , M. Indeed. From Assumption 3, a < 1 — pk for every k, hence by 3. 
in Proposition 2 we see that for every k we have VaRa(Xk) > 0. 

Let b = l - S , a = Define (¡){p) = a l ^ j + M ^ i ] . By verifying 
Conditions 1, 2, 3 of Definition 5, one easily shows that < ^ 6 1 Now choose 
any X = Xk 6 Cm, for which we show inequality in (3.2). Because X is 
fixed, for simplicity we shall write: VaRp := VaRp(X). 

First we show the inequality 
l 

( 3 . 4 ) b\{l-VaRp)dp>l-VaRa. 
a 

From Proposition 2 we see that for p > 1 — pk, we have VaRp = 0, hence 
1 — VaRp = 1. Furthermore under Assumption 3 we have 1 — pk > a. It 
follows that 

l i -Pk 

b\{l-VaRp)dp = b \ (1 - VaRp)dp + bpk. 
a a 

Now using Proposition 2, we obtain 
I-PFC 

b \ (1- VaRp)dp > 6 (1 - VaRa)( 1 - pk - a). 
a 

Using this and (3.3), we arrive at: 
l 

b 5 (1 - VaRp)dp > b(pk + (1 - VaRa)(l-Pk ~ a ) ) > 
a 

> (1 - VaRs) {6 + a{ 1 - 6) + (1 - a ) ( l - <S)) 

= 1 - VaRa• 
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Observe that 
1 1 

M-4>fi{X) = - \ m F g r i dp = \4>(p)VaRpdp. 

° -VaRp(X) ° 

From Proposition 2: VaRp G ( V a R a , d ) C (VaR&, 1) for p e (0,a), and 
hence 

1 a 1 
M$t0(X) = \ 4>(p)VaRpdp = a J VaRpdp + b \ VaRpdp < 

0 0 <5 

1 1 
<aa + b ( l - a ) + b\ ((VaRp - 1 ))dp = 1 - b \ (1 - VaRpdp < 

a a 

1 - (1 - VaRa) = VaRa(X), 

where (*) follows from the fact that 4> € H and (**) follows from (3.4). Thus 
we obtained (3.2). It is clear that a spectral measure of risk. • 

Now, we are ready to prove the final theorem. 
T h e o r e m 2 . Under Assumptions 1 , 2 and 3 , there exist ^ e i , c £ [ 0 , 1 ] 

such that M^z is a solution of ( 3 . 1 ) . 

Proof. Consider a general Problem (1.2). If we set r = 0, i'(x) = x and take 
[L as a measure of expectations, we see that Problem (3.1) is just the special 
case of (1.2). Since under Assumption 1 the hypotheses of the Theorem 1 
hold we conclude that the solution exists. From Corollary 5.2 in [1] it follows 
that if solution of (3.1) exists, it is either VaRa or some spectral measure 
of risk. Now Lemma 1 shows that minimum value is necessarily attained in 
the set of the spectral measures of risk. • 

3.2. Example. We shall describe a market model for which Assumptions 
1, 2 i 3 are satisfied. 

Let a = 0.05. We consider a set of measures of risk A = Aa- Thus 
Assumption 2 holds. 
Construction of the set C and choice of measure Consider CIR 
model ([4]) on (fl, T, P*) with filtration (Tt), in which dynamics of the short 
rate is given by drt = (b — art)dt + ay/rtdWl, where a, b, a > 0 and W1 is 
P*-Wiener process. Consider another financial instrument S with dynamics 
dSt = St(rtdt + v(t)dWf), where v is a continuous function and W2 is P*-
Wiener process independent of W1. It is clear that model extended with 
this instrument is arbitrage-free. 

Fix numbers 0 = t < T* < T < T0a, which have the interpretation: 
¿-present date, T*-investor's horizon, T-maturity of a bond which investor 
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uses to construct speculative positions, Too- market horizon. Furthermore let o 
rj : [0, T*] —> R be some continuous function. Denote S ^ = and let 
A = {UJ G TI : SJ> (LJ) < RJ(T*)}. Define position 
(3.5) X\ = P(T*,T)(IA - 1). 

Setting C — {Xi} and taking measure ¡JL as Dirac delta at {1}, we are in a 
situation, in which Assumption 1 holds if FXL satisfies Condition 2. 

Argument which shows that FXL satisfies Condition 2. First we find 
distribution function of X\. From general theory (e.g. [9]) we know that at 
time t, price of a bond with maturity T is given by P{t, T) = e™(t,T)-n(t,T)rt ^ 
where M and n are some functions. One easily verifies that — 1 < X\ < 
0, P* - a.s. Hence for t < - 1 , FXL(t) = 0 and for t > 0, FXL(t) = 1. We 
have to investigate the case — 1 < t < 0. Using the fact that W1 and W2 

are independent Wiener processes, we easily obtain: 

FXL(T) = P*(Xi <t)= n {P(T*,T) > - i } ) 

. ^ ^ ( - E ^ T F I ) , 

where P l = F"(i4) = P*({X! = 0}). 
From on we shall assume that b = \A2. In [10] Rogers showed that 

RT = YJ2, where (YT) is Ornstein-Uhlenbeck process with mean function M 
and variance function V (compare [8], Chapt. 5, Example 6.8). 

It follows that TT„ has a continuous distribution with positive density 
on [0, oo). Because m(T*,T) < 0 and n(T*, T) > 0, X\ has continuous 
distribution on [-eM(T*<T\ 0). Observe that l im t^ 0 - FXL{t) = 1 - p\. We 
see that distribution function of X\ satisfies Condition 2 with d = E

M(T*.T) 
regardless of the values of parameters a, a. This means that our choice of C 
and fi makes our model consistent with Assumption 1. 

Specification of the model so that Assumption 3 holds. Consider the 
model described above in which a = 0.5, A = 1, T = 2, T* = 1, m(0) = 0.5, 
V(0) = 1, S0 = 1, i/(s) = 1.5, R](s) = l,SE [0, T*]. 

R E M A R K 2 . With values of the parameters specified above, we have the 
situation with natural economic interpretation: X\ is the instrument which 
is hedged if investor does not take satisfying profit on the position created 
by the instrument S. 

Numeric computations reveal that: p\ = P*p£i = 0) « 0.7734, in par-
ticular P l G (0.77,0.78), 1 - A = 0.95, VAR^XI) G (0,75,0.755). Hence 
Q(VaK ti(x1?)) < 0'05(O.75°'75) = BS < M < 1 - T h i s s h o w s t h a t Assump-
tion 3 is satisfied. 
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