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g-CHORDAL CURVES 

A b s t r a c t . In this paper we introduce a notion of g-chordal curves which are a 
natural generalization of equichordal, equireciprocal and equipower curves. A Crofton-
type integral formula and estimations of the area and the length of g-chordal curve are 
given. Moreover, a 1-parameter family of ovals with exactly four vertices in the class 
generated by the function g (x) = xm is constructed. A remark on the equichordal 
problem ends the paper. 

1. Introduction 
Let C be a plane closed simple regular curve and let g : (0, +oo) —> R be 

a strictly monotonic function of the class C1. Let || denote the distance 
between points A, B in the euclidean space R2. 

D E F I N I T I O N 1 . 1 . A point P in R2 is called a g-chordal point of C if it has 
the following property: if a chord of C passes through P and joins points 
Pi, P2 of C then 

and the sum does not depend on the choice of a chord. The curve C will be 
called a g-chordal curve. 

In this paper we will consider all g-chordal curves with g-chordal point 
at the origin O. 

We denote by K the class of all plane simple closed curves given in a 
polar form 
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(1.1) g(\\PP1\\)+g(\\PP2\\) = c 

(1.2) t -> r(t)eü for t e [0, 2tr] 
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where a function r : R —> R satisfies the following conditions: 

' r G C 1 

(1.3) S r ( i ) > 0 
k r (t + 2tt) = r (t) 

for i e R. 
We associate with each function r : R - » l a function r v : R —> R given 

by the formula 

(1.4) TV (t) = r (t + tt) for t G R. 

A strictly monotonic function 5 : (0, +00) —> R of the class C 1 determines 
a subclass Kg of the class K by the following way: a curve of the form (1.2) 
belongs to Kg if and only if the function r satisfies the following condition 

(1.5) g o r + g o r^ = const 

where o denotes the composition of functions. A curve belonging to the class 
Kg is a g-chordal curve. 

The class Kg generated by the function g (u) = u contains all equichordal 

curves, see [6]. The class Kg generated by the function g (u) = — contains 

all equireciprocal curves, see [4], The class Kg generated by the function 
g(u) = lnu contains all equipower curves, see [15], [16], [7], [8], [9]. 

In this paper we will assume that a function g is a strictly increasing 
function. 

The considerations in the fourth section are connected with ovals. We 
recall that a plane simple closed curve with a positive curvature will be called 
an oval, see [11], [14]. 

2. Crofton-type integral formula 
We consider two curves Cn, t —> rn (t) elt for t € [0, 2ir], (n = 1, 2) be-

longing to a class Kg and satisfying the condition 

(2.1) g orn + gornt7T = cn. 

We assume that C\ is curve lying in the region bounded by C2. Then r\ (t) < 
T2 (t) for t € [0, 27t]. The function g is strictly increasing so g(ri(t)) < 
9 (f2 (t)) for t G [0,27r]. This inequality implies immediately that c\ < C2. 
We denote by CiC'2 a region bounded by C\ and C2. We consider a mapping 
G : [0,1] x [0, 2?r] C\C2 given by the formula 

(2.2) G (s, t) = g-1 (sg (r2 (t)) + (1 - s) g ( n (i))) e l t . 

For each fixed s 6 [0,1] a curve t —> G (s, t) is a g-chordal one. Indeed, let 

(2.3) r (s, t) = g~l (sg (r2 (t)) + (1 - s) g ( n ( i ) ) ) . 
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Making use of (2.1) we get 

g (r (s, t)) +g(r(s,t + tt)) = sc2 + (1 - s) cx 

for a fixed s E [0,1] and for all t E [0, 2ir\. 

We note that s = 0 determines C\ and s = 1 determines 

Let x E M2. We denote by ||:r|| the distance between x and the origin 0. 

THEOREM 2.1. Let C\,C2 E Kg where g is a positive-valued function. If 

C\ lies in a region bounded by C2 and the condition (2.1) holds then we have 

(2.4) 55 ^ ^ > d x = . { c 2 - c i ) . 
C1C2 

Proof. Let 

(2.5) E = { (s , t ) : 0 < s < 1,0 < t < 2tt} . 

We denote by Gg a restriction of the function G to the set E. The 
function GE maps bijectively E onto interior of the region C\C2 with deleted 
a line segment on x-axis. 

We determine the jacobian JG.e(s,i ) of the function GE at the point 
(s,t). By (2.2) we have 

9Ge , ,, _ g(r2 (t))-g(n (t)) it 

d s [ S ^ - g' (r (s, t)) 

sg'{r2{t))r'2{t) + (l-s)g>{n (t))r[(t) it it 

dt g'(r(s,t)) 6 

and 
r 

(2.6) JGe = (gor2 -gon) ——. 
g o r 

We note that JGE (^j^) 0 for (s,i ) E E and GE is a diffeomorphism. 
For x E G (E) we have x = r(s, t) elt for some (s, t) E E. Using the classical 
theorem on diffeomorphism we get 

H ^ ^ SS ^ 
CXC2 L|X|1 G(E) L|X|1 

1 2Tr 
= S i (g(r2(t))-g(ri(t)))dtds 

0 0 
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2tr 
= I (9(r2(t))-g(ri(t)))dt 

o 
7T 7T 

= S (9 fa (t)) " 5 fa («))) dt + \ (g fa (i + tt)) - g fa (t + tt))) di 
O 0 
7r 

= I [ ( 5 ( r 2 ( * ) ) + 3 fa,TT ( I ) ) ) - ( 5 ( r i ( I ) ) + 5 fa,- (T) ) ) ] dt = TT (C2 - CI) . . 
o 

The formula (2.4) belongs to Crofton-type formulas. The original Crofton 
formulas can be found in [9]. 

R E M A R K 2 . 1 . For the function g (u) = u2 we have 

7r (c2 — ci) = J j 2dx = 2 areaCiC2 
C1C2 

but this result can be derived immediately by definition. 

3. Estimations of the area and the length of a g-chordal curve 
We assume that a function g : (0, +00) —> K satisfies the following con-

ditions: 

(3.1) g' (u) > 0, for all u G (0, +00), 

(3.2) g" (u) < 0, for all u G (0, +00). 

Let C, t —> r (t) elt for t G [0, 27t] be a g-chordal curve and 

(3.3) g(r(t))+g(r(t + 7r)) = c. 
In the sequel we will assume that the function r is 2-7r-periodic and r G C2 . 

We introduce the following functions 

(3.4) a (u) = g~x (c-g («)), 
(3.5) v{u) = u2 + [a{u)]\ 

(3.6) h V = 7 k 

for u G (0, +00). 

T H E O R E M 3 . 1 . Under assumptions (3.1), (3.2) and (3.3) the area of the 
region bounded by a g-chordal curve C satisfies the inequality 

(3.7) areaC > TT g~l 2. 

Proof. It follows from (3.1) and (3.2) that h is a strictly increasing function. 
We have a' (tt) = and tf («) = 2g' (u) (h (u) - h(a («))). 
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Let cp' (u) = 0. Then we have h(u) — h (a (u)) = 0 and u = a (u). Hence 
we get immediately u = g~x Since we have a (u) = u, a' (u) = — 1 and 
ip" (û) = Ag' (u) h! (u) > 0 so tp attains the unique minimum at the point u. 

We have y> (ïï) = 2^ = 2 [g'1 ( § ) ] 2 and 

r _ i / C M 2 

<p (u) > 2 g y-J for arbitrary u G (0, +oo) . 

Thus we have 2tt n 
2 areaC = \ [r (i)]2 dt=\(p (r(t)) dt > 2tt \g~l f 

6 o 
R E M A R K 3 . 1 . Condition (3.2) in Theorem 3.1 can be replaced by a condi-
tion g" (u) < 0 for u G (0, +oo). 

T H E O R E M 3 . 2 . Let C G K g , t - > 2 ( t ) = r (t) e u f o r t G [0 , 2tt] and the 

radius vector z (t) and the tangent vector z' (t) to C at z (t) are not collinear. 
Under assumptions (3.1), (3.2) and (3.3) the length L of a g-chordal curve 
C satisfies the inequality 

(3.8) L > 27tîT1 ( I ) . 

Proof. We denote by ¡3 (t) an oriented angle between the radius vector z (t) 
of C and the tangent vector z' (t) to C at 2 (t). We note that 

r' 
(3.9) cot / ? = - . 

r 
We have 

2tt 
L = \ yj[r(t)}2 + [r'(t)]2dt 

0 
27T /,\ 27r 7r 

7T 7T 
= j [r (i) + 5 " 1 (c - g (r (t)))] dt = \ [r (t) + a(r (i))] dt. 

0 0 

Let ip(u) = u + a(u). If tj/ (u0) = 0 then with respect to the condition 
(3.2) we get uQ = g~l (§) . We have ip" (uQ) = ~2g?'^o) > 0, so ip attains the 
unique minimum at u0 and if) (u0) = 2u0 = 2g~ l (|) . Hence we obtain 

7T 
L > \ (r (t)) dt > 2irg~1 . 
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4. One-parameter family of ovals with exactly four vertices in the 
class K ( m ) 
Let m > 1. We denote by K (m) the class Kg where g (u) — um for 

u G (0, +oo). We prove some general theorems on ovals. 
T H E O R E M 4 . 1 . Let a curve C, t —> p(t)eit for t G [ 0 , 2 7 r ] be an oval. If 
m > 1 and 

(4.1) 

then a curve Cn 

f p ' Y 
m > max — 

[0 ,2TT ] V P J 

p (i)™ elt for t G [0, 2ir\ is an oval. 
Proof. C is an oval so its curvature is a positive-valued function and then 

(4.2) x = 2 (p')2 + p2 - pp' > 0 . 

Let us fix a number m > 1 and let 

(4.3) r = pm. 

Differentiating r we obtain 

(4.4) 

and 

(4.5) 

Let 

(4.6) 

r" = 
mpz 

m p 

I - i ) ( „ < ) W < 

k = 2 {r'f + r2 - rr 

Making use of (4.2)-(4.5) we obtain 
„2 2 2 2 2 i7r/cr m z p z 

—^—k = — — 
m2 \ p J mp2 i - i 

m + PP" 

= mx + m 1 I ( p m — — 

P V VP. 
If m satisfies the condition (4.1) then k > 0. 
Using Theorem 4.1 we prove the following theorem 

THEOREM 4.2. In each class K (m) there exists a 1-parameter family of 
ovals with exactly four vertices. 
Proof. Case m = 1. 

A curve Ca, t —> (2 + a cost) elt for t G [0,27r] and a fixed a G (0,1) 
belongs to K (1). Let k denotes the curvature of Ca and 

q (t) = J (2 + a cos t) + a2 sin21. 
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For a € (0,1) we have 

q ( t f k ( t ) = 2 (a2 + 3acosi + 2) > 2 (a2 - 3a + 2) = 2 (1 - a) (2 - a) > 0 

so C a is an oval. 
The equality 

q (t)5 k' (t) = 6a2 (2 cos t + a) sin t 

implies immediately that C a has exactly four vertices. 
Case m > 1. 

Let us fix m > 1 and a € (0,1). Let 

(4.7) r (t) = (2 + a cos f) ™ . 
We note that a curve Cm, i —> r (i) ei4 for t € [0, 2tt] belongs to X (m). Using 
Theorem 4.1 we can show that Cm is an oval. 

For the oval Ca, t —> p(t)elt
 for t £ [0,27r] where p(t) = 2 + a cost we 

have ' p ' ( t ) \ 2 _ 2
 s i n 2 i 

= a P(t) J ~ (2 + a cost)2 

It is easy to verify that 
sin21 a2 1 ,2 < -: « < 

(2 + acosi ) 2 " 4 - a 2 ^ 3 ' 
so the inequality (4.1) is satisfied for m > 1. It means that Cm is an oval. 

Now we prove that Cm has exactly four vertices. The curvature k of C„ 
is given by the formula 

(4.8) k ( t ) = 2 ( r > ( t ) ? H r ( . t ) ? - r ( t ) r » { t ) 
( \ / M t ) ] 2 + [<-'(t)]2) 

Let 

(4.9) u(t) —a s ini 
m 2 + a cos t 

and 

(4.10) m = o a2 + a cos t — 2 
(2 + acosi ) 2 

We have 

(4.11) J (t) = —a 2 cos t + a 
m (2 + acosi ) 2 

(4.12) II 
"3 

and 

(4.13) r' = uir. 
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W e note that the formula (4.8) can be rewrit ten in the form 

(4.14) kr = + 

( v T T w 2 ) 

Different iat ing (4.14) we get 

(4.15) (k'r + fcr')(\/l+w2)5 = ( W - w " ) ( l + to2) - 3 (w 2 + 1 - . 

Us ing (4.12) and (4.13) we rewrite (4.15) in the form 

(4.16) (k' + ku)r(y/l + uj2)5 = u{(2cu' - 0 ( 1 + w 2 ) - 3 J { J 2 + 1 - J ) } . 

W i t h respect t o (4 .14) we have 

k'r(VlT^2)5 = w { 3 ( u / ) 2 - (1 + + OJ2 + 1 ) } . 

T h e equal i ty LO (t) = 0 is satisf ied in the interval [0, 27t] for t = 0 and t — TT 
only. T h u s it is necessary t o show that the funct ion 

(4.17) P = 3(u/)2 - (1 + w2) (£ + W2 + 1) 

has exac t ly t w o zeros in the interval [0,2?r]. 
Subst i tu t ing (4.9) , (4.10) and (4.11) into (4.17) w e obta in 

3 a 2 (a + 2 c o s i ) 2 

P(t) = 
m' (2 + a c o s i ) 

m2 (2 + a cos t)2 + a 2 s in 2 t 

m 2 (2 + a cos t ) 2 

m 2 (2 + a cos t)2 + a 2 s i n 2 1 

m 2 (2 + a c o s i ) 2 

Hence we have 

2 (a2 + a cost — 2) 
(2 + a c o s i ) 2 

m 2(2 + a cos t)4P ( t ) = a 4 (m2 - l ) 2 c o s 4 i + 6 a 3 m 2 ( m 2 - l ) c o s 3 1 

+ 2 a 2 [ ( m 2 - l ) ( 6 m 2 + a 2 - m 2 a 2 ) + 4 m 4 + 6] c o s 2 1 

+ 4 a ( 1 2 m 4 + 2 m 2 a 2 - 2 m V + 3 a 2 ) cos t 

+ ( 4 m 2 + a 2 ) ( 8 m 2 + a 2 - 2 m 2 a 2 ) + 3 a 4 . 

W e consider the po lynomia l 

(4.18) B ( x ) = a 4 ( M - l ) 2 x 4 + 6 a 3 M ( M - 1) x 3 

+ 2 a 2 [ ( M - 1) (6Af + a 2 - M a 2 ) + 4 M 2 + 6] x 2 

+ 4 a ( 1 2 M 2 + 2 M a 2 - 2 M 2 a 2 + 3 a 2 ) x 

+ ( 4 M + a 2 ) ( 8 M + a 2 - 2 M a 2 ) + 3 a 4 , 
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where 

(4.19) M = m2. 

We show that the polynomial B has exactly one root in the interval [—1,1]. 
Since a 6 (0,1) and M = m2 > 4, so all coefficients of B are positive. 

We have 

B' (x) - 4a4 (M - l ) 2 x 3 + 18a3M (M - 1) x2 

+4a 2 [(AT - 1) (6M + a 2 - Ma2) + 4M 2 + 6] x 

+4a (12M 2 + 2 M a 2 - 2 M 2 a 2 + 3a2) 

and 

B" (x) = 12a4 (M - l ) 2 x2 + 36a3M (M - 1) x 

+ 4a2 [(M - 1) (6M + a 2 - Ma2) + AM2 + 6] 

B" attains its minimum at the point 
_ - 3 M 

Xo~ 2a{M-\) < 

We note that 

; = M 2 ( 2 a 2 - 9 a + 1 0 ) - M ( 4 a 2 - 9 o + 6 ) + 2 a 2 + 6 > 3 M 2 - 6 M + 6 > 0. 

The conditions x 0 < - 1 and S " ( - l ) > 0 imply that B" (x) > 0 for all 
x € (—1,1). Moreover, we note that 

B'{-1) = (5a2 - 2 0 a + 24) M 2 + a ( 12 - 5 a ) M - 6 a ( 2 - a) > 4 M 2 - 1 2 > 0 

for M > 4, B' is a strictly increasing function in [—1,1] and B' (—1) > 0, 
so B' (x) > 0 for x G [—1,1], Thus the polynomial B is a strictly increasing 
function in the interval (—1,1). It follows from the four vertex theorem that 
the function P has at least two zeros in (—1,1), so B must have at least one 
root. Thus B has exactly one root in (—1,1) since it is a strictly increasing 
function. 

With respect to the results of [2] Theorem 4.2 is not true in an arbitrary 
class Kg. For this reason we can formulate the following question: 

Determine the family G4 of all strictly monotonic functions g : (0, +00) 
—> R of the class Cl such that if g £ G4 then the class Kg contains a 
1-parameter family of ovals with exactly four vertices. 

5. Remark on the equichordal problem 
The well-known equichordal problem was formulated by Fujiwara [5] in 

1916 and independently by Blaschke, Rothe and Weitzenbock [1] in 1917. A 
literature connected to the equichordal problem is given in e.g. [3]. Gardner 
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reminded a natural extension of the equichordal problem, see [6], Conjec-
ture 3. We can extend the equichordal problem in the following form: 

Determine the family G of all strictly monotonia functions g : (0, +oo) 
—> M of the class C1 for which there exists an oval with two g-chordal points. 

The function g (u) = ^ belongs to G, see [4]. In the case of the equi-
chordal problem the function g (u) = u does not belong to G, see [8]. 

Let us fix g £ G. We will assume that a chordal point of a g-chordal curve 
C coincides with the origin 0 and that C is given in the form t —> r (t) elt for 
t £ [0, 2ir], We consider the existence of a g-chordal curve with two g-chordal 
points. We recall that for g (x) = ^ the ellipses are equireciprocal with two 
equireciprocal points [4]. 

T H E O R E M 5 . 1 . Let C be a g-chordal curve of the class C2 with two g-
chordal points F\, We assume that g (x) — xa for Q ^ O or g £ C2 and 
g* (x) = > 0. The chord of C passing through F\, F2 with ends at 
points A and B is orthogonal to the tangent lines to C at A and at B. 

Proof. We assume that the straight line passing through F\ and F2 coincides 
with the x-axe and F\ coincides with the origin. Moreover, we assume that 

1. the oriented angle between the x-axe and the tangent line to C at A is 
equal «0, 

2. the oriented angle between the x-axe and the tangent line to C at B is 
equal a j . 

Let \AB\ = m, \OA\ = r (0) = r0 , \OB\ =r(ir) = m- r0. 
We have g o r + g o r^ = c. Differentiating we obtain 

r'g' o r + r'ng' o r^ = 0 

or 
rg' o r cot a + rwg' o rw cot an = 0. 

For i = 0 we have 

(5.1) r0g' (r0) cot a0 + (m - r0) g' (m - r0) cot ax = 0. 

Let \F2A\ = n , |BF2 | = m - n . 
Of course, we have 

(5.2) r\g' (ri) cot ao + (m — r 1) g' (m — r\) cot a.\ = 0. 

We note that if ao = f then ot\ = We assume that ao f • 
The relations (5.1) and (5.2) imply 

rpg' (r0) = (m - rp) g' (m - r0) 
ng'in) {m - n) g' (m - n) 



g-chordal curves 421 

or 

(5.3) rog' (ro) rig'(ri) 

(m - r0) g' (m - r0) (m - n ) g' (m - n ) ' 

Let us consider a function a : (0, m) —> M given by the formula 
xg' (x) 

" V / ~ ( \ / ( \ • (m — x) (7' (m — x) 

We note that the relation (5.3) can be rewritten in the form 

(5.4) a ( r 0 ) = a ( r 1) 

and 

We have 

the nominator of a' (x) 
= [g' (x) + xc?" (x)] (m - x) g' (m - x) 

— xg' (x) \—g' (m — x) — (m — x) g" (m — x)\ 

= (m — x) g' (x) g' (m — x) + x (m — x) g' (m — x) g" (x) 

+ xg' (x) g' (m — x) + x (m — x) g (x) g" (m — x) 

— g' ( x ) g' ( m — x)[m + (m — x) g* (x) + xg* (m — x)]. 

It is easy to see that 

1. if g* > 0 then the function a is increasing, 

2. if g (x) = xa, {a ± 0) then g* (x) = a - 1, 

and 

the nominator of a'(x) = g' (x) g' (m, — x) [m + (m — x) (a — 1) + x (a — 1)] 
= g' (x) g' (m — x) ma ^ 0. 

In both cases the function a is bijective. The equation (5.4) implies that 
ro = ri.We have ro = |(L4| < 1^2-̂ 1 — The contradiction ends the 
proof. • 
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