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g-CHORDAL CURVES

Abstract. In this paper we introduce a notion of g-chordal curves which are a
natural generalization of equichordal, equireciprocal and equipower curves. A Crofton-
type integral formula and estimations of the area and the length of g-chordal curve are
given. Moreover, a l-parameter family of ovals with exactly four vertices in the class
generated by the function g(z) = z™ 1is constructed. A remark on the equichordal
problem ends the paper.

1. Introduction

Let C be a plane closed simple regular curve and let g : (0, +00) — R be
a strictly monotonic function of the class C. Let ||AB|| denote the distance
between points A, B in the euclidean space RZ.

DEFINITION 1.1. A point P in R? is called a g-chordal point of C if it has
the following property: if a chord of C passes through P and joins points
Pl, PQ of C then

(1.1) gUIPA) +g(|PPl) =c

and the sum does not depend on the choice of a chord. The curve C will be
called a g-chordal curve.

In this paper we will consider all g-chordal curves with g-chordal point
at the origin O.

We denote by K the class of all plane simple closed curves given in a
polar form

(1.2) t —r(t)e for te0,2n],
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where a function r : R — R satisfies the following conditions:

reCt
(1.3) r(t) >0
» r(t+27) =r(t)
for t € R.

We associate with each function r : R — R a function r; : R — R given
by the formula

(1.4) re(t)=7(t+m) for teR.

A strictly monotonic function g : (0, 4+00) — R of the class C! determines
a subclass K, of the class K by the following way: a curve of the form (1.2)
belongs to K if and only if the function r satisfies the following condition

(1.5) gor+gory =const

where o denotes the composition of functions. A curve belonging to the class
K, is a g-chordal curve.
The class Ky generated by the function g (u) = u contains all equichordal

1
curves, see [6]. The class K, generated by the function g (u) = — contains
u

all equireciprocal curves, see [4]. The class K, generated by the function
g (u) = Inu contains all equipower curves, see [15], [16], [7], [8], [9]-

In this paper we will assume that a function ¢ is a strictly increasing
function.

The considerations in the fourth section are connected with ovals. We
recall that a plane simple closed curve with a positive curvature will be called
an oval, see [11], [14].

2. Crofton-type integral formula

We consider two curves Cy, t — 7, (t)e® for t € [0,27], (n =1,2) be-
longing to a class K, and satisfying the condition
(2'1) gorn +9goTy x = Cn.
We assume that C] is curve lying in the region bounded by Cy. Then r; (t) <
ro (t) for ¢ € [0,2n]. The function g is strictly increasing so g(r1(t)) <
g (r2(t)) for t € [0,2n]. This inequality implies immediately that ¢; < ca.
We denote by C;Cs a region bounded by C1 and (5. We consider a mapping
G :[0,1] x [0,27] — C1C> given by the formula
(2.2) G (s,t) =g (sg(r2 (1)) + (1 — 8) g (r1 (1)) €™.
For each fixed s € [0,1] a curve t — G (s,t) is a g-chordal one. Indeed, let

(2.3) r(s,t) =g (sg(r2 () + (1 = 5) g (r1 (1))
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Making use of (2.1) we get
g(r(s,1)) +g(r(s,;t+m))=sca+(1-s)c

for a fixed s € [0, 1] and for all ¢ € [0, 27].
We note that s = 0 determines C; and s = 1 determines Cs.
Let x € R%2. We denote by ||z|| the distance between x and the origin 0.

THEOREM 2.1. Let C1,Cy € K, where g is a positive-valued function. If
C1 lies in a region bounded by C2 and the condition (2.1) holds then we have

g =), _
(2.4) C§§2 B dx =m(co —c1).
Proof. Let
(2.5) E={(st): 0<s<1,0<t<2n}.

We denote by Gg a restriction of the function G to the set E. The
function G maps bijectively F onto interior of the region C;C> with deleted
a line segment on z-axis.

We determine the jacobian JGE (s,t) of the function Gg at the point
(s,t). By (2.2) we have

0GE . g —a(n(®) .
7 A T B
0GE sl OO+ (L= (OO e,
o ()= 7 (0) trist)
and
(2:6) JGp=(gom—gom) 7.

We note that JGg (s,t) > 0 for (s,¢) € E and G is a diffeomorphism.
For z € G (E) we have z = 7 (s,t) e* for some (s,t) € E. Using the classical
theorem on diffeomorphism we get

LUy, g 2 Usl),,

agn el 7 L el

={§ (g(r2(t)) — g (r1 (t))) dtds
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(g(r2(t)) —g(r1(2)))dt

1) = g(ri(@®))dt + [ (g (r2 (t + 7)) — g (r1 (¢ +7))) dt
0

[(g(ra (1) + 9 (r2x () = (9 (r1 (1)) + g (rix ()] dt =7 (cz —c1) . w

The formula (2.4) belongs to Crofton-type formulas. The original Crofton
formulas can be found in [9)].

REMARK 2.1. For the function g (u) = 42 we have

(g —c1)= “ 2dx = 2area C,Cs
C1C3

but this result can be derived immediately by definition.

3. Estimations of the area and the length of a g-chordal curve

We assume that a function g : (0,+00) — R satisfies the following con-
ditions:

(3.1) g (u) >0, forall wue€(0,+00),
(3.2) g" (u) <0, forall ue€ (0,400).
Let C, t — r(t) ¥ for ¢ € [0,27] be a g-chordal curve and
(3.3) @) +g(r(t+m) =c.

In the sequel we will assume that the function r is 27-periodic and r € C?2.
We introduce the following functions

(3.4) aw)=g""(c—g(u),
(3.5) o (u) = u® + [ (u)]?,
(3.6) h(u) = o

for u € (0,400).

THEOREM 3.1. Under assumptions (3.1), (3.2) and (3.3) the area of the
region bounded by a g-chordal curve C' satisfies the inequality

2
>algt(2)].
(3.7) areaC > [g (2)]
Proof. It follows from (3.1) and (3.2) that h is a strictly increasing function.

We have o' (u) = g’_(i/((::))) and ¢’ (u) = 29’ (u) (h (u) — h(a(u))).
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Let ¢’ () = 0. Then we have h (2) — h (a (2)) = 0 and u = a (u). Hence
we get immediately & = g~* (§). Since we have a (Z) =4, o (&) = —1 and
" (u) = 44’ (u) ' (@) > 0 so ¢ attains the unique minimum at the point .

We have ¢ (u) = 2u? =2[g~! (%)]2 and

o (u) >2 [g_l (§>]2 for arbitrary u € (0,+00).

Thus we have
2m kg 2
2areaC:§[r(t] dt = Sgo dt>27r[ (E)] .=
0 0 2
REMARK 3.1. Condition (3.2) in Theorem 3.1 can be replaced by a condi-
tion ¢” (u) < 0 for u € (0, +00).

THEOREM 3.2. Let C € Ky, t — z(t) = r(t)e® for t € [0,2n] and the
radius vector z (t) and the tangent vector z' (t) to C at z (t) are not collinear.
Under assumptions (3.1), (3.2) and (3.3) the length L of a g-chordal curve
C satisfies the inequality

(3.8) L>2mg! (%) :

Proof. We denote by (3 (t) an oriented angle between the radius vector z (t)
of C and the tangent vector 2’ (t) to C at z (t). We note that

/

(3.9) cot B = L.
r
We have

2n
L= /lr@F + [ ¢)dt

0

= | () dtz2§Tr(t)dt:§[r(t)+r(t+7r)]dt
5 sinf(t) 5 o

={[r@®)+g7 c—g(r®)]dt={[r ) +a(r(t)dt.
0 0

Let ¢ (u) = u+ a(u). If ¥ (u,) = 0 then with respect to the condition

(3.2) we get uo = g~ (§). We have 9" (uo) = _29 (")") > 0, so 9 attains the

unique minimum at u, and ¥ (u,) = 2u, = 29~ ( ) Hence we obtain

™

L> (S)z/)(r(t))dtz 2mg! (5) .
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4. One-parameter family of ovals with exactly four vertices in the
class K(m)
Let m > 1. We denote by K (m) the class K, where g (u) = u™ for
u € (0,+00). We prove some general theorems on ovals.

THEOREM 4.1. Let a curve C, t — p(t)e® for t € [0,2n] be an oval. If
m > 1 and

(41) m > max (ﬂ’)Q

o,27] \ p
then a curve Cp,, t — p (t)# e’ for t € [0,27] is an oval.

Proof. C is an oval so its curvature is a positive-valued function and then

2
(4.2) w=2(p) +p*—pp >0
Let us fix a number m > 1 and let
(4.3) r=pm.
Differentiating r we obtain
7
(4.4) r=1F
m p
and
r 1 9
(4.5) r = s [(E - 1) (0)"+ PP"] :
Let
(4.6) k=2 (r’)2 + 72—,

Making use of (4.2)-(4.5) we obtain
m2p? m20? (2 [(p"\2 r2 1 2
k= 9_ (£ 2_ 5 — -1 ! 1/
A=t (5) -l G ) ) <)
2 (- (%))
=mx+ 5 m— | — .
P P

If m satisfies the condition (4.1) then & > 0.
Using Theorem 4.1 we prove the following theorem

THEOREM 4.2. In each class K (m) there exists a 1-parameter family of
ovals with exactly four vertices.

Proof. Case m = 1. .
A curve C,, t — (24 acost)e for t € [0,2n] and a fixed a € (0,1)
belongs to K (1). Let k denotes the curvature of C, and

q(t) = \/(2 +acost)® + aZsin’t.
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For a € (0,1) we have
q (&) k (t) =2 (a® + 3acost +2) > 2(a2—3a+2) =2(1-a)(2—a)>0
so C, is an oval.
The equality
q(t)° k' (t) = 6a® (2cost + a) sint

implies immediately that C, has exactly four vertices.

Case m > 1.
Let us fix m > 1 and a € (0,1). Let
(4.7) r(t) = (2 + acost)m .

We note that a curve Cp,, t — 7 (t) ¥ for t € [0, 27] belongs to K (m). Using
Theorem 4.1 we can show that C,, is an oval.
For the oval C,, t — p(t)e" for t € [0,27] where p(t) = 2+ acost we

have
o 6\ 4 sin®t
(P(t)> - (2+acost)®’
o  sin’t a? 1
(24 acost)? ~ 4 —a? < 3’
so the inequality (4.1) is satisfied for m > 1. It means that C, is an oval.

Now we prove that C,, has exactly four vertices. The curvature k of Cp,
is given by the formula

It is easy to verify that

a

27 (1) + (r (1) —r ()" (1)

(4.8) k(t) = - 3

(VI @F + b )
Let

—a sint

(49) w(t) = 'm 2+ acost
and

_ a® + acost — 2
(4.10) s =2 (24 acost)?
We have

1y —a 2costta

(4.11) (1) = m (2 + acost)?’
(4.12) W’ = wé
and

(4.13) r = wr.
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We note that the formula (4.8) can be rewritten in the form

2 11—

(4.14) — H_‘*’a
(Vizd

Differentiating (4.14) we get

(4.15) (K7 + kr') (V14 w?)® = (2w’ — w")(1 +w?) — 3(w? + 1 — w')ww'.
Using (4.12) and (4.13) we rewrite (4.15) in the form

(4.16) (k' + kw)r(vV1+w?)® = w{(2w' — &)(1 +w?) — 3w/ (W? + 1 — )},
With respect to (4.14) we have

Kr(vV1+0?)® = w3(W)? - (1 + ) (€ +u? + 1)}
The equality w (t) = 0 is satisfied in the interval [0,27] for t =0 and t ==«
only. Thus it is necessary to show that the function
(4.17) P=3()" - (1+u?) (E+w?+1)

has exactly two zeros in the interval [0, 27].
Substituting (4.9), (4.10) and (4.11) into (4.17) we obtain
3a? (a + 2cost)®
p() = Syt 2o,
m* (2 + acost)
m?2 (2 + acost)® + a?sin®t [2 (a? + acost — 2)
- m2 (2 + acost)? [ (2+ acost)?
m2 (2 + acost)? + a?sin’t
- m2 (2 4 acost)? ]

Hence we have
m2(2 + acost)*P (t) = a* (m?® — 1)2 cos* t + 6a*m? (m? — 1) cos®¢
+2a? [(m? — 1)(6m? + a® — m?a?) + 4m* + 6] cos’ ¢
+4a (12m* + 2m2a® — 2m*a® + 3a?) cost
+ (4m? + a?) (8m? + a® — 2m?a?) + 3a”.
We consider the polynomial
(418) B(z)=a*(M —1)2z* +6a’M (M — 1) 23
+2a2 [(M —1) (6M + a® — Ma?) +4M? + 6] 2°
+4a (12M2 + 2Ma? — 2M?a® + 3a2) T
+ (4M + a®) (8M + a® — 2Ma?) + 3a*,
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where
(4.19) M =m?.

We show that the polynomial B has exactly one root in the interval [—1,1].
Since a € (0,1) and M = m? > 4, so all coefficients of B are positive.
We have

B (z) =4a* (M - 1)*2% + 18a*M (M — 1) 2
+4a® [(M - 1) (6M + a®> — Ma®) + 4M” + 6]z
+4a (12M? + 2Ma? — 2M?a? + 3a?)
and
B"(z) = 12a* (M — 1)22® + 36a°M (M — 1)
+4a? [(M = 1) (6M + a® — Ma?) + 4M? + 6]

B" attains its minimum at the point

Ty = —3M < -1
" 2a(M -1) '
We note that
B"(-1
422 ) _ M?(2a®—9a+10)— M (4a® —9a+6)+2a*+6 > 3M2—6M+6 > 0.

The conditions z, < —1 and B” (—1) > 0 imply that B” (z) > 0 for all
z € (—1,1). Moreover, we note that

B'(~1) = (5a® — 20a + 24) M*+a (12 — 5a) M —6a (2 — a) > 4M*—-12 > 0

for M > 4, B’ is a strictly increasing function in [—1,1] and B’ (—1) > 0,
so B'(z) > 0 for z € [—~1,1]. Thus the polynomial B is a strictly increasing
function in the interval (—1,1). It follows from the four vertex theorem that
the function P has at least two zeros in (—1,1), so B must have at least one
root. Thus B has exactly one root in (—1, 1) since it is a strictly increasing
function.

With respect to the results of [2] Theorem 4.2 is not true in an arbitrary
class K. For this reason we can formulate the following question:

Determine the family G4 of all strictly monotonic functions g : (0, +00)
— R of the class C' such that if g € G4 then the class K, contains a
1-parameter family of ovals with exactly four vertices.

5. Remark on the equichordal problem

The well-known equichordal problem was formulated by Fujiwara [5] in
1916 and independently by Blaschke, Rothe and Weitzenbéck [1] in 1917. A
literature connected to the equichordal problem is given in e.g. [3]. Gardner
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reminded a natural extension of the equichordal problem, see [6], Conjec-
ture 3. We can extend the equichordal problem in the following form:

Determine the family G of all strictly monotonic functions g : (0,+00)
— R of the class C' for which there exists an oval with two g-chordal points.

The function g (u) = 1 belongs to G, see [4]. In the case of the equi-
chordal problem the function g (u) = u does not belong to G, see [8].

Let us fix g € G. We will assume that a chordal point of a g-chordal curve
C coincides with the origin 0 and that C is given in the form t — r (t) ' for
t € [0,27]. We consider the existence of a g-chordal curve with two g-chordal
points. We recall that for g (z) = 1 the ellipses are equireciprocal with two

Tz
equireciprocal points [4].

THEOREM 5.1. Let C be a g-chordal curve of the class C? with two 'g-
chordal points Fy, Fy. We assume that g(z) = z% for a« # 0 or g € C? and

g*(z) = x%l,l(z) > 0. The chord of C passing through Fy, Fo with ends at

(z)

points A and B is orthogonal to the tangent lines to C at A and at B.

Proof. We assume that the straight line passing through I3 and F; coincides
with the z-axe and F coincides with the origin. Moreover, we assume that

1. the oriented angle between the z-axe and the tangent line to C at A is
equal ap,

2. the oriented angle between the z-axe and the tangent line to C at B is
equal aj.

Let |AB| =m, |OA| =r(0) =g, |OB| =r(7) = m —ro.
We have g or + g o rr = c¢. Differentiating we obtain

g or+rigor,=0
or
rg' orcota +ryg orycota, = 0.
For t = 0 we have
(5.1) rog’ (1) cot ag + (m — o) g’ (m — 1) cot a1 = 0.

Let |FpA| = r, |BF2| =m-—ri.
Of course, we have

(5.2) r1g' (r1) cotag + (m —11) g’ (m —r1) cota; = 0.
We note that if ag = 5 then a3 = §. We assume that ap # 7.
The relations (5.1) and (5.2) imply
rog' (ro) _ (m—ro)g (m —r0)
rig' (n) (m—ri)g (m—r1)
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or

(5.3) rog’ (r0) _ rig (r1) '

(m—ro)g’ (m—ro) (m—r1)g (m—r1)

Let us consider a function a : (0,m) — R given by the formula
zg' (x)

(m—2)g' (m—=z)

a(x)=

We note that the relation (5.3) can be rewritten in the form
(5.4) a(ro) =a(r)

and m
a (5> =1
We have
the nominator of a’ (z)
= [¢' (&) +z¢" ()] (n — 2) ¢’ (m — )
—zg'(z) [-¢' (m—2) — (m —z) g" (m — )]
= (m—-1z)g' (z)g (m—z) +z(m—-1)g' (m-2)g" (z)
+zg' (2)g (m—2)+2(m —2)g'(2) g" (m — 2)
=g (x)g' (m—z)[m+ (m — ) g" (2) +2g" (m — z)].
It is easy to see that

1. if g* > 0 then the function a is increasing,
2. if g(z) =2% (a#0)then ¢* () =a -1,
and
the nominator of a'(z) =¢' (z)g' (m —z)[m+ (m —z) (@ —1) +z(a —1)]
— g/ () g (m — z)ma #0.
In both cases the function a is bijective. The equation (5.4) implies that

rg = 71.We have 79 = |04] < |FA| = r1. The contradiction ends the
proof. =
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