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A PICARD THEOREM FOR ITERATIVE 
DIFFERENTIAL EQUATIONS 

Abstract . A Picard type existence and uniqueness theorem is established for iterative 
differential equations of the form y'(x) = f(x,y(h(x) + g(y(x)))), a special case of which 
is y'(x) = f(x,y(y(x))). Such iterative differential equations can be used to model infec-
tive disease processes, pattern formation in the plane, and in investigations of dynamical 
systems. 

1. Introduction 
The existence and uniqueness of solutions of differential equations of the 

form 

(1) y'(x) = f(x,y( x)) 
are of fundamental importance in the theory of ordinary differential equa-
tions. Therefore, there are now many existence and uniqueness theorems. 
Among these is the well known one that was proved by Picard's iteration 
method. 

There are, however, plenty of differential equations that are useful in 
modeling natural processes, but cannot be written in the above form. One 
such equation 

y'(x) = y(y(x)) 

has appeared in the study of electrodynamics [1], In [4], a similar equation 

y'{x) = f{x,y{x),y(y(x))) 
is discussed and an existence theorem has been established under the stan-
dard initial condition 

y(x 0 ) = c. 
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In this paper, we consider an equation 

(2) y'(x) = f(x,y(h(x)+g(y(x)))), 
under a 'fixed point type' initial condition 

y(x0) = XQ. 

Note that a special case of (2) is 
(3) y'(x) = f(x,y(y(x))) 
if we take h(x) = 0 and g(u) — u. Equation (2) may be called an iterative 
differential equation since iterates of the unknown function are involved. 
Such equations are important in the investigation of dynamical systems, 
infectious disease models, etc. Specific forms of these equations can, for 
example, be found in the review paper of Cheng [2], 

Besides further examples of iterative equations in [1-8], here we provide 
an additional model that prompts us to study equations of the form (3). 
In pattern formation theory (such as fractal theory), a sequence of forms 
{Fo, Fi, F2,... } may satisfy the iteration rule FN+\ = H(FQ, F I , . . . , FN-1). 
Here we consider a sequence of curves in the plane that can be described by 
a sequence of functions yo,yo,y2, • • • • Suppose the slope of the function yk+i 
is related to the value of y& at some u, that is, 

(4) y'k+i(x) = Lyk(u), 
where L is a constant, and u is calculated at yk-i(x), that is, 
(5) u = yk-i(x). 
The question then arises as what may the sequence {yo, yj , . . . } be. Such a 
family of functions is naturally called a solution of the above relations and 
its existence can be quite difficult. But one approach is to find a family of 
functions such that yk = yk+1 for all large k (usually called a stationary 
solution). Then we are led to 
(6) y'(x) = Ly(y(x)). 
We will see in the last section that such a stationary family exists under the 
condition y(x0) = £0 and additional appropriate conditions. 

Note that the condition y(X0) = XQ implies, in view of (6), that 
y'{x 0) = Lx 0, 

while the condition y(xo) = c leads us to 

y'(x0) = Ly(c) 
which contains the unknown y(c)\ In other words, the seemingly unpleasant 
condition y(x0) = XQ may in some cases match a required observation such 
as the slope of our curve at XQ. 
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2. Main results 
We will prove the following basic existence and uniqueness theorem for 

iterative functional differential equation of the form (2) based on the well 
known idea of Picard which was applied to (1). 

T H E O R E M 1 . Let II = {(x,y)\ \x — xo| < a,\y — xo| < b} . Suppose 
(0 / = f(xjV) is continuous on Q with M = max(XjJ/)eQ |/(x, y)| such 

that 

|f(x,u) - f(x,v)| <L\u-v\, (x,u), (x,v) e n, 

for some L > 0. 
(ii) h = h(x) is continuous on [XQ — a,xo + a] and g = g(x) is continuous 

on [XQ — M6,xo + MS] where 5 = min {a ,b /M} such that (a) h(xo) = axo 
and g(xo) = fix® where a,(3 > 0 and a + (3 = 1, and (b) the functions h(x) 
and g(x) satisfy 

— h(v)| < a\\u — v\, u, v G [xo — a, xo + a], 

and 
|g{u) - g(v)| < \u - v\, u, v € [x0 - MS, x0 + MS] 

for some A, fi > 0. 
If aX + /?/iM < 1, then equation (2) has a unique continuously differen-

tiate solution y = y(x) defined on [xo — S, xo + <5] such that \y(x) — xo| < MS 
and y(xo) = xo-

Before giving the formal proof, let us note that Theorem 1 reduces to the 
following special case when (3) is considered. 

C O R O L L A R Y 1 . Let U = {(x,y)| |x — xo| < a, \y — xo| < b} . Suppose f = 
f(x,y) is continuous on such that M = max^^gQ \f(x,y)\ < 1 and 

| f(x,u) - f(x,v)| <L\u-v\, (x,u),(x,v) e tt 

for some L > 0. Then equation (3) has a unique continuously differentiate 
solution y — tp(x) defined for |x — xo| < where S = min {a, b/M}, and 
satisfies <p(xo) = xo-

We also remark that the conditions (ii)(a) is imposed because when 
h(x) = 0 and g{x) = x, the corresponding a and (3 are equal to 0 and 
1 respectively. In other words, this condition is imposed for compatibility 
reasons. 

Proof of Theorem 1. First note that if y — y(x) is a C^[XQ — S, XO + 5] 
solution such that |Y(x) — XQ| < MS and Y(xO) = XQ, then g(y(t)) is well 
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defined for t G [xo — 5, xo + 5]. Furthermore, 

| h { t ) + g ( y { t ) ) - x 0 | < | h ( t ) - a x 0 + g ( y ( t ) ) - 0 x o \ 

< \ h ( t ) - h ( x 0 ) \ + \ g ( y ( t ) ) - g ( x 0 ) \ 

< aA |i - xq| + fin | y ( t ) - x0 | 
< a X S + ¡ 3 f i M S < S , 

so that f ( t , y ( h ( t ) + g ( y ( t ) ) ) ) is well defined on [XQ — 6 , XQ + <5]. Hence, by 
integrating (2), y is a continuous solution of 

X 

( 7 ) y ( x ) = x 0 + J f { t , y { h ( t ) + g ( y ( t ) ) ) ) d t , x 6 [ x q — S , x 0 + S \ . 

XQ 

Conversely, if y = y(x) is a continuous solution of the above "integral equa-
tion", then it is also a c w solution of our differential equation. 

Let us define a sequence { y o , y i , • • • } of successive approximation of the 
desired solution of (7) by 

y 0 ( x ) = x q , \ x - x0 | < 6 , 

and for m = 0 , 1 , 2 , . . . , 
X 

ym+i(x) = x0 + \ f ( t , y m ( h ( t ) + g { y m { t ) ) ) ) d t , \ x - x0 | < 6 . 

Xo 

We need to show that each yi is well defined and continuously differentiable 
on [xo - <5, X q + £ ] . 

To this end, note that ( x , y o ( x ) ) = ( x , x q ) € for \ x — xo| < S . Next, 

| h ( x ) + g ( y o ( x ) ) - x 0 | = \ K X ) + o ) - a x 0 - ( 3 x 0 \ 

< |h(x) - ax0| + |g(x0) - /3x0| 
= | h { x ) — h{xo)| < aA \ x — xo| < aA<5 < S 

for \x — xq\ <5, as well as 

(8) \ y i ( x ) - x 0 | < J f ( t , y o ( h ( t ) + g ( y o ( t ) ) ) ) d t 

xq 

X 

5 f { t , x 0 ) d t 

XQ 

< M \ x — x q \ 

for \x — xo| < so that (x, yi(x)) € U for |x — xo\ < S. Next, 

\ h ( x ) + g ( y i ( x ) ) - x0 | < \ h ( x ) - h ( x 0 ) \ + \ g { y i ( x ) ) - 3(2:0) | 

< aA \x - xq\ + P(jl |yi(x) - x0 | 
< ( a A + f 3 / j , M ) 5 < 6 
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for — xo| < <5 and 

\yi (h(x) + g { y i ( x ) ) ) - x 0 | = 

h(x)+g(yi(x)) 

i f ( t , y o ( h ( t ) + g(yo(t))))dt 

xo 

< M \ h ( x ) + g ( y i ( x ) ) - x0\ 

< M S < b 

for \x — xo\ <5, so that 

I y 2 { x ) - x 0 | < j f ( t , y i ( h ( t ) + g ( y i ( t ) ) ) ) d t 

Xo 

< M \ x - x 0 \ < M 6 < b 

for \x—xq\ <8. By induction, it is then not difficult to see that y o ( x ) , y i ( x ) , . . . 

are well defined and continuously differentiable on [.xo — 5, xo + 5], and 
( x , y m ( x ) ) , ( x , y m ( h ( x ) + g ( y m ( x ) ) ) ) £ i ) f o r x £ [cc0 - S , x 0 + <5]. 

Next, we need to find estimates for the approximate solutions in 
(i/0) 2/i> • • • }• To this end, note that for x € [xq — 5, xq + 5], 

\ y i ( x ) - yQ(x)\ = ] f{t,yo(h(t) + g(yo(t))))dt 

Xo 

< M \x — XQ\ , 

\V2(x) - y i ( x ) \ < S \ ( f ( t , y i ( h ( t ) + g ( y i m ) - f ( t , y o ( h ( t ) + g ( y 0 ( t ) ) ) ) ) \ d t 
xo 

< L 

= L 

] |yi(h(t) + g ( y i m ~ Vo(h(t) + g(yo(t)))\ dt 

XO 

XO 

h(t)+g(yi(t)) 

5 f ( t , y o ( h ( t ) + g ( y 0 ( t ) ) ) ) 

xo 

dt 

< L M ] \h(t) + g ( y i { t ) ) - x 0 \ d t 

Xo 

< L M ( a A + ß n M ) 

1 , ,2 
< L M - \ X - x q \ % 

j |i — dt 

xo 
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and 

\y2(h(t) + g(y2(t))) - yi(h(t) +g(yi(t)))\ 

< \V2(h(t) + g(y2(t))) - y2(h(t) + g(yi(t)))\ 

+ ImiHt) + g(m(t))) - yi(h(t) + g(yim\ 
h(t)+g(y2(t)) 

\ f(s,yi(h(s) + g(y1(s)))ds 
h(t)+g(yi(t)) 

+ IV2{h{t) + g(yi(t))) - Vi(h(t) + <7(2/1(t)))| 

< M |g(y2(t)) - g(yi(t))\ + ^ \h(t) + g(yi(t)) - z0|2 

< |y2(t) - yi(t)| + ^ ( a A + f3fiM)2 \t - x0|2 

< ^ ( 1 + (3»M) \t-x0\2. 

Hence, 

M®) -V2(x)\ < L j |y2(h(t) + g(y2(t))) - m(h(t) + g(yi(t)))\dt 
xo 

L2M o 

The same principle can now be used to show that 

Lk~lM 
|y f c(x)-y f c_i(x)| < — — (l + (3nM)k-2\x-x0\k , k = 1 , 2 , . . . , 

for x 6 [XQ — <5, XQ + 5]. 
Next, we need to show that the sequence of approximate solutions tends 

to a limiting function which is a solution of (7). To this end, note that the 
infinite series 

(9) Z ^ T ^ 1 + ^ M ) k ~ 2 8 k 

k=1 

converges by means of the ratio test, we see that 

y(x) = y0(x)+(y1(x) -y0(x))+(y2(x) -yi{x))+--- < 00, x G [z0-(5,x0+<5], 

by the Weierstrass M-test. Thus, 

ym = yo + (2/1 - yo) H — + {ym - ym-1) 

tends to a (continuous) limit function y uniformly on [xo — 6, XQ + . Note 
that the composition ym(h(x) + g{ym{x))) also tends to y(h(x) + g(y(x))) 
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uniformly as m tends to oo since 

Iym{h(x) + g(ym(x))) - y{h{x) + g(y(x)))\ 

< |ym(h(x) + g{ym(x))) - ym{h(x) + g{y{x)))\ 

+ \ym(h(x) + g{y{x))) - y{h{x) + g(y(x)))\ 

h(x)+g(ym(x)) 
J f(t,ym-i(h(t) + g(ym-i(t))))dt 

h(x)+g(y(x)) 

+ \ym(h{x) + g(y(x))) - y(h(x) + g(y(x)))\ 

< M \g(ym(x)) - g(y(x))\ + |ym(h(x) + g(y(x))) - y(h(x) + g{y{x)))\. 

Note further that 

\f(x,ym{h(x)+g(ym(x)))) - f(x, y(h(x) + g(y(x))))\ 

< L \ym(h(x) + g{ym{x))) - y(h(x) + , 

hence 

f(x,ym(h(x) + g(ym(x)))) f{x,y(h(x)+g(y(x)))) 

uniformly on [xo — 5, xo + <5] as m —> oo. We may now see that 

y[x) = l i m ym+i(x) 

= l i m \x0+ ] f(t,ym(h(t)+g(ym(t))))dt m—*oo J 
K xo , 

X 

= x0+ J f(t,y(h(t) + g(y(t))))dt 
xo 

for x G [xo — S, xq + 5]. This concludes our proof of the existence part. 
To show uniqueness, let z : [xo — 6, xq + 5] —> [xo — b, xq + b] be another 

solution of (2) that satisfies z(xo) = xq. Then 

x 
z(x) = Xo + j f(t,z(h(t) + g(z(t))))dt, x € [ x 0 - S,x0 + ¿]. 

XQ 

Furthermore, 

\yo(x) - z(x)I < j If(t,z(h(t)+g(z(t))))\dt 
XO 

< M \x — xq \ , 
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\yi(x) - z(x)| < L 

= L 

S \yo(h(t) + g ( y 0 m - z(h(t) + g(z(t)))\dt 

Xo 

Xo 

< L M 

h{t)+g{z{t)) 

\ m , z ( h ( o + g ( z ( o ) m 
xo 

5 \h(t)+g(z(t))-x0\dt 

Xo 

dt 

< L M ( a A + 0/jiM) 

L M . l2 

J \t — xo\dt 

XO 

2! 

\yi(h(t) + g(yi(t)) - z(h(t) + g(z(t))\ 

< \vi(h(t) + g(yi(t)) - yi(h(t) + g(z(t))\ 

+ \yi(h(t) + g(z(t)) - z(h(t) + g(z(t))| 

< M |g(Vl(t)) - g(z(t))\ + + frM) \h(t) + g{z{t)) - x 0 | 

< M / 3 / x \y\(t) - z(t)| + | i - ^ o | 2 , 

and 

| y 2 ( X ) - < L j |Vl(h(t) + 5 ( 2 / 1 ( i ) ) ) - z(h(t) + g(z(t)))\dt 

Xo 

L 2 M o 
< ~ 2 j - ( l + 0tiM) |x-x0|

3 

for x G [xo — xq + By induction, we may then show that 
TnM 

\yn{x) - z{x)\ < 7^—7—^7(1 + /3mm)"-1 x - x 0 | n + 1 , n = 1 , 2 , . . . . 
(n + 1)! 

Since (9) converges, we may then see that converges to 2 uniformly on 
[xo — S, xo + as n —• 00. This implies j/(x) = z(x) for x e [xo — <5, x$ + 5]. 
The uniqueness part is also proved. 

3. Examples 

We now consider three examples to illustrate our results. 

EXAMPLE 1. First consider the equation 

( 1 0 ) y'(x) = Ly(y(x)) 
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where L > 0. Since f(x,y) = Ly, we see that \f(x,u) — f(x,v)\ = L\u — v\ 
holds for arbitrary ( X , U ) and (x,V). Next let XQ £ [0,1 /L], Then 

|/(*,y)| = L | y | < l 

for —xo| < a < 1 /L — XO and \y — xo| < 1/L — XQ. By Corollary 1, 
(10) has a unique continuously differentiable solution y = y(x) defined on 
[xo — <5, XQ + <5] and satisfies y(xo) = XQ, where 

5 = min -jr — xo 

E X A M P L E 2 . Consider the equation 

(11) y'{x) = f (x, y(y(x))) = x2 + (y(y(x)))2, 

where f(x,y) = x2+y2,x0 = 0 and Q = {(x,y) € R2\ |x| < 1/2, \y\ < 1 / 2 } . 
Then 

| f(x, u) — f(x, v)| = \u + \u — v\ < |u — v\, (X, u), (x, V) € f2, 

and 

M = max \f(x, y)\ = -, 
(x,y)en 2 

and 5 = 1/2. Thus our equation (11) has a unique continuously differentiable 
solution y = y(x) defined on [—1/2,1/2] which satisfies y(0) = 0. 

Next, we observe that in the previous development, we assume that the 
independent and dependent variables are in the real domain. However, the 
same arguments hold when the variables are complex valued as long as we 
change the corresponding intervals with centers into balls. For instance, 
Corollary 1 remains the same in form if we interpret x,y,f,u,v as complex 
variables. 

E X A M P L E 3 . In the modified Corollary, the assumption M < 1 is sufficient 
but not necessary. As an example, consider the equation 

(12) y'(z) = y(y(z)). 

Let us look for solutions of the form [3] 

y(z) = (3z\ 

After substituting it into (12), we see that 

7 2 - 7 + 1 = 0, 

/ R = 7 , 

which lead us to 

y+iz) = 0 + z l + a n d y-(z) = /tf-^7", 



380 Wen-rong Li, Sui Sun Cheng 

where 
1 ± V3i 

7 ± = ^ — • 

Note that |7+| = 1, and y+ (7+ ) = 7+. Hence y+(z) is a continuously dif-
ferentiate solution of (12) for \z — 7+) < 1 that satisfies y+(7+) = 7+. 
However, 

max \f(z,w)\ = max \w\ > 1. 
\z—7-)-|<l,|«;—7+|<l I«;—7+|<l 
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