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A PICARD THEOREM FOR ITERATIVE
DIFFERENTIAL EQUATIONS

Abstract. A Picard type existence and uniqueness theorem is established for iterative
differential equations of the form y'(z) = f(z, y(h(z) + g(y(2)))), a special case of which
is y'(z) = f(z,y(y(z))). Such iterative differential equations can be used to model infec-
tive disease processes, pattern formation in the plane, and in investigations of dynamical
systems.

1. Introduction

The existence and uniqueness of solutions of differential equations of the
form

(1) y'(z) = f(z,y(z))
are of fundamental importance in the theory of ordinary differential equa-
tions. Therefore, there are now many existence and uniqueness theorems.
Among these is the well known one that was proved by Picard’s iteration
method.

There are, however, plenty of differential equations that are useful in
modeling natural processes, but cannot be written in the above form. One
such equation

y'(x) = y(y(z))

has appeared in the study of electrodynamics [1]. In [4], a similar equation

y'(z) = flz,y(z), y(y(=)))
is discussed and an existence theorem has been established under the stan-
dard initial condition
y(zo) = c.
mthematics Subject Classification: 34A12, 39B12.

Key words and phrases: iterative differential equation, existence and uniqueness the-
orem, Picard approximation.



372 Wen-rong Li, Sui Sun Cheng

In this paper, we consider an equation

(2) Y (@) = f(z,y(h(z) + 9(y(2)))),

under a ‘fixed point type’ initial condition

y(zo) = o.
Note that a special case of (2) is

(3) y'(z) = f(z,y(y(x)))
if we take h(z) = 0 and g(u) = u. Equation (2) may be called an iterative
differential equation since iterates of the unknown function are involved.
Such equations are important in the investigation of dynamical systems,
infectious disease models, etc. Specific forms of these equations can, for
example, be found in the review paper of Cheng [2].

Besides further examples of iterative equations in [1-8], here we provide
an additional model that prompts us to study equations of the form (3).
In pattern formation theory (such as fractal theory), a sequence of forms
{Fo, F1, Fy, ...} may satisfy the iteration rule Fy, 11 = H(Fo, F1,...,Fn_1).
Here we consider a sequence of curves in the plane that can be described by
a sequence of functions yg, yo, ¥2, - - - - Suppose the slope of the function yr;
is related to the value of y; at some u, that is,

(4) Yr41(z) = Lyk(u),
where L is a constant, and u is calculated at yy_1(z), that is,

(5) u = yk_.l(.’l,‘).

The question then arises as what may the sequence {yo,¥i,...} be. Such a
family of functions is naturally called a solution of the above relations and
its existence can be quite difficult. But one approach is to find a family of
functions such that yr = yg+1 for all large k (usually called a stationary
solution). Then we are led to

(6) y'(z) = Ly(y(z)).
We will see in the last section that such a stationary family exists under the
condition y(zg) = x¢ and additional appropriate conditions.
Note that the condition y(zo) = zo implies, in view of (6), that
y'(z0) = Lz,
while the condition y(z¢) = ¢ leads us to

y'(z0) = Ly(c)
which contains the unknown y(c)! In other words, the seemingly unpleasant
condition y(zg) = zo may in some cases match a required observation such
as the slope of our curve at xzg.
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2. Main results

We will prove the following basic existence and uniqueness theorem for
iterative functional differential equation of the form (2) based on the well
known idea of Picard which was applied to (1).

THEOREM 1. Let Q = {(z,y)| |z — zo| < a, |y — zo| < b}. Suppose
(i) f = f(z,y) is continuous on Q with M = max cq|f(x,y)| such
that

[f(z,w) — f(z,v)] < Liu—v|, (z,u),(z,v) €,

for some L > 0.

(ii) h = h(z) is continuous on [xo —a, o +a| and g = g(z) is continuous
on [zg — M, xo + M) where § = min{a,b/M?} such that (a) h(zo) = axo
and g(zo) = Bz where a,8 > 0 and o+ B = 1, and (b) the functions h(x)
and g(x) satisfy

|h(u) — h(v)] < aX|u—v|, u,v € [xo — a,zo + a,

and
lg(u) — g(v)] < Bu|u—v|, u,v € [xg — M6, xo + MJ]

for some A, > 0.

If a4+ puM < 1, then equation (2) has a unique continuously differen-
tiable solution y = y(x) defined on [xg— 6, zo+ 6| such that |y(x) — x| < M§
and y(xo) = xo.

Before giving the formal proof, let us note that Theorem 1 reduces to the
following special case when (3) is considered.

COROLLARY 1. Let Q = {(z,y)| |z — zo| < a, |y — zo| < b}. Suppose f =
f(z,y) is continuous on Q such that M = max(g y)cq |f(z,y)| < 1 and

[f (2, ) = f(z,0)] < Llu—vf, (z,u),(z,0) € Q

for some L > 0. Then equation (3) has a unique continuously differentiable
solution y = (z) defined for |xr — x| < &, where 6 = min{a,b/M}, and
satisfies p(xo) = xo.

We also remark that the conditions (ii)(a) is imposed because when
h(z) = 0 and g(x) = z, the corresponding a and [ are equal to 0 and
1 respectively. In other words, this condition is imposed for compatibility
reasons.

Proof of Theorem 1. First note that if y = y(z) is a CW[zg — 8, 2o+ 6]
solution such that |y(z) — zo| < M and y(z¢) = xo, then g(y(t)) is well
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defined for ¢ € [z¢ — 8,z + §]. Furthermore,

h(t) + 9(y(t)) — 2o < |h(t) — axo + 9(y(t)) — Baol
< |h(t) = h(zo)| + |9(y()) — 9(0)
< adlt — 2ol + Buly(t) — <ol
< ald + BuMéd <4,

so that f(t,y(h(t) + g(y(t)))) is well defined on [zo — &, z¢ + §]. Hence, by
integrating (2), y is a continuous solution of

T

() yl@) ==+ § F(t,y(h(t) + g(y(1))))dt, = € [zo — 6,z0 + J].

o
Conversely, if y = y(x) is a continuous solution of the above “integral equa-
tion”, then it is also a C( solution of our differential equation.
Let us define a sequence {yo, y1, ...} of successive approximation of the
desired solution of (7) by
yo(.’E) = To, |.’L’ - CL’0| < 6a

and for m=0,1,2,...,
T

Ym41(z) = o + | (8, ym(B(t) + g(ym(?))))dt, & — zo| < 6.

o

We need to show that each y; is well defined and continuously differentiable
on [zg — d,zo + 4.

To this end, note that (z, yo(x)

() + g(yo(z)) — zo| = [R(x

< |h(z

= |h(z

(z,x0) € Q for |z — zo| < 4. Next,

)=
)+ g(z0) — azo — Bzol

) — axo| + |g(x0) — Bol

) — h(zo)| < aX|z —zo| < aXd <8
for |z — zo| < 6, as well as

T

J £t 90(h(t) + 9(o(2))))dt

Zo

(8) ly1(z) — zo| <

= § f(t,xo)dt

To
for |z — x| < 4, so that (z,y1(x)) € Q for |z — zg| < J. Next,
|h(z) + 9(y1(x)) — zo| < [h(2) — (o) + l9(y1(2)) — g(0)]
< adlz — zo| + Bplyi(z) — o
< (@A +BuM)s <4

< M |z — zo|
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for |z — zo| < 4 and

h(z)+g(y1(z))
Vo @y (h(t) + g(vo(t))) dt

Zo
< M |h(z) + g(y1(2)) — Zol
<M§<b

ly1 (h(z) + g(31(x))) — zo| =

for |z — zo| < 4, so that

| £(6,1(h(8) + (e (O)))dt

o

ly2(x) — zo| < <Mlz—zo| <M5<b

for |z—xzo| <4. By induction, it is then not difficult to see that yo(z), y1(x), . ..
are well defined and continuously differentiable on [zo — §,z9 + d], and

(@, ym(x)), (2, ym(h(z) + 9(ym(2)))) € Q for x € [zo — b, 20 + 4.

Next, we need to find estimates for the approximate solutions in
{v0, 41, .. }. To this end, note that for z € [zg — §,z + ],

T

J £t 90(h(t) + g(yo(1))))dt

o

|y1(2) = yo(2)| = < Mz — ol

z

§ 10 91(h(t) + 9(u1(0)))) — f(t 30(h(t) + g(yo(1)))))] dt

To

ly2(z) — y1(z)| <

T

< L| § lyi(a(®) + 9(u1(8))) — yo(R(2) + g(yo(t)))| dt

o

z |h()+g9(ya1())
1§ T A + g
< 1M |] [h(®) + g(sn(0) - ol ds

Zo
x
| [t — ol dt

zo

< LM(a\ + BuM)

1 2
SLMa|x—m0| ,
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and

ly2(h(t) + g(y2(t))) — v (h(t) + |
< ly2(h(t) + g(y2(¢))) — ya(h(t) + |
+ ly2(h(t) + 9(y1())) — y1(h(t) + g(41(2)))]
h(t}+g(y2(t))

F(s,31(h(s) + g(y1(s)))ds

h(t)+g9(y1(t)
+ ly2(h(t) + g(y1(¢))) — y1(R(t) + g(y1(1)))]

< M lg(a(t)) — 9 ()] + S 1h(t) + 9(an (1)) — zof

< MBplyn(t) — (0] + f,ﬁm + BuM)2 1t~ aof?

M
< (L Bud) |t~ aol?.

Hence,

xr

lys(2) — y2(2) < L| § ly2(h(t) + g(y2(t)) — y1(h(t) + g(31(t)))| dt

zo

2M
—(1+ BuM) & — zof*.

L
<

The same principle can now be used to show that
LF1pm
|yk($)"yk—1($)| < k! (1+/HIJ’M)IC 2|IL' wolk’ k:1727"'a
for z € [zg — §,z0 + J].
Next, we need to show that the sequence of approximate solutions tends
to a limiting function which is a solution of (7). To this end, note that the
infinite series

k—1
(9) Z L H M(1+ﬁuM)’c 25k
k=1 )

converges by means of the ratio test, we see that
y(z) = yo(z)+(y1(z) — yo(2))+(y2(x) — y1(x))+- - - < 00, T € [T0—F,T0+7],
by the Weierstrass M-test. Thus,

ym =%0 + (Y1 — %) + -+ + (Ym — Ym-1)

tends to a (continuous) limit function y uniformly on [z — 8,z + §]. Note
that the composition ym(h(z) + g(ym(z))) also tends to y(h(z) + g(y(x)))
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uniformly as m tends to oo since

lym(h(z) + g(ym(2))) — y(h(z) + 9(y(2)))]
< lym(b(2) + 9(ym(2))) — ym(h(z) + g(y(z))
+lym(h(z) + g(y())) — y(h(z) + g(y()))
h{z)+g(ym(z))
= S (& ym—1(h(t) + g(ym-1(?))))dt
h(z)+g(y(x))

+lym(h(z) + 9(y())) — y(h(z) + 9(y(2)))|
< M g(ym(z)) — 9(y(@))] + lym(h(z) + 9(y(2))) — y(h(z) + g(y(2)))|-

Note further that

| (@, ym(h(z) + g(ym(2)))) - f(z, y(A(z) + 9(y(2))))]
< L |ym(h(z) + 9(ym(2))) — y(h(z) + 9(y()))|,

)
|

hence
f(@, ym(h(z) + 9(ym(2)))) — f(z,y(h(z) + g(y(2))))

uniformly on [zg — 8, 2o + 6] as m — co. We may now see that

y(z) = lim ym41(z)
= {f”o + § £t ym(R(t) + g(ym(t))))dt}

z

— 3o+ | F(ty(h(t) + g(y(t))))dt

Zo

for x € [zg — 4,20 + 4. This concludes our proof of the existence part.

To show uniqueness, let 2 : [zo — §, zo + 0] — [zo — b, o + b] be another
solution of (2) that satisfies z(zg) = xo. Then

z2(x) =z + § f(t, z(h(t) + g(2(¥)))dt, x € [xo — 6, z¢ + J].

Furthermore,

z

lvo(z) — 2(2)| < | § (2, 2(h(t) + g(2(1))))| dt| < M |z — zo,

Zo
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ly1(2) — 2(z)] < L| § lyo(h(t) + 9(30(t))) — 2(h(t) + g(2(t)))| dt

Zo

_ifi

Zo

h(t)+g(z(t))

J o f(&2(R(E) + 9(2(8))))dg

o

dt

§ 1a(2) + g(2(2) — ol dt

o

<LM

T
| It — 2ol at

zo

< LM(aX + BuM)

LM \
ST|JI—$O| )

ly1(h(t) + 9(21(2)) — 2(h(t) + g(2(2))]
<y (A(t) + 9(w1(8)) — va(R(?) + 9(2(2))]
+ ly1(h(t) + g(2(8)) — 2(h(t) + 9(2(2))|

< Mg(s(t) — 9(2(8))| + g(a/\ + BuM) [h(2) + g(=(t)) — zo|”

< MBuln(0) — 2(0)| + g |t~ ol

and
esd

ly2(2) — 2(2)] < L|§ [y1(h(t) + 9(31(t))) — 2(h(2) + 9(=(t)))| dt

zo
2

M
—(1+ BuM) |z — zof*

for z € [xo — 8,z + 6]. By induction, we may then show that
n

|yn(z)_ ( )| = ( )

Since (9) converges, we may then see that y, converges to z uniformly on
[xo — 8,0 + d] as n — oo. This implies y(z) = z(z) for z € [zo — J, 2o + 9.
The uniqueness part is also proved.

— (1 + BuM)™" Yo -z, n=1,2,....

3. Examples
We now consider three examples to illustrate our results.

EXAMPLE 1. First consider the equation

(10) Y'(x) = Ly(y(z))
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where L > 0. Since f(z,y) = Ly, we see that |f(z,u) — f(z,v)| = L|u — v|
holds for arbitrary (z,u) and (z,v). Next let zg € [0,1/L}]. Then
|f(z,y)l = Lyl <1

for |t —xo| < @ < 1/L — z¢ and |y — x| < 1/L — zo. By Corollary 1,
(10) has a unique continuously differentiable solution y = y(z) defined on
[xo — 8, o + d] and satisfies y(zo) = o, where

5:min<a,%—x0>.

ExXAMPLE 2. Consider the equation

(11) y'(2) = f (2,y(y(2))) = 2* + (y(y(2)))?,
where f(z,y) = £%+y2, 20 = 0and Q = {(z,y) € R?| |z] < 1/2,|y| < 1/2}.
Then
1f(z,u) — flz,v)| = lut+vflu—v| < |u—of, (z,u),(z,v) € Q,
and

1
M = N = =,
(g;?écﬂlf(w )] 5

and 6 = 1/2. Thus our equation (11) has a unique continuously differentiable
solution y = y(z) defined on [—1/2,1/2] which satisfies y(0) = 0.

Next, we observe that in the previous development, we assume that the
independent and dependent variables are in the real domain. However, the
same arguments hold when the variables are complex valued as long as we
change the corresponding intervals with centers into balls. For instance,
Corollary 1 remains the same in form if we interpret z,y, f, u, v as complex
variables.

EXAMPLE 3. In the modified Corollary, the assumption M < 1 is sufficient
but not necessary. As an example, consider the equation

(12) y'(2) = y(y(2).
Let us look for solutions of the form [3]
y(z) = B2".

After substituting it into (12), we see that

7 —y+1=0,

g’ =1,
which lead us to
y+(2) = 427 and y_(z) = 2",
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where

13

==

Note that |y4| = 1, and y4+(v4+) = v+. Hence y,(2) is a continuously dif-
ferentiable solution of (12) for |z — 4| < 1 that satisfies y1(v4) = v+.
However,

T+

max |f(z,w)]| = max |w|>1.
lz=74+]|<1, Jw—v4|<1 [w—y4+]<1
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