

Waldemar Cieślak, Józef Wołowik

g-CHORDAL CURVES

Abstract. In this paper we introduce a notion of *g*-chordal curves which are a natural generalization of equichordal, equireciprocal and equipower curves. A Crofton-type integral formula and estimations of the area and the length of *g*-chordal curve are given. Moreover, a 1-parameter family of ovals with exactly four vertices in the class generated by the function $g(x) = x^m$ is constructed. A remark on the equichordal problem ends the paper.

1. Introduction

Let C be a plane closed simple regular curve and let $g : (0, +\infty) \rightarrow \mathbb{R}$ be a strictly monotonic function of the class C^1 . Let $\|AB\|$ denote the distance between points A, B in the euclidean space \mathbb{R}^2 .

DEFINITION 1.1. A point P in \mathbb{R}^2 is called a *g*-chordal point of C if it has the following property: if a chord of C passes through P and joins points P_1, P_2 of C then

$$(1.1) \quad g(\|PP_1\|) + g(\|PP_2\|) = c$$

and the sum does not depend on the choice of a chord. The curve C will be called a *g*-chordal curve.

In this paper we will consider all *g*-chordal curves with *g*-chordal point at the origin O .

We denote by K the class of all plane simple closed curves given in a polar form

$$(1.2) \quad t \rightarrow r(t)e^{it} \quad \text{for } t \in [0, 2\pi],$$

Key words and phrases: equichordal, equireciprocal, equipower, Crofton formula, oval.
1991 Mathematics Subject Classification: 53A04.

where a function $r : \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:

$$(1.3) \quad \begin{cases} r \in C^1 \\ r(t) > 0 \\ r(t + 2\pi) = r(t) \end{cases}$$

for $t \in \mathbb{R}$.

We associate with each function $r : \mathbb{R} \rightarrow \mathbb{R}$ a function $r_\pi : \mathbb{R} \rightarrow \mathbb{R}$ given by the formula

$$(1.4) \quad r_\pi(t) = r(t + \pi) \quad \text{for } t \in \mathbb{R}.$$

A strictly monotonic function $g : (0, +\infty) \rightarrow \mathbb{R}$ of the class C^1 determines a subclass K_g of the class K by the following way: a curve of the form (1.2) belongs to K_g if and only if the function r satisfies the following condition

$$(1.5) \quad g \circ r + g \circ r_\pi = \text{const}$$

where \circ denotes the composition of functions. A curve belonging to the class K_g is a g -chordal curve.

The class K_g generated by the function $g(u) = u$ contains all equichordal curves, see [6]. The class K_g generated by the function $g(u) = \frac{1}{u}$ contains all equireciprocal curves, see [4]. The class K_g generated by the function $g(u) = \ln u$ contains all equipower curves, see [15], [16], [7], [8], [9].

In this paper we will assume that a function g is a strictly increasing function.

The considerations in the fourth section are connected with ovals. We recall that a plane simple closed curve with a positive curvature will be called an oval, see [11], [14].

2. Crofton-type integral formula

We consider two curves C_n , $t \rightarrow r_n(t) e^{it}$ for $t \in [0, 2\pi]$, $(n = 1, 2)$ belonging to a class K_g and satisfying the condition

$$(2.1) \quad g \circ r_n + g \circ r_{n, \pi} = c_n.$$

We assume that C_1 is curve lying in the region bounded by C_2 . Then $r_1(t) < r_2(t)$ for $t \in [0, 2\pi]$. The function g is strictly increasing so $g(r_1(t)) < g(r_2(t))$ for $t \in [0, 2\pi]$. This inequality implies immediately that $c_1 < c_2$. We denote by $C_1 C_2$ a region bounded by C_1 and C_2 . We consider a mapping $G : [0, 1] \times [0, 2\pi] \rightarrow C_1 C_2$ given by the formula

$$(2.2) \quad G(s, t) = g^{-1}(s g(r_2(t)) + (1 - s) g(r_1(t))) e^{it}.$$

For each fixed $s \in [0, 1]$ a curve $t \rightarrow G(s, t)$ is a g -chordal one. Indeed, let

$$(2.3) \quad r(s, t) = g^{-1}(s g(r_2(t)) + (1 - s) g(r_1(t))).$$

Making use of (2.1) we get

$$g(r(s, t)) + g(r(s, t + \pi)) = sc_2 + (1 - s)c_1$$

for a fixed $s \in [0, 1]$ and for all $t \in [0, 2\pi]$.

We note that $s = 0$ determines C_1 and $s = 1$ determines C_2 .

Let $x \in \mathbb{R}^2$. We denote by $\|x\|$ the distance between x and the origin 0.

THEOREM 2.1. *Let $C_1, C_2 \in K_g$ where g is a positive-valued function. If C_1 lies in a region bounded by C_2 and the condition (2.1) holds then we have*

$$(2.4) \quad \iint_{C_1 C_2} \frac{g'(\|x\|)}{\|x\|} dx = \pi(c_2 - c_1).$$

Proof. Let

$$(2.5) \quad E = \{(s, t) : 0 < s < 1, 0 < t < 2\pi\}.$$

We denote by G_E a restriction of the function G to the set E . The function G_E maps bijectively E onto interior of the region $C_1 C_2$ with deleted a line segment on x -axis.

We determine the jacobian $JG_E(s, t)$ of the function G_E at the point (s, t) . By (2.2) we have

$$\begin{aligned} \frac{\partial G_E}{\partial s}(s, t) &= \frac{g(r_2(t)) - g(r_1(t))}{g'(r(s, t))} e^{it}, \\ \frac{\partial G_E}{\partial t}(s, t) &= \frac{sg'(r_2(t))r_2'(t) + (1 - s)g'(r_1(t))r_1'(t)}{g'(r(s, t))} e^{it} + r(s, t)ie^{it} \end{aligned}$$

and

$$(2.6) \quad JG_E = (g \circ r_2 - g \circ r_1) \frac{r}{g' \circ r}.$$

We note that $JG_E(s, t) > 0$ for $(s, t) \in E$ and G_E is a diffeomorphism. For $x \in G(E)$ we have $x = r(s, t) e^{it}$ for some $(s, t) \in E$. Using the classical theorem on diffeomorphism we get

$$\begin{aligned} \iint_{C_1 C_2} \frac{g'(\|x\|)}{\|x\|} dx &= \iint_{G(E)} \frac{g'(\|x\|)}{\|x\|} dx \\ &= \int_0^1 \int_0^{2\pi} (g(r_2(t)) - g(r_1(t))) dt ds \end{aligned}$$

$$\begin{aligned}
&= \int_0^{2\pi} (g(r_2(t)) - g(r_1(t))) dt \\
&= \int_0^{\pi} (g(r_2(t)) - g(r_1(t))) dt + \int_0^{\pi} (g(r_2(t + \pi)) - g(r_1(t + \pi))) dt \\
&= \int_0^{\pi} [(g(r_2(t)) + g(r_{2,\pi}(t))) - (g(r_1(t)) + g(r_{1,\pi}(t)))] dt = \pi(c_2 - c_1). \blacksquare
\end{aligned}$$

The formula (2.4) belongs to Crofton-type formulas. The original Crofton formulas can be found in [9].

REMARK 2.1. For the function $g(u) = u^2$ we have

$$\pi(c_2 - c_1) = \iint_{C_1 C_2} 2dx = 2 \text{area } C_1 C_2$$

but this result can be derived immediately by definition.

3. Estimations of the area and the length of a g -chordal curve

We assume that a function $g : (0, +\infty) \rightarrow \mathbb{R}$ satisfies the following conditions:

$$(3.1) \quad g'(u) > 0, \quad \text{for all } u \in (0, +\infty),$$

$$(3.2) \quad g''(u) < 0, \quad \text{for all } u \in (0, +\infty).$$

Let C , $t \rightarrow r(t) e^{it}$ for $t \in [0, 2\pi]$ be a g -chordal curve and

$$(3.3) \quad g(r(t)) + g(r(t + \pi)) = c.$$

In the sequel we will assume that the function r is 2π -periodic and $r \in C^2$. We introduce the following functions

$$(3.4) \quad \alpha(u) = g^{-1}(c - g(u)),$$

$$(3.5) \quad \varphi(u) = u^2 + [\alpha(u)]^2,$$

$$(3.6) \quad h(u) = \frac{u}{g'(u)}$$

for $u \in (0, +\infty)$.

THEOREM 3.1. *Under assumptions (3.1), (3.2) and (3.3) the area of the region bounded by a g -chordal curve C satisfies the inequality*

$$(3.7) \quad \text{area } C \geq \pi \left[g^{-1} \left(\frac{c}{2} \right) \right]^2.$$

Proof. It follows from (3.1) and (3.2) that h is a strictly increasing function.

We have $\alpha'(u) = \frac{-g'(u)}{g'(\alpha(u))}$ and $\varphi'(u) = 2g'(u)(h(u) - h(\alpha(u)))$.

Let $\varphi'(\tilde{u}) = 0$. Then we have $h(\tilde{u}) - h(\alpha(\tilde{u})) = 0$ and $\tilde{u} = \alpha(\tilde{u})$. Hence we get immediately $\tilde{u} = g^{-1}(\frac{c}{2})$. Since we have $\alpha(\tilde{u}) = \tilde{u}$, $\alpha'(\tilde{u}) = -1$ and $\varphi''(\tilde{u}) = 4g'(\tilde{u})h'(\tilde{u}) > 0$ so φ attains the unique minimum at the point \tilde{u} .

We have $\varphi(\tilde{u}) = 2\tilde{u}^2 = 2[g^{-1}(\frac{c}{2})]^2$ and

$$\varphi(u) \geq 2 \left[g^{-1} \left(\frac{c}{2} \right) \right]^2 \quad \text{for arbitrary } u \in (0, +\infty).$$

Thus we have

$$2 \text{area } C = \int_0^{2\pi} [r(t)]^2 dt = \int_0^\pi \varphi(r(t)) dt \geq 2\pi \left[g^{-1} \left(\frac{c}{2} \right) \right]^2. \blacksquare$$

REMARK 3.1. Condition (3.2) in Theorem 3.1 can be replaced by a condition $g''(u) \leq 0$ for $u \in (0, +\infty)$.

THEOREM 3.2. Let $C \in K_g$, $t \rightarrow z(t) = r(t)e^{it}$ for $t \in [0, 2\pi]$ and the radius vector $z(t)$ and the tangent vector $z'(t)$ to C at $z(t)$ are not collinear. Under assumptions (3.1), (3.2) and (3.3) the length L of a g-chordal curve C satisfies the inequality

$$(3.8) \quad L \geq 2\pi g^{-1} \left(\frac{c}{2} \right).$$

Proof. We denote by $\beta(t)$ an oriented angle between the radius vector $z(t)$ of C and the tangent vector $z'(t)$ to C at $z(t)$. We note that

$$(3.9) \quad \cot \beta = \frac{r'}{r}.$$

We have

$$\begin{aligned} L &= \int_0^{2\pi} \sqrt{[r(t)]^2 + [r'(t)]^2} dt \\ &= \int_0^{2\pi} \frac{r(t)}{\sin \beta(t)} dt \geq \int_0^{2\pi} r(t) dt = \int_0^\pi [r(t) + r(t + \pi)] dt \\ &= \int_0^\pi [r(t) + g^{-1}(c - g(r(t)))] dt = \int_0^\pi [r(t) + \alpha(r(t))] dt. \end{aligned}$$

Let $\psi(u) = u + \alpha(u)$. If $\psi'(u_o) = 0$ then with respect to the condition (3.2) we get $u_o = g^{-1}(\frac{c}{2})$. We have $\psi''(u_o) = \frac{-2g''(u_o)}{g'(u_o)} > 0$, so ψ attains the unique minimum at u_o and $\psi(u_o) = 2u_o = 2g^{-1}(\frac{c}{2})$. Hence we obtain

$$L \geq \int_0^\pi \psi(r(t)) dt \geq 2\pi g^{-1} \left(\frac{c}{2} \right). \blacksquare$$

4. One-parameter family of ovals with exactly four vertices in the class $K(m)$

Let $m \geq 1$. We denote by $K(m)$ the class K_g where $g(u) = u^m$ for $u \in (0, +\infty)$. We prove some general theorems on ovals.

THEOREM 4.1. *Let a curve C , $t \rightarrow \rho(t) e^{it}$ for $t \in [0, 2\pi]$ be an oval. If $m \geq 1$ and*

$$(4.1) \quad m \geq \max_{[0, 2\pi]} \left(\frac{\rho'}{\rho} \right)^2$$

then a curve C_m , $t \rightarrow \rho(t)^{\frac{1}{m}} e^{it}$ for $t \in [0, 2\pi]$ is an oval.

Proof. C is an oval so its curvature is a positive-valued function and then

$$(4.2) \quad \kappa = 2(\rho')^2 + \rho^2 - \rho\rho' > 0.$$

Let us fix a number $m > 1$ and let

$$(4.3) \quad r = \rho^{\frac{1}{m}}.$$

Differentiating r we obtain

$$(4.4) \quad r' = \frac{r}{m} \frac{\rho'}{\rho}$$

and

$$(4.5) \quad r'' = \frac{r}{m\rho^2} \left[\left(\frac{1}{m} - 1 \right) (\rho')^2 + \rho\rho'' \right].$$

Let

$$(4.6) \quad k = 2(r')^2 + r^2 - rr''.$$

Making use of (4.2)-(4.5) we obtain

$$\begin{aligned} \frac{m^2\rho^2}{r^2}k &= \frac{m^2\rho^2}{r^2} \left\{ 2\frac{r^2}{m^2} \left(\frac{\rho'}{\rho} \right)^2 + r^2 - \frac{r^2}{m\rho^2} \left[\left(\frac{1}{m} - 1 \right) \left(\rho' \right)^2 + \rho\rho'' \right] \right\} \\ &= m\kappa + \frac{m-1}{\rho^2} \left(m - \left(\frac{\rho'}{\rho} \right)^2 \right). \end{aligned}$$

If m satisfies the condition (4.1) then $k > 0$.

Using Theorem 4.1 we prove the following theorem

THEOREM 4.2. *In each class $K(m)$ there exists a 1-parameter family of ovals with exactly four vertices.*

Proof. Case $m = 1$.

A curve C_a , $t \rightarrow (2 + a \cos t) e^{it}$ for $t \in [0, 2\pi]$ and a fixed $a \in (0, 1)$ belongs to $K(1)$. Let k denotes the curvature of C_a and

$$q(t) = \sqrt{(2 + a \cos t)^2 + a^2 \sin^2 t}.$$

For $a \in (0, 1)$ we have

$$q(t)^3 k(t) = 2(a^2 + 3a \cos t + 2) \geq 2(a^2 - 3a + 2) = 2(1-a)(2-a) > 0$$

so C_a is an oval.

The equality

$$q(t)^5 k'(t) = 6a^2(2 \cos t + a) \sin t$$

implies immediately that C_a has exactly four vertices.

Case $m > 1$.

Let us fix $m > 1$ and $a \in (0, 1)$. Let

$$(4.7) \quad r(t) = (2 + a \cos t)^{\frac{1}{m}}.$$

We note that a curve C_m , $t \rightarrow r(t) e^{it}$ for $t \in [0, 2\pi]$ belongs to $K(m)$. Using Theorem 4.1 we can show that C_m is an oval.

For the oval C_a , $t \rightarrow \rho(t) e^{it}$ for $t \in [0, 2\pi]$ where $\rho(t) = 2 + a \cos t$ we have

$$\left(\frac{\rho'(t)}{\rho(t)} \right)^2 = a^2 \frac{\sin^2 t}{(2 + a \cos t)^2}.$$

It is easy to verify that

$$a^2 \frac{\sin^2 t}{(2 + a \cos t)^2} \leq \frac{a^2}{4 - a^2} < \frac{1}{3},$$

so the inequality (4.1) is satisfied for $m \geq 1$. It means that C_m is an oval.

Now we prove that C_m has exactly four vertices. The curvature k of C_m is given by the formula

$$(4.8) \quad k(t) = \frac{2(r'(t))^2 + (r(t))^2 - r(t)r''(t)}{\left(\sqrt{[r(t)]^2 + [r'(t)]^2} \right)^3}.$$

Let

$$(4.9) \quad \omega(t) = \frac{-a}{m} \frac{\sin t}{2 + a \cos t}$$

and

$$(4.10) \quad \xi(t) = 2 \frac{a^2 + a \cos t - 2}{(2 + a \cos t)^2}.$$

We have

$$(4.11) \quad \omega'(t) = \frac{-a}{m} \frac{2 \cos t + a}{(2 + a \cos t)^2},$$

$$(4.12) \quad \omega'' = \omega \xi$$

and

$$(4.13) \quad r' = \omega r.$$

We note that the formula (4.8) can be rewritten in the form

$$(4.14) \quad kr = \frac{\omega^2 + 1 - \omega'}{(\sqrt{1 + \omega^2})^3}.$$

Differentiating (4.14) we get

$$(4.15) \quad (k'r + kr')(\sqrt{1 + \omega^2})^5 = (2\omega\omega' - \omega'')(1 + \omega^2) - 3(\omega^2 + 1 - \omega')\omega\omega'.$$

Using (4.12) and (4.13) we rewrite (4.15) in the form

$$(4.16) \quad (k' + k\omega)r(\sqrt{1 + \omega^2})^5 = \omega\{(2\omega' - \xi)(1 + \omega^2) - 3\omega'(\omega^2 + 1 - \omega')\}.$$

With respect to (4.14) we have

$$k'r(\sqrt{1 + \omega^2})^5 = \omega\{3(\omega')^2 - (1 + \omega^2)(\xi + \omega^2 + 1)\}.$$

The equality $\omega(t) = 0$ is satisfied in the interval $[0, 2\pi]$ for $t = 0$ and $t = \pi$ only. Thus it is necessary to show that the function

$$(4.17) \quad P = 3(\omega')^2 - (1 + \omega^2)(\xi + \omega^2 + 1)$$

has exactly two zeros in the interval $[0, 2\pi]$.

Substituting (4.9), (4.10) and (4.11) into (4.17) we obtain

$$\begin{aligned} P(t) &= \frac{3a^2(a + 2\cos t)^2}{m^2(2 + a\cos t)^4} \\ &\quad - \frac{m^2(2 + a\cos t)^2 + a^2\sin^2 t}{m^2(2 + a\cos t)^2} \left[\frac{2(a^2 + a\cos t - 2)}{(2 + a\cos t)^2} \right. \\ &\quad \left. - \frac{m^2(2 + a\cos t)^2 + a^2\sin^2 t}{m^2(2 + a\cos t)^2} \right]. \end{aligned}$$

Hence we have

$$\begin{aligned} m^2(2 + a\cos t)^4 P(t) &= a^4(m^2 - 1)^2 \cos^4 t + 6a^3m^2(m^2 - 1) \cos^3 t \\ &\quad + 2a^2[(m^2 - 1)(6m^2 + a^2 - m^2a^2) + 4m^4 + 6] \cos^2 t \\ &\quad + 4a(12m^4 + 2m^2a^2 - 2m^4a^2 + 3a^2) \cos t \\ &\quad + (4m^2 + a^2)(8m^2 + a^2 - 2m^2a^2) + 3a^4. \end{aligned}$$

We consider the polynomial

$$\begin{aligned} (4.18) \quad B(x) &= a^4(M - 1)^2 x^4 + 6a^3M(M - 1)x^3 \\ &\quad + 2a^2[(M - 1)(6M + a^2 - Ma^2) + 4M^2 + 6]x^2 \\ &\quad + 4a(12M^2 + 2Ma^2 - 2M^2a^2 + 3a^2)x \\ &\quad + (4M + a^2)(8M + a^2 - 2Ma^2) + 3a^4, \end{aligned}$$

where

$$(4.19) \quad M = m^2.$$

We show that the polynomial B has exactly one root in the interval $[-1, 1]$. Since $a \in (0, 1)$ and $M = m^2 \geq 4$, so all coefficients of B are positive.

We have

$$\begin{aligned} B'(x) &= 4a^4(M-1)^2x^3 + 18a^3M(M-1)x^2 \\ &\quad + 4a^2[(M-1)(6M+a^2-Ma^2) + 4M^2 + 6]x \\ &\quad + 4a(12M^2+2Ma^2-2M^2a^2+3a^2) \end{aligned}$$

and

$$\begin{aligned} B''(x) &= 12a^4(M-1)^2x^2 + 36a^3M(M-1)x \\ &\quad + 4a^2[(M-1)(6M+a^2-Ma^2) + 4M^2 + 6] \end{aligned}$$

B'' attains its minimum at the point

$$x_o = \frac{-3M}{2a(M-1)} < -1.$$

We note that

$$\frac{B''(-1)}{4a^2} = M^2(2a^2-9a+10) - M(4a^2-9a+6) + 2a^2 + 6 > 3M^2 - 6M + 6 > 0.$$

The conditions $x_o < -1$ and $B''(-1) > 0$ imply that $B''(x) > 0$ for all $x \in (-1, 1)$. Moreover, we note that

$$B'(-1) = (5a^2 - 20a + 24)M^2 + a(12 - 5a)M - 6a(2 - a) > 4M^2 - 12 > 0$$

for $M \geq 4$, B' is a strictly increasing function in $[-1, 1]$ and $B'(-1) > 0$, so $B'(x) > 0$ for $x \in [-1, 1]$. Thus the polynomial B is a strictly increasing function in the interval $(-1, 1)$. It follows from the four vertex theorem that the function P has at least two zeros in $(-1, 1)$, so B must have at least one root. Thus B has exactly one root in $(-1, 1)$ since it is a strictly increasing function.

With respect to the results of [2] Theorem 4.2 is not true in an arbitrary class K_g . For this reason we can formulate the following question:

Determine the family G_4 of all strictly monotonic functions $g : (0, +\infty) \rightarrow \mathbb{R}$ of the class C^1 such that if $g \in G_4$ then the class K_g contains a 1-parameter family of ovals with exactly four vertices.

5. Remark on the equichordal problem

The well-known equichordal problem was formulated by Fujiwara [5] in 1916 and independently by Blaschke, Rothe and Weitzenböck [1] in 1917. A literature connected to the equichordal problem is given in e.g. [3]. Gardner

reminded a natural extension of the equichordal problem, see [6], Conjecture 3. We can extend the equichordal problem in the following form:

Determine the family G of all strictly monotonic functions $g : (0, +\infty) \rightarrow \mathbb{R}$ of the class C^1 for which there exists an oval with two g -chordal points.

The function $g(u) = \frac{1}{u}$ belongs to G , see [4]. In the case of the equichordal problem the function $g(u) = u$ does not belong to G , see [8].

Let us fix $g \in G$. We will assume that a chordal point of a g -chordal curve C coincides with the origin 0 and that C is given in the form $t \rightarrow r(t) e^{it}$ for $t \in [0, 2\pi]$. We consider the existence of a g -chordal curve with two g -chordal points. We recall that for $g(x) = \frac{1}{x}$ the ellipses are equireciprocal with two equireciprocal points [4].

THEOREM 5.1. *Let C be a g -chordal curve of the class C^2 with two g -chordal points F_1, F_2 . We assume that $g(x) = x^\alpha$ for $\alpha \neq 0$ or $g \in C^2$ and $g^*(x) = x \frac{g''(x)}{g'(x)} > 0$. The chord of C passing through F_1, F_2 with ends at points A and B is orthogonal to the tangent lines to C at A and at B .*

Proof. We assume that the straight line passing through F_1 and F_2 coincides with the x -axe and F_1 coincides with the origin. Moreover, we assume that

1. the oriented angle between the x -axe and the tangent line to C at A is equal α_0 ,
2. the oriented angle between the x -axe and the tangent line to C at B is equal α_1 .

Let $|AB| = m$, $|OA| = r(0) = r_0$, $|OB| = r(\pi) = m - r_0$.

We have $g \circ r + g \circ r_\pi = c$. Differentiating we obtain

$$r'g' \circ r + r'_\pi g' \circ r_\pi = 0$$

or

$$rg' \circ r \cot \alpha + r_\pi g' \circ r_\pi \cot \alpha_\pi = 0.$$

For $t = 0$ we have

$$(5.1) \quad r_0 g'(r_0) \cot \alpha_0 + (m - r_0) g'(m - r_0) \cot \alpha_1 = 0.$$

Let $|F_2A| = r_1$, $|BF_2| = m - r_1$.

Of course, we have

$$(5.2) \quad r_1 g'(r_1) \cot \alpha_0 + (m - r_1) g'(m - r_1) \cot \alpha_1 = 0.$$

We note that if $\alpha_0 = \frac{\pi}{2}$ then $\alpha_1 = \frac{\pi}{2}$. We assume that $\alpha_0 \neq \frac{\pi}{2}$.

The relations (5.1) and (5.2) imply

$$\frac{r_0 g'(r_0)}{r_1 g'(r_1)} = \frac{(m - r_0) g'(m - r_0)}{(m - r_1) g'(m - r_1)}$$

or

$$(5.3) \quad \frac{r_0 g'(r_0)}{(m - r_0) g'(m - r_0)} = \frac{r_1 g'(r_1)}{(m - r_1) g'(m - r_1)}.$$

Let us consider a function $a : (0, m) \rightarrow \mathbb{R}$ given by the formula

$$a(x) = \frac{x g'(x)}{(m - x) g'(m - x)}.$$

We note that the relation (5.3) can be rewritten in the form

$$(5.4) \quad a(r_0) = a(r_1)$$

and

$$a\left(\frac{m}{2}\right) = 1.$$

We have

the nominator of $a'(x)$

$$\begin{aligned} &= [g'(x) + x g''(x)] (m - x) g'(m - x) \\ &\quad - x g'(x) [-g'(m - x) - (m - x) g''(m - x)] \\ &= (m - x) g'(x) g'(m - x) + x (m - x) g'(m - x) g''(x) \\ &\quad + x g'(x) g'(m - x) + x (m - x) g'(x) g''(m - x) \\ &= g'(x) g'(m - x) [m + (m - x) g^*(x) + x g^*(m - x)]. \end{aligned}$$

It is easy to see that

1. if $g^* > 0$ then the function a is increasing,
2. if $g(x) = x^\alpha$, $(\alpha \neq 0)$ then $g^*(x) = \alpha - 1$,

and

$$\begin{aligned} \text{the nominator of } a'(x) &= g'(x) g'(m - x) [m + (m - x)(\alpha - 1) + x(\alpha - 1)] \\ &= g'(x) g'(m - x) m\alpha \neq 0. \end{aligned}$$

In both cases the function a is bijective. The equation (5.4) implies that $r_0 = r_1$. We have $r_0 = |OA| < |F_2A| = r_1$. The contradiction ends the proof. ■

References

- [1] W. Blaschke, W. Rothe, R. Weitzenböck, *Aufgabe 552*, Arch. Math. Phys. 27 (1917), 82.
- [2] W. Cieślak, R. Stępnicki, *Equipower curves*, Ann. Univ. Mariae Curie-Skłodowska 58 (2004), 17–25.
- [3] H. Croft, K. J. Falconer, R. JK. Guy, *Unsolved Problems in Geometry*, vol. II of Problem Books in Mathematics, Springer-Verlag, New York, Berlin 1991.

- [4] K. J. Falconer, *On the equireciprocal point problem*, Geom. Dedicata 14 (1983), 113–126.
- [5] K. J. Falconer, *X-ray problems for point sources*, Proc. London Math. Soc. (3) 46 (1983), 113–126.
- [6] M. Fujiwara, *Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt*, Tôhoku Math. J. 10 (1916), 99–103.
- [7] R. J. Gardner, *Measure theory and some problems in geometry*, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 51–72.
- [8] R. J. Gardner, *Geometric Tomography*, Cambridge Univ. Press, 1995.
- [9] R. J. Gardner, A. Volčič, *Tomography of convex and star bodies*, Adv. Math. 108 (1994), 367–399.
- [10] J. B. Kelly, *Power points*, Amer. Math. Monthly 53 (1946), 395–396.
- [11] D. Laugwitz, *Differential and Riemannian Geometry*, Academic Press, New York, 1965.
- [12] M. Rychlik, *A complete solution to the equichordal point problem of Fujiwara, Blaschke, Rothe and Weitzenböck*, Invent. Math. 129 (1997), no 1, 141–212.
- [13] L. Santalo, *Integral Geometry and Geometric Probability*, Encyclopedia of Mathematics and its Applications, Reading, Mass. (1976).
- [14] Tabashnikov, *The four-vertex theorem revisited – two variations on the old theme*, Amer. Math. Monthly (1995), 912–916.
- [15] K. Yanagihara, *On a characteristic property of the circle and the sphere*, Tôhoku Math. J. 10 (1916), 142–143.
- [16] K. Yanagihara, *Second note on a characteristic property of the circle and the sphere*, Tôhoku Math. J. 11 (1917), 55–57.

W. Cieślak

POLITECHNIKA LUBELSKA

KATEDRA MATEMATYKI I GEOMETRII INŻYNIERSKIEJ

Nadbystrzycka 40

20-618 LUBLIN, POLAND

J. Wołowik

WYŻSZA SZKOŁA EKONOMICZNA W STALOWEJ WOLI

KATEDRA MATEMATYKI I EKONOMETRII

1 Sierpnia 26

37-450 STALOWA WOLA, POLAND

Received May 14, 2007; revised version June 21, 2008.